2020年湖北省武汉市中考数学试卷
2020湖北省武汉市中考数学试卷
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是( )A .2B .﹣2C .12D .−12 2.(3分)式子√x −2在实数范围内有意义,则x 的取值范围是( )A .x ≥0B .x ≤2C .x ≥﹣2D .x ≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D . 5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是( )A .B .C .D .6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )A .13B .14C .16D .187.(3分)若点A (a ﹣1,y 1),B (a +1,y 2)在反比例函数y =k x(k <0)的图象上,且y 1>y 2,则a 的取值范围是( )A .a <﹣1B .﹣1<a <1C .a >1D .a <﹣1或a >1 8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )A .32B .34C .36D .389.(3分)如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AĈ的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )A .52√3B .3√3C .3√2D .4√210.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算√(−3)2的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算2m+n −m−3nm−n的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD 的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB 上画点E ,使∠BCE =45°(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.21.(8分)如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,AE与过点D 的切线互相垂直,垂足为E .(1)求证:AD 平分∠BAE ;(2)若CD =DE ,求sin ∠BAC 的值.22.(10分)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的总成本y(万元)与产品数量x (件)之间具有函数关系y =ax 2+bx .当x =10时,y =400;当x =20时,y =1000.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示).23.(10分)问题背景 如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用 如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上,AD BD =√3,求DF CF 的值;拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4k x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是( )A .2B .﹣2C .12D .−12【解答】解:实数﹣2的相反数是2,故选:A .2.(3分)式子√x −2在实数范围内有意义,则x 的取值范围是( )A .x ≥0B .x ≤2C .x ≥﹣2D .x ≥2【解答】解:由题意得:x ﹣2≥0,解得:x ≥2,故选:D .3.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于6【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B .4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意;故选:C .5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是( )A .B .C .D .【解答】解:从左边看上下各一个小正方形.故选:A .6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )A .13B .14C .16D .18 【解答】解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212=16;故选:C.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.(3分)如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AĈ的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )A .52√3B .3√3C .3√2D .4√2 【解答】解:连接OD ,交AC 于F ,∵D 是AC ̂的中点,∴OD ⊥AC ,AF =CF ,∴∠DFE =90°,∵OA =OB ,AF =CF ,∴OF =12BC ,∵AB 是直径,∴∠ACB =90°,在△EFD 和△ECB 中{∠DFE =∠ACB =90°∠DEF =∠BEC DE =BE∴△EFD ≌△ECB (AAS ),∴DF =BC ,∴OF =12DF ,∵OD =3,∴OF =1,∴BC =2,在Rt △ABC 中,AC 2=AB 2﹣BC 2,∴AC =√AB 2−BC 2=√62−22=4√2,故选:D .10.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48【解答】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n 的值是40×4=160.故选:A .二、填空题(共6小题,每小题3分,共18分)11.(3分)计算√(−3)2的结果是 3 .【解答】解:√(−3)2=√9=3.故答案为:3.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h ),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5 .【解答】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为4+52=4.5,故答案为:4.5.13.(3分)计算2m+n −m−3nm2−n2的结果是1m−n.【解答】解:原式=2(m−n)(m+n)(m−n)−m−3n(m+n)(m−n)=2m−2n−m+3n (m+n)(m−n)=m+n(m+n)(m−n)=1m−n.故答案为:1m−n.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD 的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是26°.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是14t2−14t+1.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,∴EF ⊥DM ,∠ADM +∠DEF =90°,∵EG ⊥AD ,∴∠DEF +∠FEG =90°,∴∠ADM =∠FEG ,∴tan ∠ADM =AM AD =t 2=FG 1,∴FG =t 2,∵CG =DE =t 24+1,∴CF =t 24−t 2+1, ∴S 四边形CDEF =12(CF +DE )×1=14t 2−14t +1.故答案为:14t 2−14t +1. 三、解答题(共8小题,共72分)17.(8分)计算:[a 3•a 5+(3a 4)2]÷a 2.【解答】解:原式=(a 8+9a 8)÷a 2=10a 8÷a 2=10a 6.18.(8分)如图直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分∠BEF ,FN 平分∠CFE ,且EM ∥FN .求证:AB ∥CD .【解答】证明:∵EM ∥FN ,∴∠FEM =∠EFN ,又∵EM 平分∠BEF ,FN 平分∠CFE ,∴∠FEB =∠EFC ,∴AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是6°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?【解答】解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×160=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×3660=1200(名).20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.【解答】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD ∥AE ,∴∠1=∠ODA ,∵OA =OD ,∴∠2=∠ODA ,∴∠1=∠2,∴AD 平分∠BAE ;(2)解:连接BD ,如图,∵AB 为直径,∴∠ADB =90°,∵∠2+∠ABD =90°,∠3+∠ABD =90°,∴∠2=∠3,∵sin ∠1=DE AD ,sin ∠3=DC BC, 而DE =DC ,∴AD =BC ,设CD =x ,BC =AD =y ,∵∠DCB =∠BCA ,∠3=∠2,∴△CDB ∽△CBA ,∴CD :CB =CB :CA ,即x :y =y :(x +y ),整理得x 2+xy +y 2=0,解得x =−1+√52y 或x =−1−√52y (舍去), ∴sin ∠3=DC BC =√5−12,即sin ∠BAC 的值为√5−12.22.(10分)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的总成本y(万元)与产品数量x (件)之间具有函数关系y =ax 2+bx .当x =10时,y =400;当x=20时,y =1000.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示).【解答】解:(1)由题意得:{100a +10b =400400a +20b =1000, 解得:{a =1b =30. ∴a =1,b =30;(2)由(1)得:y =x 2+30x ,设A ,B 两城生产这批产品的总成本为w ,则w =x 2+30x +70(100﹣x )=x 2﹣40x +7000,=(x ﹣20)2+6600,由二次函数的性质可知,当x =20时,w 取得最小值,最小值为6600万元,此时100﹣20=80.答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20﹣n )件,从B 城运往C 地的产品数量为(90﹣n )件,从B 城运往D 地的产品数量为(10﹣20+n )件,由题意得:{20−n ≥010−20+n ≥0, 解得10≤n ≤20,∴P =mn +3(20﹣n )+(90﹣n )+2(10﹣20+n ),整理得:P =(m ﹣2)n +130,根据一次函数的性质分以下两种情况:①当0<m ≤2,10≤n ≤20时,P 随n 的增大而减小,则n =20时,P 取最小值,最小值为20(m ﹣2)+130=20m +90;②当m >2,10≤n ≤20时,P 随n 的增大而增大,则n =10时,P 取最小值,最小值为10(m ﹣2)+130=10m +110.答:0<m ≤2时,A ,B 两城总运费的和为(20m +90)万元;当m >2时,A ,B 两城总运费的和为(10m +110)万元.23.(10分)问题背景 如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用 如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上,AD BD =√3,求DF CF 的值;拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长.【解答】问题背景证明:∵△ABC ∽△ADE ,∴AB AD =AC AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,AB AC =AD AE ,∴△ABD ∽△ACE ;尝试应用解:如图1,连接EC ,∵∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,∴△ABC ∽△ADE ,由(1)知△ABD ∽△ACE ,∴AE EC =AD BD =√3,∠ACE =∠ABD =∠ADE ,在Rt △ADE 中,∠ADE =30°,∴AD AE =√3, ∴AD EC =AD AE ×AE CE =√3×√3=3.∵∠ADF =∠ECF ,∠AFD =∠EFC ,∴△ADF ∽△ECF ,∴DF CF =AD CE =3.拓展创新解:如图2,过点A 作AB 的垂线,过点D 作AD 的垂线,两垂线交于点M ,连接BM ,∵∠BAD =30°,∴∠DAM =60°,∴∠AMD =30°,∴∠AMD =∠DBC ,又∵∠ADM =∠BDC =90°,∴△BDC ∽△MDA ,∴BD MD =DC DA ,又∠BDC =∠ADM ,∴∠BDC +∠CDM =∠ADM +∠ADC ,即∠BDM =∠CDA ,∴△BDM ∽△CDA ,∴BM CA =DM AD =√3,∵AC =2√3,∴BM =2√3×√3=6,∴AM =√BM 2−AB 2=√62−42=2√5,∴AD=12AM=√5.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4k x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.【解答】解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD =AC ,∴a ﹣2=|(a ﹣2)2﹣6|,解得,a =4,或a =﹣1(舍),或a =0(舍),或a =5, ∴A (4,﹣2)或(5,3);(3)把y =kx 代入y =x 2﹣6中得,x 2﹣kx ﹣6=0, ∴x E +x F =k ,∴M (k 2,k 22), 把y =−4k x 代入y =x 2﹣6中得,x 2+4k x ﹣6=0,∴x G +x H =−4k ,∴N (−2k ,8k 2),设MN 的解析式为y =mx +n (m ≠0),则{k 2m +n =k 22−2k m +n =8k 2,解得,{m =k 2−4k n =2, ∴直线MN 的解析式为:y =k 2−4k x +2, 当x =0时,y =2,∴直线MN :y =k 2−4k x +2经过定点(0,2), 即直线MN 经过一个定点.。
2020年湖北省武汉市中考数学试卷
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1 8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD 交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD 的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y (万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣【解答】解:实数﹣2的相反数是2,故选:A.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥2【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【解答】解:从左边看上下各一个小正方形.故选:A.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.【解答】解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD 交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【解答】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是3.【解答】解:==3.故答案为:3.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5.【解答】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.(3分)计算﹣的结果是.【解答】解:原式=﹣===.故答案为:.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD 的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是26°.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D (π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,=(CF+DE)×1=t+1.∴S四边形CDEF故答案为:t+1.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.【解答】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.【解答】证明:∵EM∥FN,∴∠FEM=∠EFN,∠BEF=∠CFE,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是6°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?【解答】解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接AC,可得E是AB的,找到OA的七等分点,AF=OA,点F即为所求,如图所示:21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.【解答】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y (万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).【解答】解:(1)由题意得:当产品的数量为0时,总成本也为0,即当x=0时,y=0,则有:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20﹣80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.【解答】问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.【解答】解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:x经过定点(0,2),即直线MN经过一个定点.。
2020年湖北省武汉市中考数学试卷(含解析)印刷版
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>18.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E 是BD的中点,则AC的长是()A.B.3C.3D.410.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A (3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】由相反数的定义可知:﹣2的相反数是2.【解答】解:实数﹣2的相反数是2,故选:A.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6【分析】分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看上下各一个小正方形.故选:A.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.【分析】根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共用12种等可能数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38【分析】根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E 是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是3.【分析】根据二次根式的性质解答.【解答】解:==3.故答案为:3.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.(3分)计算﹣的结果是.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣===.故答案为:.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是26°.【分析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB =∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).【分析】根据题目中的二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.【分析】连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.【分析】原式中括号中利用同底数幂的乘法,积的乘方与幂的乘方运算法则计算,合并后利用单项式除以单项式法则计算即可求出值.【解答】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.【分析】根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB∥CD.【解答】证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠BEF=2∠FEM,∠EFC=2∠EFN,∴∠FEB=∠EFC,∴AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是6°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?【分析】(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.【解答】解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A (3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.【分析】(1)连接OD,如图,根据切线的性质得到OD⊥DE,则可判断OD∥AE,从而得到∠1=∠ODA,然后利用∠2=∠ODA得到∠1=∠2;(2)连接BD,如图,利用圆周角定理得到∠ADB=90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=,sin∠3=,则AD=BC,设CD=x,BC=AD=y,证明△CDB∽△CBA,利用相似比得到x:y=y:(x+y),然后求出x、y的关系可得到sin∠BAC的值.【解答】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy﹣y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).【分析】(1)利用待定系数法即可求出a,b的值;(2)先根据(1)的结论得出y与x之间的函数关系,从而可得出A,B两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,从而可得关于n的不等式组,解得n的范围,然后根据运费信息可得P关于n的一次函数,最后根据一次函数的性质可得答案.【解答】解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,∵a=1>0,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.【分析】问题背景由题意得出,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC∽△MDA,由相似三角形的性质得出,证明△BDM∽△CDA,得出,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.【解答】问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.【分析】(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC =|(a﹣2)2﹣6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.【解答】解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:经过定点(0,2),即直线MN经过一个定点.。
湖北省武汉市2020年中考数学试题
4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是
轴对称图形的是( )
A.
