第9章 细胞信号转导(1)
第9章 细胞信号转导
G-蛋白偶联的受体(G-protein-linked receptor)
酶偶连的受体(enzyme-linked receptor)
第9章 细胞信号转导
细胞表面受体信号转导
第9章 细胞信号转导
受体结合特异性的配体后而被激活,通过信号转导 (signal transduction)途径将胞外信号转换为胞内 信号引发两种主要的细胞反应。
第9章 细胞信号转导
翟中和 王喜忠 丁明孝 主编 细胞生物学(第4版)© 2011 高等教育出版社
第一节 细胞信号转导概述
一、细胞通讯(cell communication)
一个细胞发出的信息通过介质传递到另一个细胞并与其相 应的受体结合,通过细胞信号转导产生使靶细胞产生相应的 生理生化变化,使靶细胞产生生物学效应的过程。 细胞间的通讯对于多细胞生物体的组织发生和形态构建, 协调细胞间的功能,控制细胞的生长和分裂是必须的。细胞 信号转导是实现细胞通讯的关键过程。
Thanks for your attention!
翟中和 王喜忠 丁明孝 主编 细胞生物学(第4版)配套PPT 欢迎使用!
第9章 细胞信号转导
二、信号分子与受体
(一)信号分子(signal molecule)
• 气体信号分子(gaseous signal molecule ) NO CO • 疏水性信号分子(hydrophobic signal molecule ) 甾类激素和甲状腺素 • 亲水性信号分子(hydrophilic signal molecule ) 神经递质、局部介质和蛋白类激素
翟中和 王喜忠 丁明孝 主编 细胞生物学(第4版)© 2011 高等教育出版社
第九章 细胞信号转导知识点总结
第九章细胞信号转导细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。
信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。
信号传导强调信号的产生、分泌与传送。
信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。
信号转导强调信号的接收与接收后信号转换的方式与结果。
受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。
第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。
分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。
信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。
G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。
cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP水平的变化而引起细胞反应的信号通路。
(磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。
钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。
Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。
1.第9章 细胞信号转导 习题作业
B.胞质酪氨酸激酶 D.磷脂酶
20、用磷脂酶 C(PLC)处理完整的细胞,能释放出哪一类膜结合蛋白 _______。
A. 整合蛋白
B.外周蛋白
C.脂锚定蛋白 D.脂蛋白
二、判断题
1、 IP3 是 PKC 系统中的第二信使,它直接激活内质网上的 Ca2+泵动员 Ca2+的释放。( ) 2、 第一信使与受体作用后,在细胞内最早产生的传递体分子叫第二信使。( ) 3、 G 蛋白偶联受体介导的离子通道与化学门控的离子通道本质是一样的。( ) 4、 在 G 蛋白偶联的信息传递通路中,G 蛋白与信号效应多样性无关。( ) 5、 细胞内受体的本质是基因调控蛋白,激活后的受体可增强相关基因的转录。( ) 6、 NO 可激活相邻细胞中受体鸟苷酸环化酶。( ) 7、 细胞间的通讯就是通过细胞间形成间隙连接,是细胞质相互沟通而实现的。( ) 8、 细胞受体与腺苷酸环化酶同在质膜上,是相互分离的在功能上相关的两种蛋白。( ) 9、 酪氨酸蛋白激酶受体必须二聚化,才能发生配基诱导的信号转导。( ) 10、 G 蛋白耦联受体被激活后,使相应的 G 蛋白解离成 α、β、γ 三个亚基,以进行信号传递。(
D.自磷酸化并与 IRS 结合→将具有 SH2 区域的蛋白激活→效应
6、对于胆固醇激素的来说,哪一种描述是正确的__________。
A.胆固醇激素在细胞内的作用是由整合膜蛋白介导的
B.它们对细胞的影响需要水溶性的细胞内信号
1
C.它们的效应是通过与水溶性受体蛋白结合介导的
D.它们的效应通常涉及细胞内其他一些酶的活性
A.IP3
B.cAMP
C.Ca2+
D.cGMP
10、佛波酯的受体分子是_____。
细胞生物学第九至第十二章作业答案
第九章细胞信号转导1 、什么是细胞通讯?细胞通讯有哪些方式?答:细胞通讯是指一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相对应的受体相互作用,然后通过细胞信号转导产生靶细胞内一系列生理生化变化,最终表现为靶细胞整体的生物学效应的过程。
细胞通讯有3种方式:①细胞通过分泌化学信号进行细胞通讯,这是多细胞生物普遍采用的通讯方式;②细胞间接触依赖性通讯,细胞间直接接触,通过信号细胞跨膜信号分子(配体)与相邻靶细胞表面受体相互作用;③动物相邻细胞间形成间隙连接、植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢偶联或电偶联。
2 、简述细胞的信号分子和受体的类型,信号转导系统的主要特性有什么?答:<1>信号分子是细胞信息的载体,种类繁多,包括化学信号和物理信号。
各种化学信号根据其化学性质通常分为3类:①气体性信号,包括NO、CO;②疏水性信号分子,主要是甾类激素和甲状腺激素;③亲水性信号分子,包括神经递质、局部介导和大多数蛋白类激素。
<2>根据靶细胞上受体存在的部位,可将受体区分为细胞内受体和细胞表面受体。
细胞内受体位于细胞质基质或核基质中,主要识别和结合小的脂溶性分子;细胞表面受体又可分属三大家族:离子通道偶联受体、G蛋白偶联受体和酶联受体。
<3>信号转导系统的主要特性:①特异性:细胞受体与胞外配体的识别、结合、效应具有特异性,且受体与配体的结合具有饱和性可逆性特征;细胞信号转导既有专一性又有作用机制的相似性。
②放大效应:信号传递至胞内效应器蛋白,引发细胞内信号放大的级联反应。
最常见的级联放大作用是通过蛋白质磷酸化实现的;③网络化和反馈调节机制:由一系列正反馈和负反馈环路组成网络特性,对于及时校正反应的速率和强度是最基本的调控机制;④整合作用:细胞必须整合不同的信息,对细胞外信号分子的特异性组合作出程序性反应;⑤信号的终止和下调:信号转导过程具有信号放大作用,但这种放大作用又必须受到适度控制,这表现为信号的放大作用和信号所启动的作用的终止并存。
细胞信号转导
特点:①特异性;②高效性;③被灭活性。
2 受体(receptor)
概念:受体是一种能够识别和选择性结合某种配体(信
号分子)的大分子物质,多为糖蛋白,一般至少 包括两个功能区域,与配体结合的区域和产生效 应的区域 。
类型:细胞内受体:识别和结合小的脂溶性信号分子
细胞表面受体:识别和结合亲水性的信号分子
细 胞
第 信九 号
章 转 导
第一节 细胞信号转导概述
一、细胞通讯与细胞识别
●细胞通讯(cell communication) ●细胞识别(cell recognition)
细胞通讯:一个细胞发出的信息通过介质 传递到另一个细胞产生相应反应的过程。
细胞通讯的三种方式及其反应
1、信号 分子;2、 细胞表面 分子粘着 或连接; 3、细胞 外基质
cAMP
cAMP作用的靶分子
cAMP激活蛋白激酶A
G蛋白偶联受体介导的产生cAMP的
信号转导系统
腺
信 号 分 子
受 体
苷 G蛋白 酸
环 化
酶
Pro
A
生
激
理
酶
Pro-p 功 能
调
节
Pro Pro-p
调节蛋白的磷酸化 ➢ e.g 糖原磷酸化激酶、糖原磷酸化酶
转录因子磷酸化 ➢ e.g CREB(CRE结合蛋白)磷酸化
Ras途径 1. 具有SH结构域的蛋白质 A. SH: SRC homology
癌基因 Src 中发现的一段序列
B. 二种结构域
SH2--- 识别磷酸化的Tyr残基 e.g. GAP
(和激活受体结合)
GRB2
SH3---- 与其它蛋白质结合
9 第九章 细胞信号转导
Gene transcription Cell proliferation Cell differentiation Cell death Cell mobility Immune responses
离子通道偶联受体 细胞表面 受体类型 G蛋白偶联受体 酶偶联受体
受体至少有2个功能域: 结合配体的功能域 产生效应的功能域
7
根据受体引发细胞反应作用过程的时间特 点,可以分为2种主要的细胞反应:
一、细胞内存量蛋白活性或功能的改变,进 而影响细胞代谢功能的短期反应(快反应); 二、通过转录因子的修饰激活或抑制基因表 达的长期反应(慢反应)
双信使系统
→DAG→激活PKC→蛋白磷酸化或促 Na+/H+交换使胞内pH DAG-PKC途径