B.
C.
D.
5.下图是由 4 个相同的正方体组成的立体图形,它的左视图是( )
A.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙
两位选于的概率是( )
1
A.
3
答案第 1 页,总 24 页
选项 D:“两个小球的标号之和大于 6”为不可能事件,故选项 D 错误. 故选:B. 【点睛】 本题考查了随机事件、不可能事件、必然事件的概念,熟练掌握各事件的定义是解决本题的 关键. 4.C 【解析】 【分析】 根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全 重合的图形叫做轴对称图形”逐项判断即可得. 【详解】 A、不是轴对称图形,此项不符题意 B、不是轴对称图形,此项不符题意 C、是轴对称图形,此项符合题意 D、不是轴对称图形,此项不符题意 故选:C. 【点睛】 本题考查了轴对称图形的定义,熟记定义是解题关键. 5.A 【解析】 【分析】 根据左视图的定义即可求解. 【详解】 根据图形可知左视图为
5
A.
3
2
B. 3 3
C. 3 2
D. 4 2
10.下列图中所有小正方形都是全等的.图(1)是一张由 4 个小正方形组成的“ L ”
形纸片,图(2)是一张由 6 个小正方形组成的 3× 2 方格纸片.把“ L ”形纸片放置在
图(2)中,使它恰好盖住其中的 4 个小正方形,共有如图(3)中的 4 种不同放置方法,
分别为:4,3,3,5,5,6.这组数据的中位数是________.
13.计算
m
2020年湖北省武汉市中考数学 试卷及答案解析
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5) B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2020按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2020 B.2020 C.2020 D.201310.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,38.故选:B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5) B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)将正整数1至2020按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2020 B.2020 C.2020 D.2013【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2020、3x=2020、3x=2020、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2020不合题意,舍去;∵672=84×8,∴2020不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+﹣=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1)【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是216m.【分析】求出t=4时的函数值即可;【解答】解:t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.【点评】本题考查二次函数的应用,解题的关键是理解题意,属于中考基础题.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b 的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点评】此题主要考查了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),推出PK=a,由PK∥BC,可得==;【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x <0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.【分析】(1)①如图1﹣1中,求出PB、PC的长即可解决问题;②图1﹣2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO ≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,﹣a),即D′(m,n),由D′在y=﹣上,可得mn=﹣8;【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点评】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A (0,1)求解可得; (2)根据直线y=kx ﹣k +4=k (x ﹣1)+4知直线所过定点G 坐标为(1,4),从而得出BG=2,由S △BMN =S △BNG ﹣S △BMG =BG•x N ﹣BG•x M =1得出x N ﹣x M =1,联立直线和抛物线解析式求得x=,根据x N ﹣x M =1列出关于k 的方程,解之可得;(3)设抛物线L 1的解析式为y=﹣x 2+2x +1+m ,知C (0,1+m )、D (2,1+m )、F (1,0),再设P (0,t ),分△PCD ∽△POF 和△PCD ∽△POF 两种情况,由对应边成比例得出关于t 与m 的方程,利用符合条件的点P 恰有2个,结合方程的解的情况求解可得. 【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L 的解析式为y=﹣x 2+2x +1;(2)如图1,∵y=kx ﹣k +4=k (x ﹣1)+4,∴当x=1时,y=4,即该直线所过定点G 坐标为(1,4), ∵y=﹣x 2+2x +1=﹣(x ﹣1)2+2, ∴点B (1,2), 则BG=2,∵S △BMN =1,即S △BNG ﹣S △BMG =BG•x N ﹣BG•x M =1, ∴x N ﹣x M =1, 由得x 2+(k ﹣2)x ﹣k +3=0,解得:x==,则x N =、x M =,由x N ﹣x M =1得=1,∴k=±3, ∵k <0, ∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。
2020年湖北武汉中考数学试卷(解析版)
2020年湖北武汉中考数学试卷(解析版)一、选择题A.B.C.D.1.的相反数是( ).A.B.C.D.2.式子在实数范围内有意义,则的取值范围是( ).3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为,,,从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ).A.两个小球的标号之和等于 B.两个小球的标号之和等于C.两个小球的标号之和大于D.两个小球的标号之和大于A.爱B.我C.中D.华4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是( ).正面A.B.C.D.5.下图是由个相同的正方体组成的立体图形,它的左视图是( ).A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ).A.B. C. D.或7.若点,在反比例函数的图象上,且为,则的取值范围是( ).8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始内只进水不出水,从第到第内既进水又出水,从第开始只出水不进水,容器内水量 (单位:)与时间(单位:)之间的关系如图所示,则图中的值是( ).A.B. C.D.9.如图,在半径为的中,是直径,是弦,是的中点,与交于点.若是的中点,则的长是( ).A.B. C.D.10.下列图中所有小正方形都是全等的.图()是一张由个小正方形组成的“”形纸片,图()是一张由个小正方形组成的方格纸片.把“”形纸片放置在图()中,使它恰好盖住其中的个小正方形,共有如图()中的种不同放置方法,图()是一张由个小正方形组成的方格纸片,将“”形纸片放置在图()中,使它恰好盖住其中的个小正方形,共有种不同放置方法,则的值是( ).A.B.C.D.二、填空题11.计算的结果是 .12.热爱劳动,劳动最美!某合作学习小组名同学一周居家劳动的时间(单位:),分别为:,,,,,.这组数据的中位数是 .13.计算的结果是 .14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,是平行四边形的对角线,点在上,,,则的大小是 .15.抛物线(,,为常数,)经过,两点,下列四个结论:① 一元二次方程的根为,;②若点,在该抛物线上,则;③对于任意实数,总有;④对于的每一个确定值,若一元二次方程(为常数,)的根为整数,则的值只有两个.其中正确的结论是 (填写序号).16.如图,折叠矩形纸片,使点落在边的点处,为折痕,,.设的长为,用含有的式子表示四边形的面积是 .三、解答题17.计算:.18.如图,直线分别与直线,交于点,.平分,平分,且.求证:.19.为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:表示“非常支持”,表示“支持”,表示“不关心”,表示“不支持”,调查他们对该政策态度情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:各类居民人数条形统计图各类居民人数扇形统计图人数类别(1)(2)(3)这次共抽取了 名居民进行调查统计,扇形统计图中,类所对应的扇形圆心角的大小是 .将条形统计图补充完整.该社区共有名居民,估计该社区表示“支持”的类居民大约有多少人?(1)(2)(3)20.在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:将线段绕点逆时针旋转,画出对应线段.在线段上画点,使(保留画图过程的痕迹).连接,画点关于直线的对称点,并简要说明画法.(1)21.如图,在中,,以为直径的⊙交于点,与过点的切线互相垂直,垂足为.求证:平分.(2)若,求的值.(1)(2)(3)22.某公司分别在,两城生产同种产品,共件.城生产品的总成本(万元)与产品数量(件)之间具有函数关系,当时,;当时,.城生产产品的每件成本为万元.求,的值.当,两城生产这批产品的总成本的和最少时,求,两城各生产多少件?从城把该产品运往,两地的费用分别为万元/件和万元件;从城把该产品运往,两地的费用分别为万元件和万元件,地需要件,地需要件,在()的条件下,直接写出,两城总运费的和的最小值(用含有的式子表示).(1)(2)(3)23.请回答下列各题:问题背景:如图(),已知,求证:.()尝试应用:如图(),在和中,,,与相交于点.点在边上,,求的值.()拓展创新:如图(),是内一点,,,,,直接写出的长.()【答案】解析:因为,(1)(2)(3)24.将抛物线向下平移个单位长度得到抛物线,再将抛物线向左平移个单位长度得到抛物线.xyOxyO直接写出抛物线,的解析式.如图(),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标.如图(),直线 (,为常数)与抛物线交于,两点,为线段的中点,直线抛物线交于,两点,为线段的中点.求证:直线经过一个定点.B1.所以的相反数是.故选.解析:由式子在实数范围内有意义,∴,∴.故选.解析:从两个口袋中各摸一个球,其标号之和最大为,最小为,选项:“两个小球的标号之和等于”为不可能事件,故选项错误;选项:“两个小球的标号之和等于”为随机事件,故选项正确;选项:“两个小球的标号之和大于”为必然事件,故选项错误;选项:“两个小球的标号之和大于”为不可能事件,故选项错误.故选:.解析:根据图形可知左视图为故选.解析:画树状图为:甲甲甲甲乙乙乙乙丙丙丙丙丁丁丁丁D 2.B 3.C 4.A 5.C 6.∴(选中甲、乙两位).故选:.解析:∵反比例函数,∴图象经过第二、四象限,在每个象限内,随的增大而增大,①点、点同在第二或第四象限,∵,∴,此不等式无解;②若点在第二象限且点在第四象限,∵,∴,解得:;③由,可知点在第四象限且点在第二象限,这种情况不可能.综上,的取值范围是.故选:.解析:设每分钟的进水量为,出水量为,由第一段函数图象可知,,由第二段函数图象可知,,即,解得,则当时,,因此,解得.故选.B 7.C 8.解析:连接、、、,设与交于点,如下图所示,∵是的中点,∴,∴在线段的垂直平分线上,∵,∴在线段的垂直平分线上,∴,,∵是圆的直径,∴,∵是的中点,∴,且,∴≌,∴,又是中点,是中点,∴是的中位线,设,则,∴,∴,即,在中,.故选.解析:D 9.C 10.由图可知,在方格纸片中,方格纸片的个数为(个),则.故选:.11.解析:.12.解析:将这组数据按从小到大进行排序为,,,,,,则这组数据的中位数.故答案为:.13.解析:原式,故答案为:.14.解析:设,∵平行四边形的对角线,∴,,,∴,∵,∴,∴,∵,∴,∴,∴,∵,,∴,即,解得.故答案为:.解析:∵抛物线经过,两点,∴一元二次方程的根为,,则结论①正确;∵抛物线的对称轴为,∴时的函数值与时的函数值相等,∵,∴当时,随的增大而减小,又∵,∴,则结论②错误;当时,,则抛物线的顶点的纵坐标为,且,将抛物线向下平移个单位长度得到的二次函数解析式为,由二次函数图象特征可知,的图象位于轴的下方,顶点恰好在轴上即恒成立,则对于任意实数,总有,即,结论③正确;将抛物线向下平移个单位长度得到的二次函数解析式为,函数对应的一元二次方程为,即,因此,若一元二次方程的根为整数,则其根只能是,或,或,对应的值只有三个,则结论④错误;综上,结论正确的是①③.故答案为:①③.①③15.解析:设,∴,∴,设,连接,∴,又∵,,∴,∴,∴四边形的面积为:.