35
IP3-Ca2+ 和DAG-PKC 双信使信号通路
36
1、IP3-Ca2+途径
激素
受体
G蛋白
PLC
IP3
CaM 钙调蛋白
内质网上的配 体门Ca2+通道
Ca2+
Ca2+ CaM复合体 Ca2+—CaM复合体 结合并激活靶酶
G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs) 是细胞表面受体中最大的多样性家族; 统计表明:现有25%的临床处方药物是针对GPCRs所介 导信号通路为靶点研制和开发的。
23
一、G蛋白偶联受体的结构与激活
G蛋白偶联受体---配体受体复合物与靶 蛋白(酶或离子通道)的作用要通过G 蛋白偶联,才可产生第二信使。 G蛋白是三聚体GTP结合调节蛋白 (trimetric GTP-binding regulatory protein)的简称,由α,β,γ三个亚基组成, α 亚基和βγ二聚体亚基共价结合脂分子 锚于质膜PS面。 当配体结合受体后, α 亚基与受体胞内 部分偶联,引起α 亚基构象变化,使得 GDP被GTP交换, α 亚基脱离受体,产 生游离的活化α 亚基以及游离的活化βγ 二聚体。
细胞生物学:第九章 细胞信号转导
气体性信号分子:NO ➢能自由扩散,进入细胞直接激活效应酶。
受体(Receptors)
能够识别和选择性结合某种配体(信号分 子)的大分子。
多为糖蛋白 至少包括两个功能区域
➢与配体结合的区域,具有结合特异性; ➢产生效应的区域,具有效应特异性。
类型 ➢细胞内受体:细胞质基质、核基质 小的亲脂性信号分子 ➢细胞表面受体 亲水性信号分子(分泌型和膜结合型)
B) constitutive activation of type II TGFb receptor
C) loss of Smad3 function
D) constitutive activation of Smad3
E) loss of Smad 4 function
Clicker Question 15-4
亲脂性信号分子:甾类激素、甲状腺素等。 ➢疏水性强,可穿过细胞膜进入细胞,与细 胞质或细胞核中受体结合形成激素-受体复 合物,调节基因表达。
亲水性信号分子:多肽类激素、生长因子、神经 递质、局部介质等。
➢不能穿过靶细胞质膜的脂双层,只能通过与靶 细胞表面受体结合,再经信号转换机制,在细 胞内产生第二信使或激活蛋白激酶或蛋白磷酸 酶的活性,引起细胞的应答反应。
细胞内核受体:依赖激素激活的基因调控 蛋白 ➢C端的配体结合域 ➢中部的DNA或抑制性蛋白(如Hsp90) 结合位点 ➢N端的转录激活域
在细胞内,受体与抑制性蛋白(如Hsp90) 结合形成复合物,处于非活化状态;
配体(如皮质醇)与受体结合,将导致抑制 性蛋白从复合物上解离下来,从而受体通过 暴露它的DNA结合位点而被激活。
➢ 旁分泌(paracrine):细胞通过分泌局部化学介质到细 胞外液中,经局部扩散作用于邻近靶细胞。
细胞生物学 第九章 细胞信号转导 名词解释和重点知识
第九章细胞信号转导细胞通讯cellcommunication信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。
细胞通讯的方式A、分泌化学信号(内分泌、自分泌、旁分泌、化学突触传递神经递质);B、接触依赖性通讯(细胞直接接触,通过与质膜结合的信号分子与其相接触的靶细胞质膜上的受体分子相结合,影响靶细胞);C、间隙连接和胞间连丝内分泌由分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。
旁分泌细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于临近靶细胞。
如表皮生长因子、淋巴因子、前列腺素、NO等自分泌内分泌细胞将激素或调节肽分泌到细胞外,通过组织间液,再作用于本细胞膜上的受体,使内分泌细胞的功能发生改变。
这一途径的靶细胞就是该细胞的本身。
细胞对自身分泌的信号分子产生反应。
化学突触传递神经递质电信号-化学信号-电信号Ca2+的功能A、是骨骼的重要组成元素,生物体的重要结构成分;B、参与生物体动作电位的形成C、作为酶的激活剂或者抑制剂调节酶的活性D、参与细胞内信号转导过程钙调蛋白CaM calmodulin 一种高度保守、广泛分布的小分子Ca2+结合蛋白,参与许多Ca2+依赖性的生理反应与信号转导。
每个钙调蛋白分子有4个钙离子结合位点。
CaM本身没有活性,只有同Ca2+结合形成复合体后才能活化多种靶酶。
细胞内受体:接受亲脂性信号分子;一般有三个结构域:1、激素结合结构域(位于C端);2、抑制蛋白结合位点(富含Cys,具有锌指结构);3、转录激活结构域(位于N端)细胞表面受体:接受亲水性信号分子(分为离子通道偶联受体、G蛋白偶联受体、酶联受体);至少还有两个结构域:配体结合区域和效应区域第二信使second messenger 第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,DAG,Ca2+等,有助于信号向胞内进行传递。
第九章细胞信号转导习题及答案
细胞生物学章节习题-第九章一、选择题1、动物细胞内引起储存Ca2+释放的第二信使分子是( A )。
A. IP3B. DAGC. cAMPD. cGMP2、一氧化氮的受体是(B )。
A. G蛋白偶联受体B. 鸟苷酸环化酶C. 腺苷酸环化酶D. 受体酪氨酸激酶3、表皮生长因子(EGF)的穿膜信号转导是通过(A )实现的。
A. 活化酪氨酸激酶B. 活化酪氨酸磷酸酶C. cAMP调节途径D. cGMP途径4、有关cAMP信号通过,下列说法错误的是(B)。
A. 被激活的蛋白激酶A的催化亚基转为进入细胞核,使基因调控蛋白磷酸化B. 结合GTP的α亚基具有活性,而βγ亚基复合物没有活性C. βγ亚基复合物与游离的Gs的α亚基结合,可使Gs的α亚基失活D. 这一通路的首要效应酶是腺苷酸环化酶,cAMP被环腺苷磷酸二酯酶消除5、霍乱弧素引起急性腹泻是由于(A )。
A. G蛋白持续激活B. G蛋白不能被激活C. 受体封闭D. 蛋白激酶PKC功能异常E. 蛋白激酶PKA功能异常6、G蛋白具有自我调节活性的功能,下列哪种说法可以解释G蛋白活性丧失的原因(A )。
A. α亚基的GTPase活性B. 效应物的激活C. 与受体结合D. 亚基解离7、胞内受体介导的信号转导途径对代谢调控的主要方式是下列哪种(A )?A. 特异基因的表达调节B. 核糖体翻译速度的调节C.蛋白降解的调节D. 共价修饰调节8、制备人类肝细胞匀浆液,然后通过离心技术分离细胞膜性成分和可溶性胞质。
如在可溶胞质组分中加入肾上腺素,会发生下何种情况(D )A. cAMP增加B. 肾上腺素与其胞内受体结合C. 腺苷环化酶的激活D. cAMP浓度不变9、1,4,5-三磷酸肌醇促进Ca2+从细胞那个部位释放进入细胞质(B )A. 线粒体B. 内质网C. 质膜(从胞外到胞内)D. Ca2+-CaM复合体细胞10、与视觉信号转导有关的第二信使分子是下列哪种成分(D )。
第9章 细胞通讯和信号转导1
These signal molecules work in combinations to regulate the behavior of the cell. Cells respond to stimuli via cell signaling
(2) Different cells can respond differently to the same extracellular signal molecule
A. 肠道细菌与小肠上皮细胞通过细胞绒毛互相进行信息交流。 B. 小菌落酵母菌(交配型A)同正常的酵母菌(交配型a)通 过分泌的交配因子互相识别,并杂交形成二倍体合子Aa。
细胞通讯的方式
接触依赖型:缝隙连接型和受体介导 旁分泌型 突触型 自分泌型
短距离通讯
内分泌型
长距离通讯
细胞信号转导
一氧化氮/环鸟苷磷酸途径
Intracellular signaling pathway of nitric oxide
The mechanism by which acetylcholine stimulation of the endothelial cells leads to smooth muscle relaxation also explains the mechanism of action of the chemical nitroglycerin. The drug sildenafil, sold under the trade name Viagra, is an inhibitor of a cyclic GMP-specific phosphodiesterase that normally catalyzes the breakdown of cyclic GMP.
细胞信号转导教学课件
胞核→基因表达调控。
03
酶联受体介导的信号转导途径类型
根据信号分子类型和作用方式不同,酶联受体介导的信号转导途径可分
为酪氨酸激酶型、G蛋白型和其它型等。
酶联受体介导的信号转导与疾病
01
02
03
04
酶联受体介导的信号转导与 疾病关系概述:酶联受体介 导的信号转导在许多疾病的 发生和发展过程中发挥重要
导有关。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
细胞因子信号转导
细胞因子的种类与功能
细胞因子种类
包括白细胞介素(IL)、干扰素( IFN)、肿瘤坏死因子(TNF)、集 落刺激因子(CSF)等。