故答案为:.解析:原式.解析:∵平分,平分,∴,,∵,∴,16..17.证明见解析.18.(1)(2)(3)(1)∴,即.∴.解析:总共抽取的居民人数为(名),类居民人数的占比为,则类所对应的扇形圆心角的大小是.故答案为:;.类居民的人数为(名),补全条形统计图如图所示:各类居民人数条形统计图人数类别表示“支持”的类居民的占比为,则(名).答:该社区表示“支持”的类居民大约有人.解析:将线段绕点逆时针旋转,画出对应线段,如下图所示:(1);(2)画图见解析.(3)人.19.(1)画图见解析.(2)画图见解析.(3)画图见解析.20.(2)(3)理由如下:连接,由勾股定理,得,,∴,,∴是直角三角形,且,∴是线段绕点逆时针旋转后的对应线段.在线段上画点,使,如上图所示,画法如下:由“平行线等分线段定理”找出、的中点、,连接、,与交于点;作射线,则与的交点即为所求作的点.理由如下:由作法知:点是的中线、的交点,∴的边上的中线与射线重合,由()知:、,∴.(1)连接,画点关于直线的对称点,如上图所示,画法说明如下:取点,连接,则与的交点即为所求作的点;理由如下:由勾股定理可知,而,∴,∴四边形是菱形,∴所在直线是四边形的一条对称轴,,∵,,∴,,∴由()知:,∴,∴,即,而点、分别在、上,∴由菱形的对称性可知:点与点关于直线对称.解析:如图,连接,由圆的切线的性质得:,(1)证明见解析.(2).21.(2)∵,∴,∴,又∵,∴,∴,则平分.如图,连接,由圆周角定理得:,∴,∴,∴,∵,∴,在和中,,∴,∴,设,,则,且,,在和中,,(1)(2)(3)∴,∴,即,解得或(不符题意,舍去),经检验,是所列分式方程的解,∴,则在中,,故的值为.解析:由题意得:当产品数量为时,总成本也为,即时,,则,解得,故,.由()得:,设,两城生产这批产品的总成本的和为,则,整理得:,由二次函数的性质可知,当时,取得最小值,最小值为万元,此时,答:城生产件,城生产件.设从城运往地的产品数量为件,,两城总运费的和为,则从城运往地的产品数量为件,从城运往地的产品数量为件,从城运往地的产品数量为件,由题意得:,解得,,(1),.(2)城生产件,城生产件.(3)当时,,两城总运费的和的最小值为万元;当时,,两城总运费的和的最小值为万元.22.(1)(2)整理得:,根据一次函数的性质分以下两种情况:①当时,在内,随的增大而减小,则时,取得最小值,最小值为,②当时,在内,随的增大而增大,则时,取得最小值,最小值为,答:当时,,两城总运费的和的最小值为万元;当时,,两城总运费的和的最小值为万元.解析:问题背景:∵,∴,,∴,∴,∴.尝试应用:连接,∵,,∴,∴,∵,∴,∴,∴,由于,,(1)证明见解析.(2).(3).23.(3)∴,即,∵,∴,∵,,∴,又∵,∴,∴,即,又∵∴,∴.拓展创新:,如图,在的右侧作,交延长线于,连接,∵,,,∴,又∵,∴,∴,又∵,∴,∴,∴,设,在直角三角形中,由于,∴,,(1)(2)∴,∴,∵,∴,∴.解析:∵抛物线向下平移个单位长度得到抛物线,再将抛物线向左平移个单位长度得到抛物线,∴抛物线的解析式为:,即,抛物线的解析式为:,即.如下图,过点作轴于点,连接,∵是等腰直角三角形,∴,又∵,∴点的坐标为,同理可得,点的坐标为,设直线的解析式为,将, ,代入得:,解得:,∴点、、、四点共圆,∴,∴,∴是等腰直角三角形,∴,(1)抛物线的解析式为:,抛物线的解析式为:.(2)点的坐标为或.(3)直线经过定点.24.(3)∵点在抛物线对称轴右侧上,点在对称轴上,∴抛物线的对称轴为,设点的坐标为,∴,,∴,解得:或 (舍去),∴点的坐标为,同理,当点、点在轴的下方时,,或 (舍去),∴点的坐标为,综上,点的坐标为或.xyO∵直线 (,k为常数)与抛物线交于,两点,∴,∴,设点的横坐标为,点的横坐标为,∴,∴中点的横坐标,中点的纵坐标∴直线的解析式为,不论取何值时,当时,,∴直线经过定点.。
武汉市中考数学试题及答案解析版
2020年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间【考点】有理数的估计 【答案】B【解析】∵1<2<412.2.若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =3【考点】分式有意义的条件 【答案】C 【解析】要使31-x 有意义,则x -3≠0,∴x≠3 故选C.3.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 4 【考点】幂的运算 【答案】B【解析】A. a·a2=a3,此选项错误;B.2a·a=2a2,此选项正确;C.(2a2)2=4a4,此选项错误;D.6a8÷3a2=2a6,此选项错误。
4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【考点】不可能事件的概率【答案】A【解析】∵袋子中有4个黑球,2个白球,∴摸出的黑球个数不能大于4个,摸出白球的个数不能大于2个。
A选项摸出的白球的个数是3个,超过2个,是不可能事件。
故答案为:A5.运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x +9【考点】完全平方公式【答案】C【解析】运用完全平方公式,(x+3)2=x2+2×3x+32=x2+6x+9.故答案为:C6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-1【考点】关于原点对称的点的坐标.【答案】D【解析】关于原点对称的点的横坐标与纵坐标互为相反数.∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1,故选D.7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【考点】简单几何体的三视图.【答案】A【解析】从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故选A8.某车间20名工人日加工零件数如下表所示:日加工零件数4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.【答案】D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故选D.9.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M 为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A .π2B .πC .22D .2【考点】轨迹,等腰直角三角形 【答案】B【解析】取AB 的中点E ,取CE 的中点F ,连接PE ,CE ,MF ,则FM =12PE =1,故M 的轨迹为以F 为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.10.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8【考点】等腰三角形的判定;坐标与图形性质 【答案】A【解析】构造等腰三角形,①分别以A ,B 为圆心,以AB 的长为半径作圆;②作AB 的中垂线.如图,一共有5个C 点,注意,与B 重合及与AB 共线的点要排除。
2020年湖北省武汉市中考数学试和答案
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k <0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a >18.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE =BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M 处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O 交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A 城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B 城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B 两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD ∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:实数﹣2的相反数是2,故选:A.2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.【解答】解:从左边看上下各一个小正方形.故选:A.6.【解答】解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.【解答】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题(共6小题,每小题3分,共18分)11.【解答】解:==3.故答案为:3.12.【解答】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.【解答】解:原式=﹣===.故答案为:.14.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(共8小题,共72分)17.【解答】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.【解答】证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.19.【解答】解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:21.【解答】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.22.【解答】解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m >2时,A,B两城总运费的和为(10m+110)万元.23.【解答】问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.24.【解答】解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:经过定点(0,2),即直线MN经过一个定点.。
湖北省武汉市2020年中考数学试题(解析版)
湖北省武汉市2020年中考数学真题一、选择题1.2-的相反数是( ) A. 2- B. 2C.12D. 12-【答案】B 【解析】 分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.x 的取值范围是( ) A. 0x ≥ B. 2x ≥-C. 2x ≤D. 2x ≥【答案】D 【解析】 【分析】由二次根式有意义的条件列不等式可得答案.20,x ∴-≥2.x ∴≥故选D .【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键. 3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ) A. 两个小球的标号之和等于1 B. 两个小球的标号之和等于6 C. 两个小球的标号之和大于1 D. 两个小球的标号之和大于6【答案】B 【解析】 【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.【详解】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故选项A错误;选项B:“两个小球的标号之和等于6”为随机事件,故选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故选项D错误.故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件的概念,熟练掌握各事件的定义是解决本题的关键.4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”逐项判断即可得.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、是轴对称图形,此项符合题意D、不是轴对称图形,此项不符题意故选:C.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】A【解析】分析】根据左视图的定义即可求解. 【详解】根据图形可知左视图为故选A .【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手概率是( ) A.13B.14C.16D.18【答案】C 【解析】 【分析】画出树状图展示所有12种等可能的结果数,再根据概率公式即可求解. 【详解】画树状图为:∴P (选中甲、乙两位)=21126= 故选C .【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 7.若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A. 1a <- B. 11a -<<C. 1a >D. 1a <-或1a >【答案】B 【解析】 【分析】 由反比例函数(0)ky k x=<,可知图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,由此分三种情况①若点A 、点B 在同在第二或第四象限;②若点A 在第二象限且点B 在第四象限;③若点A在第四象限且点B 在第二象限讨论即可. 