细胞因子功能
参与免疫应答、炎症反应、造血过程 、组织损伤修复等生理和病理过程。
许多疾病的发生和发展都与G蛋白偶联受体介导的信号转导有关,如肿瘤、心血管疾病、代谢性疾病等。这些疾病的发生和 发展过程中,G蛋白偶联受体介导的信号转导途径会出现异常,导致细胞生长和分化失控、炎症反应等。因此,针对G蛋白偶 联受体介导的信号转导途径的治疗策略对于疾病的治疗具有重要意义。
REPORT
CATALOG
抑制酶活性
负调控因子通过抑制酶的 活性来调节信号转导,从 而控制细胞反应的强度和 持续时间。
竞争性结合
负调控因子可以与信号分 子竞争性结合,从而降低 信号转导的效率。
细胞信号转导的正调控
正调控因子
细胞信号转导的正调控因子是指 能够促进信号转导过程的蛋白质
或小分子化合物。
激活酶活性
正调控因子通过激活酶的活性来调 节信号转导,从而增强细胞反应的 强度和持续时间。
第九章 细胞信号转导
主要过程:刺激性激素(配体)→刺激性激素受体→G蛋白 上Gα亚基→受体配体复合物解离→Gα结合并激活腺苷酸 环化酶→cAMP含量增加→激活蛋白激酶A(PKA)的两 个调节亚基→释放催化亚基→酶的迅速活化→调节各种生 命代谢。
在细胞内还有另一种酶即环线甘酸磷酸二酯酶(PDE),可 降解 cAMP,导致细胞内cAMP水平下降,从而终止信号反应。
细胞通讯3种方式: 一、分泌化学信号 分泌化学信号作用方式4种: • 内分泌 • 旁分泌 • 自分泌 • 化学突出传递神经信号
二、细胞间接触性依赖通讯:
①细胞-细胞黏着
②细胞-基质黏着
三、间隙连接或胞间连丝:
• 动物细胞间的间隙连接或植物细胞间的胞 间连丝同属于通讯连接。
• 通讯连接:详见第十七章
信号转导系统及其特性: (一)基本组成及信号蛋白的相互作用 • 细胞表面受体介导的信号通路5个步骤: 受体激活→活化信号蛋白→级联反应→反 应回答→受体脱敏
信号转导系统: • 是由细胞内多种行驶不同功能的信号蛋白 所组成的信号传递连。
• 细胞内信号蛋白的相互作用是靠蛋白质模 式结合域所特异性介导的。
细胞因子与质膜受体特异性结合→细胞因子受体二聚化→JAK活化→ 磷酸化受体胞内段酪氨酸残基→与具有SH2结构域的STAT蛋白结合 →STAT被JAK磷酸化,STAT分子从受体上解离→两个磷酸化的STAT形 成同源二聚体→转位到细胞核内,与 特异基因的调控序列结合,调节相
关基因的表达
第五节 其他细胞表面受体介导的信号通路
二、G蛋白偶联受体所介导的细胞信号通路 按效应器蛋白不同可分为:
①激活离子通道的G蛋白偶联受体。 ②激活或抑制Ac,以CAMP为第二信使的G蛋白偶 联受体。 ③激活PLC,以IP3和DAG作为双信使的G蛋白偶联 受体。
第九章-细胞信号转导(共53张PPT)
(1)激活靶细胞内具有鸟苷酸环化酶(GC)活性的NO受体。
(2)NO与GC活性中心的Fe2+结合,改变酶的构象,增强酶活性,cGMP水平升高 。
(3)cGMP激活依赖cGMP的蛋白激酶G(PKG),抑制肌动-肌球蛋白 复合物信号通路,导致血管平滑肌舒张。
NO在导致血管平滑肌舒张中的作用
G蛋白偶联受体 的结构图
1234 5
67
G蛋白偶联受体介导无数胞外信号的细胞应答:
包括多种对蛋白或肽类激素、局部介质、神经递质和氨基 酸或脂肪酸衍生物等配体识别与结合的受体,以及哺乳类嗅觉、 味觉受体和视觉的光激活受体(视紫红质)。
哺乳类三聚体G蛋白的主要种类及其效应器
二、G蛋白偶联受体所介导的细胞信号通路
第一节 细胞信号转导概述
一、细胞通讯 二、信号分子与受体 三、信号转导系统及其特性
一、细胞通讯
细胞通讯(cell communication):指信号细胞发出的信息(配 体/信号分子)传递到靶细胞并与其受体相互作用,通过细胞信号
转导引起靶细胞产生特异性生物学效应的过程。
(细胞)信号转导(signal transduction):指细胞将外部信
• IRS1:胰素受体底物
(二)细胞内信号蛋白复合物的装配
• 信号蛋白复合物的生物学意义:细胞内信号蛋白复合物 的形成在时空上增强细胞应答反应的速度、效率和反应的 特异性。
• 细胞内信号蛋白复合物的装配可能有3种不同类型。
细胞内信号蛋白复合物装配的3种类型
• A:基于支架蛋白 B:基于受体活化域 C:基于肌醇磷脂
⑤引发细胞代谢、功能或基因表达的改变;
细胞表面受体(cell-surface receptor): 位于细胞质膜上,主要识别和结合亲水性信号分子,包括分泌型信号分子(如多肽类激素、神经递质
细胞生物学翟中和编 第章 细胞信号转导课件
• 细胞信号通路(signaling pathway ):指细胞接受外界信号, 通过一整套特定的机制,将胞外信号转导为胞内信号,最终 调节特定基因的表达,引起细胞的应答反应。
细胞生物学翟中和编 第章 细胞信号转导
3
一、细胞通讯