【详解】解:∵反比例函数(0)ky k x=<, ∴图象经过第二、四象限,在每个象限内,y 随x 的增大而增大, ①若点A 、点B 同在第二或第四象限, ∵12y y >, ∴a-1>a+1, 此不等式无解;②若点A 在第二象限且点B 在第四象限, ∵12y y >, ∴1010a a -⎧⎨+⎩<>,解得:11a -<<;③由y 1>y 2,可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上,a 的取值范围是11a -<<. 故选:B .【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )A. 32B. 34C. 36D. 38【答案】C 【解析】 【分析】设每分钟的进水量为bL ,出水量为cL ,先根据函数图象分别求出b 、c 的值,再求出24x =时,y 的值,然后根据每分钟的出水量列出等式求解即可.【详解】设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知,20(164)(164)35b c +---= 即201251235c +⨯-= 解得15()4c L =则当24x =时,1520(244)5(244)454y =+-⨯--⨯= 因此,45452412154a c-=== 解得36(min)a = 故选:C .【点睛】本题考查了函数图象的应用,理解题意,从函数图象中正确获取信息,从而求出每分钟的进水量和出水量是解题关键.9.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )B.C.D.【答案】D 【解析】 【分析】连接DO 、DA 、DC ,设DO 与AC 交于点H ,证明△DHE ≌△BCE ,得到DH=CB ,同时OH 是三角形ABC 中位线,设OH=x ,则BC=2x=DH ,故半径DO=3x ,解出x ,最后在Rt △ACB 中由勾股定理即可求解.【详解】解:连接DO 、DA 、DC 、OC ,设DO 与AC 交于点H ,如下图所示,∵D是AC的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,==AC故选:D.【点睛】本题考查了圆周角定理、三角形全等、勾股定理等,属于综合题,熟练掌握其性质和定理是解决此题的关键10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张⨯方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方由6个小正方形组成的32⨯方格纸片,将“L”形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48【答案】A【解析】【分析】先计算出66⨯方格纸片中共含有多少个32⨯方格纸片,再乘以4即可得.【详解】由图可知,在66⨯方格纸片中,32⨯方格纸片个数为54240⨯⨯=(个)则404160n=⨯=故选:A.【点睛】本题考查了图形类规律探索,正确得出在66⨯方格纸片中,32⨯方格纸片的个数是解题关键.二、填空题11._______.【答案】3【解析】【分析】根据二次根式的性质进行求解即可.=3-=3,故答案为3.a=是解题的关键.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.【答案】4.5【解析】【分析】根据中位数的定义即可得.【详解】将这组数据按从小到大进行排序为3,3,4,5,5,6 则这组数据的中位数是454.52+= 故答案为:4.5.【点睛】本题考查了中位数的定义,熟记定义是解题关键.13.计算2223m nm n m n --+-的结果是________. 【答案】1m n- 【解析】 【分析】根据分式的减法法则进行计算即可. 【详解】原式2()3()()()()m n m nm n m n m n m n ---+=+--223()()m n m nm n m n --=++-()()m nm n m n =++-1m n=- 故答案为:1m n-. 【点睛】本题考查了分式的减法运算,熟记运算法则是解题关键.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是平行四边形ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ︒∠=,则BAC ∠的大小是________.【答案】26°. 【解析】 【分析】设∠BAC=x ,然后结合平行四边形的性质和已知条件用x 表示出∠EBA 、∠BEC 、 ∠BCE 、 ∠BEC 、 ∠DCA 、∠DCB ,最后根据两直线平行同旁内角互补,列方程求出x 即可.【详解】解:设∠BAC=x ∵平行四边形ABCD 的对角线 ∴DC//AB,AD=BC,AD//BC ∴∠DCA=∠BAC=x ∵AE=BE∴∠EBA =∠BAC=x ∴∠BEC =2x ∵AD AE BE == ∴BE=BC∴∠BCE=∠BEC =2x ∴∠DCB=∠BCE+∠DCA=3x ∵AD//BC ,102D ︒∠=∴∠D+∠DCB=180°,即102°+3x=180°,解得x=26°. 故答案为26°.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定和性质,运用平行四边形结合已知条件判定等腰三角形和掌握方程思想是解答本题的关键.15.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过(2,0)A ,(4,0)B -两点,下列四个结论: ①一元二次方程20ax bx c ++=的根为12x =,24x =-; ②若点()15,C y -,()2,D y π在该抛物线上,则12y y <; ③对于任意实数t ,总有2at bt a b +≤-;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号). 【答案】①③ 【解析】 【分析】①根据二次函数与一元二次方程的联系即可得;②先点(2,0)A ,(4,0)B -得出二次函数的对称轴,再根据二次函数的对称性与增减性即可得;③先求出二次函数的顶点坐标,再根据二次函数图象的平移规律即可得;④先将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++-,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2y ax bx c =++经过(2,0)A ,(4,0)B -两点∴一元二次方程20ax bx c ++=的根为12x =,24x =-,则结论①正确抛物线的对称轴为4212x -+==- ∴3x =时的函数值与5x =-时的函数值相等,即为1y 0a <∴当1x ≥-时,y 随x 的增大而减小又13π-<<12y y ∴>,则结论②错误当1x =-时,y a b c =-+则抛物线的顶点的纵坐标为a b c -+,且0a b c -+>将抛物线2y ax bx c =++向下平移a b c -+个单位长度得到的二次函数解析式为22()y ax bx c a b c ax bx a b =++--+=+-+由二次函数图象特征可知,2y ax bx a b =+-+的图象位于x 轴的下方,顶点恰好在x 轴上 即0y ≤恒成立则对于任意实数t ,总有20at bt a b +-+≤,即2at bt a b +≤-,结论③正确将抛物线2y ax bx c =++向下平移p 个单位长度得到的二次函数解析式为2y ax bx c p =++- 函数2y ax bx c p =++-对应的一元二次方程为20ax bx c p ++-=,即2ax bx c p ++=因此,若一元二次方程2ax bx c p ++=的根为整数,则其根只能是121,3x x ==-或120,2x x ==-或121x x ==-对应的p 的值只有三个,则结论④错误 综上,结论正确的是①③ 故答案为:①③.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、二次函数图象的平移问题、二次函数与一元二次方程的联系等知识点,熟练掌握并灵活运用二次函数的图象与性质是解题关键.16.如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.【答案】211144t t -+ 【解析】 【分析】首先根据题意可以设DE =EM =x ,在三角形AEM 中用勾股定理进一步可以用t 表示出x ,再可以设CF =y ,连接MF ,所以BF =2−y ,在三角形MFN 与三角形MFB 中利用共用斜边,根据勾股定理可求出用t 表示出y ,进而根据四边形的面积公式可以求出答案. 【详解】设DE =EM =x , ∴222(2)x x t =-+,∴x =244t + ,设CF =y ,连接FM ,∴BF =2−y , 又∵FN = y ,NM =1,∴22221(2)(1)y y t +=-+-,∴y =2244t t -+,∴四边形CDEF 的面积为:1()2x y CD +=221424()244t t t +-++∙1,故答案为:211144t t -+. 【点睛】本题主要考查了勾股定理的综合运用,熟练掌握技巧性就可得出答案.三、解答题17.计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦.【答案】610a 【解析】 【分析】根据同底数幂相乘、乘积的幂、幂的乘方、同底数幂相除运算法则逐步求解即可. 【详解】解:原式35829()+÷+=a a a8829)(+÷=a a a8210=÷a a 610=a .【点睛】本题考查了整式的乘除中幂的运算法则,熟练掌握公式及其运算法则是解决此类题的关键. 18.如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ∥FN .求证:AB ∥CD .【答案】证明见解析. 【解析】 【分析】先根据角平分线的定义可得11,22MEF BEF N CF FE E ∠=∠∠∠=,再根据平行线的性质可得MEF NFE ∠=∠,从而可得BEF CFE ∠=∠,然后根据平行线的判定即可得证.【详解】EM 平分BEF ∠,FN 平分CFE ∠11,22MEF BEF NF CFE E ∠=∠∠∠=∴ EM //FN MEF NFE ∠=∠∴1122BEF CFE ∴∠=∠,即BEF CFE ∠=∠ //AB CD ∴.【点睛】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.19.为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________;(2)将条形统计图补充完整;(2)该社区共有2000名居民,估计该社区表示“支持”的B 类居民大约有多少人?【答案】(1)60,18︒;(2)图见解析;(3)该社区表示“支持”的B 类居民大约有1200人. 【解析】 【分析】(1)根据C 类的条形统计图和扇形统计图的信息可得出总共抽取的人数,再求出D 类居民人数的占比,然后乘以360︒即可得;(2)根据(1)的结论,先求出A 类居民的人数,再补全条形统计图即可; (3)先求出表示“支持”的B 类居民的占比,再乘以2000即可得. 【详解】(1)总共抽取的居民人数为915%60÷=(名) D 类居民人数的占比为3100%5%60⨯= 则D 类所对应的扇形圆心角的大小是3605%18⨯︒=︒ 故答案为:60,18︒;(2)A 类居民的人数为60369312---=(名) 补全条形统计图如下所示:(3)表示“支持”的B 类居民的占比为36100%60%60⨯= 则200060%1200⨯=(名)答:该社区表示“支持”的B 类居民大约有1200人.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.20.在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ; (2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法. 【答案】(1)见解析;(2)见解析;(3)见解析 【解析】 【分析】(1)根据题意,将线段CD 是将线段CB 绕点C 逆时针旋转90︒即可; (2)连接BD ,并连接(4,2),(5,5)点,两线段的交点即为所求的点E. (3)连接(5,0)和(0,5)点,与AC 的交点为F,且F 为所求.【详解】解:(1)如图示,线段CD 是将线段CB 绕点C 逆时针旋转90︒得到的;(2)∠BCE 为所求的角,点E 为所求的点.(3)连接(5,0)和(0,5)点,与AC 的交点为F,且F 为所求.【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.21.如图,在Rt ABC 中,90ABC ∠=︒,以AB 为直径的⊙O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E .(1)求证:AD 平分BAE ∠; (2)若CD DE =,求sin BAC ∠的值.【答案】(1)证明见解析;(2)sin BAC ∠. 【解析】【分析】(1)如图(见解析),先根据圆的切线的性质可得OD DE ⊥,再根据平行线的判定与性质可得DAE ADO ∠=∠,然后根据等腰三角形的性质可得DAO ADO ∠=∠,最后根据角平分线的定义即可得证;(2)如图(见解析),先根据角的和差、等量代换可得ADE C ∠=∠,再根据三角形全等的判定定理与性质可得AD BC =,设,AD BC a CD x ===,然后根据相似三角形的判定与性质可得AC BCBC CD=,从而可求出x 的值,最后根据正弦三角函数的定义即可得. 