1.方式
• 化学信号通讯( chemical signaling ) • 接触依赖性通讯(contact-dependent signaling) • 间隙连接(gap junction)胞间连丝(plasmodesma)
细胞生物学翟中和编 第章 细胞信号转导
12
受体的类型
细胞表面受体
细胞内受体
亲水性信号分子
小的亲脂性 信号分子
细胞生物学翟中和编 第章 细胞信号转导
13
细胞内受体的特点
➢位于细胞质基质或核基质中; ➢识别并结合小的脂溶性分子; ➢通常是基因调控蛋白或酶,与信号分子结合后
被激活。
细胞生物学翟中和编 第章 细胞信号转导
细胞生物学翟中和编 第章 细胞信号转导
4
化学信号通讯作用方式
A. 内分泌
B. 旁分泌
C. 化学突触
D. 自分泌
细胞生物学翟中和编 第章 细胞信号转导
5
细胞分泌化学信号的作用方式
内分泌(endocrine):①低浓度;②全身性;③长时效。 旁分泌(paracrine):细胞分泌的信号分子通过扩散作用
14
细胞表面受体的类型 A. 离子通道偶联受体(ion channel-coupled receptor)
B. G蛋白偶联受体(G-protein-coupled receptor, GPCR) C. 酶联受体(enzyme-linked receptor)
第九章 细胞的信号转导
4. 甘油二酯、三磷酸肌醇和Ca2+的信号体系
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
第一信使(或第二信使)与信号的级联放大
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
Dr. Luo Daji<Cell Biology>
一般认为,以离子通道为效应蛋白的配体-受 体作用快速而短暂;而以酶分子为效应蛋白的配体受体作用缓慢而持久。
酶分子
离子通道
Medical Genetics Department, WHU
Dr. Luo Daji<Cell Biology>
二、G蛋白 G蛋白(G protein)
Medical Genetics Department, WHU
ቤተ መጻሕፍቲ ባይዱ
Dr. Luo Daji<Cell Biology>
三种主要的受体类型
1. 离子通道受体 (Iro-channel-linked receptor); 2. G蛋白偶联受体 (G-protein-linked receptor) ; 3. 酶联受体(Enzyme-linked receptor) ;
G蛋白耦联受体(G-protein-linked receptor) :
G蛋白耦联受体是由七个跨膜螺旋组成的膜蛋白质,它 与细胞膜内侧面的G蛋白相耦联。与该受体结合的配体包括 大部分激素、多种神经递质以及嗅味分子等。
G蛋白耦联受体的作用过程 G蛋白耦联受体
Medical Genetics Department, WHU
内蒙古大学细胞生物学讲义09细胞信号转导
第九章细胞信号转导第一节细胞信号转导概述细胞信号发放(cell signaling):细胞释放信号分子,将信息传递给其它细胞。
细胞通讯(cell commnication):细胞发出的信息通过介质传递到另一个细胞产生相应反应的过程。
细胞识别(cell recognition):细胞之间通过细胞表面的信息分子相互作用,引起细胞反应的现象。
信号转导(signal transdction):指外界信号(如光、电、化学分子)作用于细胞表面受体,引起胞内信使的浓度变化,进而导致细胞应答反应的一系列过程。
一、细胞通讯与细胞识别(一)细胞通讯(Cell commnication):一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。
细胞间的通讯对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长和分裂是必须的。
1、胞间通信的主要类型三种主要方式:细胞间隙连接、膜表面分子接触通讯、化学通讯。
①细胞间隙连接两个相邻的细胞以连接子(connexon)相联系。
连接子中央为直径1.5nm的亲水性孔道。
允许小分子物质如Ca2+、cAMP通过,有助于相邻同型细胞对外界信号的协同反应,如可兴奋细胞的电耦联现象(电紧张突触)。
②膜表面分子接触通讯:即细胞识别(cell recognition)。
如:精子和卵子之间的识别,T与B淋巴细胞间的识别。
③化学通讯:细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能,可分为4类。
•内分泌(endocrine):内分泌激素随血液循环输至全身,作用于靶细胞。
特点:低浓度10-8-10-12M;全身性;长时效。
•旁分泌:信号分子通过扩散作用于邻近的细胞。
包括:各类细胞因子如表皮生长因子和气体信号分子如NO。
•突触信号发放:神经递质经突触作用于特定的靶细胞。
•自分泌:信号发放细胞和靶细胞为同类或同一细胞,常见于癌变细胞。
(二)细胞识别(cell recognition)●概念:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受体酪氨酸激酶及RTK-Ras蛋白信号通路
受体酪氨酸激酶(Receptor tyrosine kinase,RTK)又称 酪氨酸蛋白激酶受体。迄今已鉴定有50多种,包含7个 亚族。 RTK的N端位于胞外,是配体结合结构域,C端位于胞 内,具有酪氨酸激酶结构域,并具有自磷酸化位点。 大多数RTK是单体跨膜蛋白,配体结合导致受体二聚 化,形成同源或异源二聚体。 胞外配体是可溶性或膜结合的多肽或蛋白类激素,包 括多种生长因子、胰岛素和胰岛素样生长因子。 RTK的主要功能是控制细胞生长、分化而不是调控细 胞中间代谢。
NO参与的信号途径
NO是一种具有自由基性质的脂溶性气体分子,能够 透过细胞膜迅速扩散 NO在细胞内极其不稳定,半衰期2-30s,被氧化后以 NO3-和NO2-形式存在细胞外液中 NO只能在组织中局部扩散,对邻近的靶细胞发挥作 用 血管内皮细胞,神经细胞时NO的生成细胞,以精氨 酸为底物
细胞因子受体与JAK-STAT信号通路
3 其它细胞表面受体介导的信号通路
Wnt受体和Hedgehog受体介导的信号通路:通 过配体与受体结合引发胞质内多蛋白复合物去 装配,从而释放转录因子,在转位到核内调控 基因表达。 NF-B和Notch信号通路涉及到抑制物或受体本 身蛋白切割作用,从而释放活化的转录因子, 再转位到核内调控基因表达。
cAMP-PKA信号通路
cAMP为第二信使,激活蛋白激酶A(Protein kinase A, PKA)。 无活性PKA含有两个调节亚基(R)和2个催化亚基组 (C)成的四聚体,每个R亚基有2个cAMP结合位点。
cAMP-PKA信号通路对肝细胞和肌细胞糖原代谢的调节 GS:糖原合成酶 PKA:蛋白激酶A IP:磷蛋白磷酸酶抑制蛋白 PP:磷蛋白磷酸酶 G-1-P: 葡萄糖-1-磷酸 GPK:糖原磷酸化酶激酶 GP:糖原磷酸化酶
细胞内受体:存在于 细胞质基质或核基质 中,识别并结合脂溶 性信号分子 细胞表面受体:识别 并结合亲水性信号分 子,包括离子通道偶 联受体;G蛋白偶联 受体;酶联受体
离子通道偶联受体 G蛋白偶联受体
酶联受体
受体的特征
结构:两个结构域,结合配体的功能结构域和 产生效应的功能结构域 功能:识别与结合;信号转导;产生相应的生 物学效应。
指一个信号产生细胞发出的信息通过介质(又称配体 )传递到另一个靶细胞并与相应的受体相互作用,通 过信号转导产生靶细胞一系列生理生化变化,最终表 现为靶细胞整体的生物学效应的过程。
细胞通讯方式
接触依赖性通讯
间隙依赖性通讯——间隙连接(动物) 胞间连丝(植物) 分泌化学信号——普遍方式
旁分泌
蛋白质模式结合域及其结合基序特异性
细胞内信号蛋白复合物的装配
9.2 信号转导途径
胞内受体介导的信号途径
胞外受体介导的信号途径
9.2.1胞内受体介导的信号途径
细胞核内受体及其对基因表达的调控
类固醇激素(steroid hormone) 视黄酸 (retinoic acid) 维生素D (vitamine D) 甲状腺素 (thyriod hormone)
心肌细胞M乙酰胆碱受体 视杆细胞的光敏感受体
视杆细胞中Gt蛋白偶联的 光受体(视紫红质)诱导 的阳离子通道的关闭
心肌细胞上M 型乙酰胆碱受 体活化与效应 器K+通道开启 的工作模式
②激活或抑制腺苷酸化酶的G蛋白偶联受体 信号通路
腺苷酸环化酶(AC)
相对分子质量15kDa,多次跨膜蛋白,胞质侧有2个大而 相似的催化结构域,跨膜区有2个整合结构域。 在Mg2+或Mn2+存在条件下,催化ATP生成cAMP,使细 胞内cAMP水平增高。 环腺苷酸二磷脂酶(PDE),降解cAMP生成5’-AMP,使 细胞内cAMP水平下降。
RTK-Ras蛋白信号通路
Ras蛋白在RTK介导的信号通路中是一个关键组分。 Ras(21 kDa)是小的单体GTP结合蛋白,具有 GTPase活性,分布在质膜胞质一侧。结合GTP时为活 化状态,结合GDP时为失活状态。
RTK-Ras-MAPK信号通路
配体-RTK-Ras-Raf-Mek-Erk-进入细胞核-其它激酶或基 因调控蛋白(转录因子)的磷酸化修饰
作用机制
NO激活靶细胞内具有鸟苷环化酶(G-cyclase)活性的 NO受体 鸟苷环化酶激活,导致细胞内cGMP水平增高 cGMP依赖的蛋白激酶G(PKG)活化
NO在血管平滑肌舒张中的作用
9.2.2胞外受体介导的信号途径