【详解】(1)如图,连接OD 由圆的切线的性质得:OD DE ⊥AE DE ⊥//OD AE ∴ DAE ADO ∴∠=∠又OA OD =DAO ADO ∴∠=∠ DAE DAO ∴∠=∠则AD 平分BAE ∠; (2)如图,连接BD由圆周角定理得:90ADB ∠=︒90BDC ∴∠=︒90ABC ∠=︒ 90DAO C ∴∠+∠=︒ 90DAE ADE ∠+∠=︒ADE C ∴∠=∠在ADE 和BCD 中,90E BDC DE CDADE C ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ADE BCD ASA ∴≅AD BC ∴=设,AD BC a CD x ===,则AC AD CD a x =+=+,且0,0a x >>在ACB △和BCD 中,90C CABC BDC ∠=∠⎧⎨∠=∠=︒⎩ACB BCD ∴~AC BC BC CD ∴=,即a x aa x+=解得x =0x =<(不符题意,舍去)经检验,x =是所列分式方程的解AC a ∴=+=则在Rt ABC中,sin BC BAC AC ∠===故sin BAC ∠.【点睛】本题考查了圆周角定理、圆的切线的性质、正弦三角函数、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形和相似三角形是解题关键.22.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx c =++,当10x =时,400y =;当20x 时,1000y =.B 城生产产品的每件成本为70万元. (1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示). 【答案】(1)1a =,30b =;(2)A 城生产20件,B 城生产80件;(3)当02m <≤时,A ,B 两城总运费的和的最小值为(2090)m +万元;当2m >时,A ,B 两城总运费的和的最小值为(10110)m +万元. 【解析】 【分析】(1)先根据题意得出产品数量为0时,总成本y 也为0,再利用待定系数法即可求出a 、b 的值; (2)先根据(1)的结论得出y 与x 的函数关系式,从而可得出A ,B 两城生产这批产品的总成本的和,再根据二次函数的性质即可得;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,先列出从A 城运往D 地的产品数量、从B 城运往C 地的产品数量、从B 城运往D 地的产品数量,再求出n 的取值范围,然后根据题干运费信息列出P 与n 的函数关系式,最后根据一次函数的性质求解即可得. 【详解】(1)由题意得:当产品数量为0时,总成本也为0,即0x =时,0y =则010010400400201000c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1300a b c =⎧⎪=⎨⎪=⎩故1a =,30b =;(2)由(1)得:230y x x =+设A ,B 两城生产这批产品的总成本的和为W 则223070(100)700400x x x x x W ++-+==- 整理得:220)60(60x W -+= 由二次函数的性质可知,当20x 时,W 取得最小值,最小值为6600万元此时1001002080x -=-=答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20)n -件,从B 城运往C 地的产品数量为(90)n -件,从B 城运往D 地的产品数量为(1020)n -+件由题意得:20010200n n -≥⎧⎨-+≥⎩,解得1020n ≤≤3(20)(90)2(1020)P mn n n n =+-+-+-+整理得:(2)130P m n =-+根据一次函数的性质分以下两种情况:①当02m <≤时,在1020n ≤≤内,P 随n 的增大而减小 则20n =时,P 取得最小值,最小值为20(2)1302090m m -+=+ ②当2m >时,在1020n ≤≤内,P 随n 的增大而增大则10n =时,P 取得最小值,最小值为10(2)13010110m m -+=+答:当02m <≤时,A ,B 两城总运费的和的最小值为(2090)m +万元;当2m >时,A ,B 两城总运费的和的最小值为(10110)m +万元.【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数与一次函数的实际应用等知识点,较难的是题(3),正确设立未知数,建立函数关系式是解题关键.23.问题背景:如图(1),已知A ABC DE ∽△△,求证:ABD ACE ∽;尝试应用:如图(2),在ABC 和ADE 中,90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,AC与DE 相交于点F .点D 在BC 边上,AD BD=,求DFCF 的值;拓展创新:如图(3),D 是ABC 内一点,30BAD CBD ︒∠=∠=,90BDC ︒∠=,4AB =,AC =AD 的长.【答案】问题背景:见详解;尝试应用:3;拓展创新:AD =【解析】 【分析】问题背景:通过A ABC DE ∽△△得到AB AC AD AE =,AB ACAD AE=,再找到相等的角,从而可证ABD ACE ∽;尝试应用:连接CE ,通过BAC DAE ∽可以证得ABD ACE ∽,得到BD ADCE AE=,然后去证AFE DFC ∽△△,ADF ECF ∽△△,通过对应边成比例即可得到答案;拓展创新:在AD 的右侧作∠DAE=∠BAC ,AE 交BD 延长线于E ,连接CE ,通过BAC DAE ∽,BAD CAE ∽,然后利用对应边成比例即可得到答案.【详解】问题背景:∵A ABC DE ∽△△, ∴∠BAC=∠DAE ,AB ACAD AE=, ∴∠BAD+∠DAC=CAE+∠DAC , ∴∠BAD=∠CAE , ∴ABD ACE ∽;尝试应用:连接CE ,∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=, ∴BAC DAE ∽,∴AB ADAC AE=, ∵∠BAD+∠DAC=CAE+∠DAC , ∴∠BAD=∠CAE , ∴ABD ACE ∽,∴BD ADCE AE=, 由于30ADE ︒∠=,90DAE ︒∠=,∴30AE tan AD ︒==即BD AD CE AE ==,∵ADBD =, ∴3ADCE=,∵90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,∴60C E ︒∠=∠=,又∵AFE DFC ∠=∠,∴AFE DFC ∽△△, ∴AF EF DF CF =,即AF DF EF CF=, 又∵AFD EFC ∠=∠∴ADF ECF ∽△△, ∴3DF AD CF CE==;拓展创新:AD =如图,在AD 的右侧作∠DAE=∠BAC ,AE 交BD 延长线于E ,连接CE ,∵∠ADE=∠BAD+∠ABD ,∠ABC=∠ABD+∠CBD ,30BAD CBD ︒∠=∠=,∴∠ADE=∠ABC ,又∵∠DAE=∠BAC ,∴BAC DAE ∽, ∴AB AC BC AD AE DE==, 又∵∠DAE=∠BAC ,∴∠BAD=∠CAE ,∴BAD CAE ∽,∴=BD AB AD CE AC AE ===, 设CD=x ,在直角三角形BCD 中,由于∠CBD=30°, ∴BD =,2BC x =, ∴32CE x =,∴DE =, ∵AB BC AD DE=,∴4AD =,∴AD =【点睛】本题考查了相似三角形的综合问题,熟练掌握相似三角形的判定和性质是解题的关键. 24.将抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C .(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB 是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点. 【答案】(1)抛物线1C 的解析式为: y=x 2-4x-2;抛物线2C 的解析式为:y=x 2-6;(2)点A 的坐标为(5,3)或(4,-2);(3)直线MN 经过定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可; (2)先判断出点A 、B 、O 、D 四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出DAC △是等腰直角三角形.设点A 的坐标为(x ,x 2-4x-2),把DC 和AC 用含x 的代数式表示出来,利用DC=AC 列方程求解即可,注意有两种情况;(3)根据直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,联立两个解析式,得到关于x 的一元二次方程,根据根与系数的关系求出点M 的横坐标,进而求出纵坐标,同理求出点N 的坐标,再用待定系数法求出直线MN 的解析式,从而判断直线MN 经过的定点即可.【详解】解:(1)∵抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C ,∴抛物线1C 的解析式为:y=(x-2)2-6,即y=x 2-4x-2,抛物线2C 的解析式为:y=(x-2+2)2-6,即y=x 2-6.(2)如下图,过点A 作AC ⊥x 轴于点C ,连接AD ,∵OAB 是等腰直角三角形,∴∠BOA =45°,又∵∠BDO=∠BAO=90°,∴点A 、B 、O 、D 四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,∴DAC △是等腰直角三角形,∴DC=AC .∵点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,∴抛物线1C 的对称轴为x=2,设点A 的坐标为(x ,x 2-4x-2),∴DC=x-2,AC= x 2-4x-2,∴x-2= x 2-4x-2,解得:x=5或x=0(舍去),∴点A 的坐标为(5,3);同理,当点B 、点A 在x 轴的下方时,x-2= -(x 2-4x-2),x=4或x=-1(舍去),∴点A 的坐标为(4,-2),综上,点A 的坐标为(5,3)或(4,-2).(3)∵直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,∴26y kx y x =⎧⎨=-⎩, ∴x 2-kx-6=0,设点E 的横坐标为x E ,点F 的横坐标为x F ,∴x E +x F =k ,∴中点M 的横坐标x M =2E F x x +=2k , 中点M 的纵坐标y M =kx=22k , ∴点M 的坐标为(2k ,22k ); 同理可得:点N 的坐标为(2k -,28k), 设直线MN 的解析式为y=ax+b (a ≠0),将M (2k ,22k )、N (2k -,28k )代入得: 222282k k a b a b k k ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得:242k a k b ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为y= 24k k-·x+2(0k ≠), 不论k 取何值时(0k ≠),当x=0时,y=2,∴直线MN 经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A 、B 、O 、D 四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.。
2020年湖北省武汉市中考数学试卷解析版
2020年湖北省武汉市中考数学试卷(解析版)一、选择题(共10小题,每小题3分,共30分)1:(2020年湖北省武汉市中考)中考数学工作室1.(3分)(2020•武汉)实数2-的相反数是()A .2B .2-C .12D .12-【考点】实数的性质;相反数【解答】解:实数2-的相反数是2,故选:A .2:(2020年湖北省武汉市中考)中考数学工作室2.(3分)(2020在实数范围内有意义,则x 的取值范围是()A .0x B .2x C .2x - D .2x 【考点】二次根式有意义的条件【解答】解:由题意得:20x - ,解得:2x ,故选:D .3:(2020年湖北省武汉市中考)中考数学工作室3.(3分)(2020•武汉)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于6【考点】随机事件【解答】解: 两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B .4.(3分)(2020•武汉)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【考点】轴对称图形【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5:(2020年湖北省武汉市中考)中考数学工作室5.(3分)(2020•武汉)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【考点】简单组合体的三视图【解答】解:从左边看上下各一个小正方形.故选:A.6:(2020年湖北省武汉市中考)中考数学工作室6.(3分)(2020•武汉)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.13B.14C.16D.18【考点】列表法与树状图法【解答】解:根据题意画图如下:共用12种等可能数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是21126;故选:C.7.(3分)(2020•武汉)若点1(1,)A a y -,2(1,)B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是()A .1a <-B .11a -<<C .1a >D .1a <-或1a >【考点】反比例函数图象上点的坐标特征【解答】解:0k < ,∴在图象的每一支上,y 随x 的增大而增大,①当点1(1,)a y -、2(1,)a y +在图象的同一支上,12y y > ,11a a ∴->+,此不等式无解;②当点1(1,)a y -、2(1,)a y +在图象的两支上,12y y > ,10a ∴-<,10a +>,解得:11a -<<,故选:B .8:(2020年湖北省武汉市中考)中考数学工作室8.(3分)(2020•武汉)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:)L 与时间x (单位:)min 之间的关系如图所示,则图中a 的值是()A .32B .34C .36D .38【考点】一次函数的应用【解答】解:由图象可知,进水的速度为:2045(/)L min ÷=,出水的速度为:5(3520)(164) 3.75(/)L min --÷-=,第24分钟时的水量为:20(5 3.75)(244)45()L +-⨯-=,2445 3.7536a =+÷=.故选:C .9.(3分)(2020•武汉)如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是 AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是()A 532B .33C .32D .2【考点】圆心角、弧、弦的关系;垂径定理【解答】解:连接OD ,交AC 于F ,D 是 AC 的中点,OD AC ∴⊥,AF CF =,90DFE ∴∠=︒,OA OB = ,AF CF =,12OF BC ∴=,AB 是直径,90ACB ∴∠=︒,在EFD ∆和ECB ∆中90DFE BCE DEF BEC DE BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()EFD ECB AAS ∴∆≅∆,DF BC ∴=,12OF DF ∴=,3OD = ,1OF ∴=,2BC ∴=,在Rt ABC ∆中,222AC AB BC =-,22226242AC AB BC ∴=--=,故选:D .10.(3分)(2020•武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是()A .160B .128C .80D .48【考点】规律型:图形的变化类【解答】解:观察图象可知(4)中共有45240⨯⨯=个32⨯的长方形,由(3)可知,每个32⨯的长方形有4种不同放置方法,则n 的值是404160⨯=.故选:A .二、填空题(共6小题,每小题3分,共18分)11:(2020年湖北省武汉市中考)中考数学工作室11.(3分)(2020•武汉)计算2(3)-的结果是.【考点】二次根式的性质与化简【解答】2(3)93-==.故答案为:3.12:(2020年湖北省武汉市中考)中考数学工作室12.(3分)(2020•武汉)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:)h ,分别为:4,3,3,5,5,6.这组数据的中位数是.【考点】中位数【解答】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为454.52+=,故答案为:4.5.13.(3分)(2020•武汉)计算2223m nm n m n --+-的结果是.【考点】分式的加减法【解答】解:原式2()3()()()()m n m nm n m n m n m n --=-+-+-223()()m n m nm n m n --+=+-()()m n m n m n +=+-1m n=-.故答案为:1m n-.14:(2020年湖北省武汉市中考)中考数学工作室14.(3分)(2020•武汉)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ∠=︒,则BAC ∠的大小是.【考点】平行四边形的性质【解答】解: 四边形ABCD 是平行四边形,102ABC D ∴∠=∠=︒,AD BC =,AD AE BE == ,BC AE BE ∴==,EAB EBA ∴∠=∠,BEC ECB ∠=∠,2BEC EAB EBA EAB ∠=∠+∠=∠ ,2ACB CAB ∴∠=∠,3180180102CAB ACB CAB ABC ∴∠+∠=∠=︒-∠=︒-︒,26BAC ∴∠=︒,故答案为:26︒.15.(3分)(2020•武汉)抛物线2(y ax bx c a =++,b ,c 为常数,0)a <经过(2,0)A ,(4,0)B -两点,下列四个结论:①一元二次方程20ax bx c ++=的根为12x =,24x =-;②若点1(5,)C y -,2(,)D y π在该抛物线上,则12y y <;③对于任意实数t ,总有2at bt a b +- ;④对于a 的每一个确定值,若一元二次方程2(ax bx c p p ++=为常数,0)p >的根为整数,则p 的值只有两个.其中正确的结论是(填写序号).【考点】根的判别式;根与系数的关系;二次函数图象上点的坐标特征;抛物线与x 轴的交点【解答】解: 抛物线2(y ax bx c a =++,b ,c 为常数,0)a <经过(2,0)A ,(4,0)B -两点,∴当0y =时,20ax bx c =++的两个根为12x =,24x =-,故①正确;该抛物线的对称轴为直线2(4)12x +-==-,函数图象开口向下,若点1(5,)C y -,2(,)D y π在该抛物线上,则12y y >,故②错误;当1x =-时,函数取得最大值y a b c =-+,故对于任意实数t ,总有2at bt c a b c ++-+ ,即对于任意实数t ,总有2at bt a b +- ,故③正确;对于a 的每一个确定值,若一元二次方程2(ax bx c p p ++=为常数,0)p >的根为整数,则两个根为3-和1或2-和0或1-和1-,故p 的值有三个,故④错误;故答案为:①③.16.(3分)(2020•武汉)如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是.【考点】矩形的性质;三角形的面积;翻折变换(折叠问题)【解答】解:连接DM ,过点E 作EG BC ⊥于点G ,设DE x EM ==,则2EA x =-,222AE AM EM += ,222(2)x t x ∴-+=,解得214t x =+,214t DE ∴=+,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF DM ∴⊥,90ADM DEF ∠+∠=︒,EG AD ⊥ ,90DEF FEG ∴∠+∠=︒,ADM FEG ∴∠=∠,tan 21AM t FG ADM AD ∴∠===,2tFG ∴=,214t CG DE ==+ ,2142t tCF ∴=-+,()211111244CDEF S CF DE t t ∴=+⨯=-+四边形.故答案为:211144t t -+.三、解答题(共8小题,共72分)17:(2020年湖北省武汉市中考)中考数学工作室17.(8分)(2020•武汉)计算:35422[(3)]a a a a +÷ .【考点】幂的乘方与积的乘方;整式的除法;同底数幂的乘法【解答】解:原式882(9)a a a =+÷8210a a =÷610a =.18.(8分)(2020•武汉)如图直线EF分别与直线AB,CD交于点E,F.EM平分BEF∠,EM FN.求证://AB CD.∠,且//FN平分CFE【考点】平行线的判定与性质【解答】证明://EM FN,∴∠=∠,FEM EFN又EM平分BEF∠,FN平分CFE∠,∴∠=∠,2BEF FEM2∠=∠,EFC EFN∴∠=∠,FEB EFC∴.AB CD//19:(2020年湖北省武汉市中考)中考数学工作室19.(8分)(2020•武汉)为改善民生:提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?【考点】扇形统计图;用样本估计总体;条形统计图【解答】解:(1)这次抽取的居民数量为915%60÷=(名),扇形统计图中,D类所对应的扇形圆心角的大小是3 3601860︒⨯=︒,故答案为:60,18︒;(2)A类别人数为60(3693)12-++=(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有362000120060⨯=(名).20:(2020年湖北省武汉市中考)中考数学工作室20.(8分)(2020•武汉)在85⨯的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为(0,0)O,(3,4)A,(8,4)B,(5,0)C.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90︒,画出对应线段CD;(2)在线段AB上画点E,使45BCE∠=︒(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【考点】作图-旋转变换;作图-轴对称变换【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:BCE∠即为所求;(3)连接(5,0),(0,5),可得与OA的交点F,点F即为所求,如图所示:21.(8分)(2020•武汉)如图,在Rt ABC ∆中,90ABC ∠=︒,以AB 为直径的O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E .(1)求证:AD 平分BAE ∠;(2)若CD DE =,求sin BAC ∠的值.【考点】切线的性质;垂径定理;圆周角定理;解直角三角形【解答】(1)证明:连接OD ,如图,DE 为切线,OD DE ∴⊥,DE AE ⊥ ,//OD AE ∴,1ODA ∴∠=∠,OA OD = ,2ODA ∴∠=∠,12∴∠=∠,AD ∴平分BAE ∠;(2)解:连接BD ,如图,AB 为直径,90ADB ∴∠=︒,290ABD ∠+∠=︒ ,390ABD ∠+∠=︒,23∴∠=∠,sin 1DE AD ∠=,sin 3DCBC∠=,而DE DC =,AD BC ∴=,设CD x =,BC AD y ==,DCB BCA ∠=∠ ,32∠=∠,CDB CBA ∴∆∆∽,::CD CB CB CA ∴=,即::()x y y x y =+,整理得220x xy y +-=,解得152x y -+=或152x y --=(舍去),51sin 32DCBC-∴∠==,即sin BAC ∠512-22.(10分)(2020•武汉)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx =+.当10x =时,400y =;当20x =时,1000y =.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示).【考点】二次函数的应用【解答】解:(1)由题意得:10010400400201000a b a b +=⎧⎨+=⎩,解得:130a b =⎧⎨=⎩.1a ∴=,30b =;(2)由(1)得:230y x x =+,设A ,B 两城生产这批产品的总成本为w ,则23070(100)w x x x =++-2407000x x =-+,2(20)6600x =-+,10a => ,由二次函数的性质可知,当20x =时,w 取得最小值,最小值为6600万元,此时1002080-=.答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20)n -件,从B 城运往C 地的产品数量为(90)n -件,从B 城运往D 地的产品数量为(1020)n -+件,由题意得:20010200n n -⎧⎨-+⎩ ,解得1020n ,3(20)(90)2(1020)P mn n n n ∴=+-+-+-+,整理得:(2)130P m n =-+,根据一次函数的性质分以下两种情况:①当02m < ,1020n 时,P 随n 的增大而减小,则20n =时,P 取最小值,最小值为20(2)1302090m m -+=+;②当2m >,1020n 时,P 随n 的增大而增大,则10n =时,P 取最小值,最小值为10(2)13010110m m -+=+.答:02m < 时,A ,B 两城总运费的和为(2090)m +万元;当2m >时,A ,B 两城总运费的和为(10110)m +万元.23.(10分)(2020•武汉)问题背景如图(1),已知ABC ADE ∆∆∽,求证:ABD ACE ∆∆∽;尝试应用如图(2),在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F ,点D 在BC 边上,AD BD =,求DFCF的值;拓展创新如图(3),D 是ABC ∆内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,AC =AD 的长.【考点】相似形综合题【解答】问题背景证明:ABC ADE ∆∆ ∽,∴AB ACAD AE=,BAC DAE ∠=∠,BAD CAE ∴∠=∠,AB ADAC AE=,ABD ACE ∴∆∆∽;尝试应用解:如图1,连接EC ,90BAC DAE ∠=∠=︒ ,30ABC ADE ∠=∠=︒,ABC ADE ∴∆∆∽,由(1)知ABD ACE ∆∆∽,∴AE ADEC BD==ACE ABD ADE ∠=∠=∠,在Rt ADE ∆中,30ADE ∠=︒,∴AD AE =,∴3AD AD AEEC AE CE=⨯==.ADF ECF ∠=∠ ,AFD EFC ∠=∠,ADF ECF ∴∆∆∽,∴3DF ADCF CE==.拓展创新解:如图2,过点A 作AB 的垂线,过点D 作AD 的垂线,两垂线交于点M ,连接BM ,30BAD ∠=︒ ,60DAM ∴∠=︒,30AMD ∴∠=︒,AMD DBC ∴∠=∠,又90ADM BDC ∠=∠=︒ ,BDC MDA ∴∆∆∽,∴BD DCMD DA=,又BDC ADM ∠=∠,BDC CDM ADM CDM ∴∠+∠=∠+∠,即BDM CDA ∠=∠,BDM CDA ∴∆∆∽,∴3BM DMCA AD==3AC = ,2336BM ∴==,22226425AM BM AB ∴-=-=152AD AM ∴==.24:(2020年湖北省武汉市中考)中考数学工作室24.