1 G蛋白偶联受体 介导的信号转导 2 酶联受体介导的 信号转导 3 其它细胞表面受 体介导的信号通 路
③激活磷脂酶C(PLC),以IP3和DAG做为双 信使的G蛋白偶联受体信号通路
磷脂酰肌醇(PI) 代谢
PLC被活化的G 蛋白激活,致使 质膜上的PIP2被 水解成IP3和 DAG
IP3-Ca2+ 和DAG-PKC(蛋白激酶C)信号途径
IP3刺激细胞内质网释放Ca2+ 进入细胞质基质,使胞内 Ca2+浓度升高, Ca2+与钙调蛋白(clamodulin,CaM) 结合,形成Ca2+ -CaM复合体,然后再与靶蛋白酶结合并 将其活化。DAG激活PKC,活化的PKC进一步使底物蛋 白质磷酸化进而激活下游信号分子。
内分泌
自分泌
突触分泌
分泌化学信号——通讯方式
①
② ③ ④
⑤
⑥
信号细胞合成并释放信号分子 转运信号分子至靶细胞 信号分子与靶细胞受体特异性结合并导致受 体激活 活化受体启动靶细胞内一种或多种信号转导 途径 引发细胞代谢、功能或基因表达的改变 信号的解除并导致细胞反应终止
9.1 信号分子与受体
信号分子(signal molecule):细胞的信息 载体,包括各种化学信号如各类激素、局部介 质和神经递质等,以及物理信号如声、光、电 和温度变化等。
1 G蛋白偶联受体介导的信号转导
G蛋白偶联受体:7个疏水肽段形成的跨膜螺旋区,N端 在胞外,C端在胞质侧。
蛋白质或肽类激素受体,局部介质受体,神经递质受体 ,氨基酸或脂肪酸衍生物等的受体,哺乳动物嗅觉、味 觉受体和视觉光激活受体(视紫红质)
G 蛋白
是三聚体GTP结合调节蛋白(Trimeric GTP-binding regulatory protein)的简称。 由G ,G ,G 三个亚基组成, G和G亚基以异二聚体 形式存在, G和G 亚基分别通过共价结合的脂分子 锚定在质膜。
激活离子通道的G蛋白偶联受体 激活或抑制腺苷酸化酶(Adenylyl cyclase, AC),以cAMP为 第二信使的G蛋白偶联受体 激活磷脂酶C(phospholipase C,PLC),以IP3和DAG做为双信 使的G蛋白偶联受体
①激活离子通道的G蛋白偶联受体的信号通路
受体与配体结合被激活后,通过偶联G蛋白, 调控跨膜离子通道的开启与关闭,进而调节靶 细胞的活性
蛋白激酶和磷酸水解酶(protein kinase and protein phosphatase):蛋白激酶使靶蛋白磷 酸化,磷酸水解酶使靶蛋白去磷酸化,从而调 节靶蛋白的活性
GEF:guanine nucleotide-exchange factor (鸟苷酸交换因子) GAP: GTPase-accelerating protein (GTPase 促进蛋白) RGS: Regulator of G protein-signaling (G蛋白信号调节子) GDI: guanine nucleotide dissociation inhibitor (鸟苷酸解离抑制蛋白)
信号蛋白
细胞信号转导系统是由多种行使不同功能的信 号蛋白所组成的信号传递链。 信号蛋白的相互作用是靠蛋白质模式结合域( modular binding domain)特异性介导的。
模式结合域:
由40-120个氨基酸组成 一侧有较浅凹陷的球形结构域,不具酶活性 能识别特定基序或蛋白质特定修饰位点 与识别对象亲和性较弱,利于快速和反复进行 精细的组合式网络调控
G亚基本身具有GTPase活性。当配体与受体结合,三 聚体G蛋白解离,并发生GDP与GTP交换。游离的GGTP活化,结合并激活效应蛋白。 G-GTP水解形成G-GDP时,处于失活状态,终止信 号传递并导致三聚体G蛋白重新装配,恢复系统进入 静息状态。
哺乳动物三聚体G蛋白主要种类及其效应器
由细胞分泌到胞外的各种化学信号分子又称作 第一信使。
化学性质
疏水性信号分子:甾类激素和甲状腺素 亲水性信号分子:神经递质、局部介质和大多 数蛋白类激素 气体性信号分子:NO和CO源自信号分子受 体
是一类能够识别和选择性结合某种配体(信号分子) 的大分子,多为糖蛋白,少数为糖脂或糖蛋白和糖脂 组成的复合物。
cAMP, cGMP, Ca2+, DAG(1,2 diacylglycerol,二酰甘油), IP3(1,4,5-inosito trisphophate, 肌醇-1,4,5-三磷酸), PIP3(3,4,5-三磷酸磷脂酰肌醇)
分子开关(molecular switch)
GTPase超家族:三聚体GTP结合蛋白和单体 GTP结合蛋白。结合GTP时,活化状态;结合 GDP时,失活状态。
思考题
何为信号转导中的分子开关机制?举例说明。 如何理解细胞信号系统及其功能。 试举例说明G蛋白偶联受体介导的信号通路的 组成、特点及其主要功能。 概述受体酪氨酸激酶介导的信号通路组成、特 点及其主要功能。