(12分)(2020•武汉)将抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C .(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C (对称轴l 右侧)上,点B 在对称轴l 上,OAB ∆是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线(0y kx k =≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN经过一个定点.【考点】二次函数综合题【解答】解:(1) 抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,21:(2)6C y x ∴=--,将抛物线1C 向左平移2个单位长度得到抛物线2C .22:(22)6C y x ∴=-+-,即26y x =-;(2)过点A 作AC x ⊥轴于点C ,过B 作BD AC ⊥于点D ,如图1,设(A a ,2(2)6)a --,则2BD a =-,2|(2)6|AC a =--,90BAO ACO ∠=∠=︒ ,90BAD OAC OAC AOC ∴∠+∠=∠+∠=︒,BAD AOC ∴∠=∠,AB OA = ,ADB OCA ∠=∠,()ABD OAC AAS ∴∆≅∆,BD AC ∴=,22|(2)6|a a ∴-=--,解得,4a =,或1a =-(舍),或0a =(舍),或5a =,(4,2)A ∴-或(5,3);(3)把y kx =代入26y x =-中得,260x kx --=,E F x x k ∴+=,2(,)22k k M ∴,把4y x k =-代入26y x =-中得,2460x x k +-=,∴4G H x x k +=-,2(N k ∴-,28)k,设MN 的解析式为(0)y mx n m =+≠,则222228k k m n m n kk ⎧+=⎪⎪⎨⎪-+=⎪⎩,解得,242k m k n ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为:242k y x k -=+,当0x =时,2y =,∴直线24:2k MN y x k-=+经过定点(0,2),即直线MN 经过一个定点.。
2020年湖北省武汉市中考数学试卷
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>18.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E 是BD的中点,则AC的长是()A.B.3C.3D.410.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A (3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.解:实数﹣2的相反数是2,故选:A.2.解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.解:从左边看上下各一个小正方形.故选:A.6.解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.解:连接OD,交AC于F,∵D 是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF =BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF =DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC ===4,故选:D.10.解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题(共6小题,每小题3分,共18分)11.解:==3.故答案为:3.12.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.解:原式=﹣===.故答案为:.14.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x ==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p 的值有三个,故④错误;故答案为:①③.16.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x =+1,∴DE =+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM =,∴FG =,∵CG=DE =+1,∴CF =+1,∴S四边形CDEF =(CF+DE)×1=t+1.故答案为:t+1.三、解答题(共8小题,共72分)17.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.19.解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:21.(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy﹣y2=0,解得x =y或x =y(舍去),∴sin∠3==,即sin∠BAC 的值为.22.解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.23.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE ,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM ===2,∴AD =.24.解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M (),把y =﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N (,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN 的解析式为:,当x=0时,y=2,∴直线MN :经过定点(0,2),即直线MN经过一个定点.。
2020年湖北省武汉中考数学试卷(附答案与解析
绝密★启用前2020年湖北省武汉市初中毕业生学业考试数 学亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成.全卷共8页,三大题,满分120分.考试用时120分钟. 2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第I 卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上相应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答在“试卷”上无效.......... 4.答第II 卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在“试卷”上无效.......... 5.认真阅读答题卡上的注意事项. 预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑. 1.2-的相反数是( )A .2-B .2C .12D .12-2.x 的取值范围是( )A .0x ≥B .2x -≥C .2x ≤D .2x ≥3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ) A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是( )AB CD 5.下图是由4个相同的正方体组成的立体图形,它的左视图是( )ABCD6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ) A .13 B .14C .16D .187.若点()11,A a y -,()21,B a y +在反比例函数()0ky k x=<的图象上,且12y y >,则a 的取值范围是( )A .1a -<B .11a -<<C .1a >D .1a -<或1a >8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4 min 内只进水不出水,从第4 min 到第24 m in 内既进水又出水,从第24 m in 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )(第8题)A .32B .34C .36D .389.如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )(第9题)AB. C. D.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下面各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 11.________.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h ),分别为:4,3,3,5,5,6.这组数据的中位数是________. 13.计算2223m nm n m n --+-的结果是________. 14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是平行四边形ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ∠=︒,则BAC ∠的大小是________.(第14题)15.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过()2,0A ,()4,0B -两点,下列四个结论: ①一元二次方程20ax bx c ++=的根为12x =,24x =-; ②若点()15,C y -,()2,D y π在该抛物线上,则12y y <; ③对于任意实数t ,总有2at bt a b +-≤;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个. 其中正确的结论是________(填写序号).16.如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.(第16题)三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本小题满分8分)计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦. 18.(本小题满分8分)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM FN ∥.求证:AB CD ∥.(第18题)19.(本小题满分8分)为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________; (2)将条形统计图补充完整;(3)该社区共有2 000名居民,估计该社区表示“支持”的B 类居民大约有多少人? 20.(本小题满分8分)在85⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为()0,0O ,()3,4A ,()8,4B ,()5,0C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ; (2)在线段AB 上画点E ,使45BCE ∠=︒(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.(第20题)21.(本小题满分8分)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E . (1)求证:AD 平分BAE ∠; (2)若CD DE =,求sin BAC ∠的值.(第21题)22.(本小题满分10分)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx c =++,当10x =时,400y =;当20x时,1000y =.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示). 23.(本小题满分10分)问题背景 如图(1),已知A ABC DE ∽△△,求证:ABD ACE △∽△;尝试应用 如图(2),在ABC △和ADE △中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F .点D 在BC边上,AD BD =DFCF的值; 拓展创新 如图(3),D 是ABC △内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,AC =,直接写出AD 的长.(第23题)24.(本小题满分12分)将抛物线()2:2C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C . (1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB △是以OB 为斜边的等腰直角三角形,求点A 的坐标; (3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点.(第24题)。
2020年湖北省武汉市中考数学。试卷及答案解析
2020年湖北省武汉市中考数学。
试卷及答案解析2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是()A。
3℃ B。
-3℃ C。
11℃ D。
-11℃2.若分式在实数范围内有意义,则实数x的取值范围是()A。
x>-2 B。
x<-2 C。
x=-2 D。
x≠-23.计算3x^2-x^2的结果是()A。
2 B。
2x^2 C。
2x D。
4x^24.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A。
42、40 B。
42、38 C。
40、42 D。
2、405.计算(a-2)(a+3)的结果是()A。
a^2-6 B。
a^2+a-6 C。
a^2+6 D。
a^2-a+66.点A(2,-5)关于x轴对称的点的坐标是()A。
(2,5) B。
(-2,5) C。
(-2,-5) D。
(2,-5)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A。
3 B。
4 C。
5 D。
68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A。
3/4 B。
1/2 C。
1/4 D。
1/89.将正整数1至2020按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A。
2020 B。
2021 C。
2022 D。
201310.如图,在⊙O中,点C在优弧AB的中点D。
若⊙O的半径为,AB=4,则BC的长是()A。
B。
C。
D.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 成活数m 成活的频率(精确到0.01)400 325 0.81350 300 0.89700 640 0.91900 815 0.911400 1255 0.903500 3145 0.90由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.计算的结果是。
2020年湖北省武汉市中考数学试题及参考答案(word解析版)
2020年武汉市初中毕业生学业考试数学试卷(满分120分,考试用时120分钟)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案。
1.实数﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥﹣2 D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1 B.两个小球的标号之和等于6C.两个小球的标号之和大于1 D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1 B.﹣1<a<1 C.a>1 D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32 B.34 C.36 D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160 B.128 C.80 D.48第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在题中的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖北省武汉市中考数学试卷 学校: 班级: 姓名: 得分:一、选择题(共10小题,每小题3分,共30分)1.(3分)(2020•武汉)实数2020的相反数是( )A .2020B .2019-C .12019D .12019- 2.(3分)(2020•武汉)式子1x -在实数范围内有意义,则x 的取值范围是( )A .1x <B .1xC .1x -D .1x >3.(3分)(2020•武汉)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .3个球都是黑球B .3个球都是白球C .三个球中有黑球D .3个球中有白球4.(3分)(2020•武汉)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A .B .C .D .5.(3分)(2020•武汉)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是( )A .B .C .D .6.(3分)(2020•武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .7.(3分)(2020•武汉)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A .14B .13C .12D .238.(3分)(2020•武汉)已知反比例函数k y x =的图象分别位于第二、第四象限,1(A x ,1)y 、2(B x ,2)y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=,其中真命题个数是( )A .0B .1C .2D .39.(3分)(2020•武汉)如图,AB 是O 的直径,M 、N 是AB (异于A 、)B 上两点,C 是MN 上一动点,ACB ∠的角平分线交O 于点D ,BAC ∠的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A 2B .2πC .32D 5 10.(3分)(2020•武汉)观察等式:232222+=-;23422222++=-;2345222222+++=-⋯已知按一定规律排列的一组数:502、512、522、⋯、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2020•武汉)16的化简结果为= . 12.(3分)(2020•武汉)武汉市某气象观测点记录了5天的平均气温(单位:C)︒,分别是25、20、18、23、27,这组数据的中位数是 .13.(3分)(2020•武汉)计算221164a a a ---的结果是 . 14.(3分)(2020•武汉)如图,在ABCD 中,E 、F 是对角线AC 上两点,AE EF CD ==,90ADF ∠=︒,63BCD ∠=︒,则ADE ∠的大小为 .15.(3分)(2020•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是 .16.(3分)(2020•武汉)问题背景:如图1,将ABC ∆绕点A 逆时针旋转60︒得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图2,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是 .三、解答题(共8题,共72分)17.(8分)(2020•武汉)计算:2324(2)x x x -.18.(8分)(2020•武汉)如图,点A 、B 、C 、D 在一条直线上,CE 与BF 交于点G ,1A ∠=∠,//CE DF ,求证:E F ∠=∠.19.(8分)(2020•武汉)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?20.(8分)(2020•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使//=.AF DC,且AF DC(2)如图1,在边AB上画一点G,使AGD BGC∠=∠.(3)如图2,过点E画线段EM,使//=.EM AB,且EM AB21.(8分)(2020•武汉)已知AB是O的直径,AM和BN是O的两条切线,DC与O 相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:24AB AD BC=;(2)如图2,连接OE并延长交AM于点F,连接CF.若2ADE OFC∠=∠,1AD=,求图中阴影部分的面积.22.(10分)(2020•武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量⨯(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(0)m>,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.23.(10分)(2020•武汉)在ABC∆中,90ABC∠=︒,ABnBC=,M是BC上一点,连接AM.(1)如图1,若1n=,N是AB延长线上一点,CN与AM垂直,求证:BM BN=.(2)过点B作BP AM⊥,P为垂足,连接CP并延长交AB于点Q.①如图2,若1n=,求证:CP BM PQ BQ=.②如图3,若M是BC的中点,直接写出tan BPQ∠的值.(用含n的式子表示)24.(12分)(2020•武汉)已知抛物线21:(1)4C y x =--和22:C y x =(1)如何将抛物线1C 平移得到抛物线2C ?(2)如图1,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线//PQ y 轴交抛物线1C 于点Q ,连接AQ .①若AP AQ =,求点P 的横坐标;②若PA PQ =,直接写出点P 的横坐标.(3)如图2,MNE ∆的顶点M 、N 在抛物线2C 上,点M 在点N 右边,两条直线ME 、NE与抛物线2C 均有唯一公共点,ME 、NE 均与y 轴不平行.若MNE ∆的面积为2,设M 、N两点的横坐标分别为m 、n ,求m 与n 的数量关系.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数2020的相反数是( )A .2020B .2019-C .12019D .12019- 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2020的相反数是:2009-.故选:B .2.(3x 的取值范围是( )A .1x <B .1xC .1x -D .1x >【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得10x -,解得1x ,故选:B .3.(3分)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .3个球都是黑球B .3个球都是白球C .三个球中有黑球D .3个球中有白球【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A 、3个球都是黑球是随机事件;B 、3个球都是白球是不可能事件;C 、三个球中有黑球是必然事件;D 、3个球中有白球是随机事件;故选:B .4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:D.5.(3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形,如图所示:.故选:A.6.(3分)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【分析】根据题意,可知y 随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,t 表示漏水时间,y 表示壶底到水面的高度,y ∴随t 的增大而减小,符合一次函数图象,故选:A .7.(3分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A .14B .13C .12D .23【分析】首先画出树状图即可求得所有等可能的结果与使4ac 的情况,然后利用概率公式求解即可求得答案. 【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使4ac 的有6种结果,∴关于x 的一元二次方程240ax x c ++=有实数解的概率为12, 故选:C .8.(3分)已知反比例函数k y x=的图象分别位于第二、第四象限,1(A x ,1)y 、2(B x ,2)y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=,其中真命题个数是( )A .0B .1C .2D .3【分析】利用反比例函数的比例系数的几何意义、反比例函数的增减性、对称性分别回答即可.【解答】解:过点A 作AC x ⊥轴,C 为垂足,连接OA .ACO ∆的面积为3,||6k ∴=,反比例函数k y x=的图象分别位于第二、第四象限, 0k ∴<, 6k ∴=-,正确,是真命题;②反比例函数k y x=的图象分别位于第二、第四象限, ∴在所在的每一个象限y 随着x 的增大而增大,若120x x <<,则120y y >>,正确,是真命题;③当A 、B 两点关于原点对称时,120x x +=,则120y y +=,正确,是真命题,真命题有3个,故选:D .9.(3分)如图,AB 是O 的直径,M 、N 是AB (异于A 、)B 上两点,C 是MN 上一动点,ACB ∠的角平分线交O 于点D ,BAC ∠的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A 2B .2πC .32D 5 【分析】如图,连接EB .设OA r =.易知点E 在以D 为圆心DA 为半径的圆上,运动轨迹是GF ,点C 的运动轨迹是MN ,由题意2MON GDF ∠=∠,设GDF α∠=,则2MON α∠=,利用弧长公式计算即可解决问题.【解答】解:如图,连接EB .设OA r =.AB 是直径,90ACB ∴∠=︒, E 是ACB ∆的内心,135AEB ∴∠=︒,ACD BCD ∠=∠,∴AD DB =,2AD DB r ∴==,90ADB ∴∠=︒,易知点E 在以D 为圆心DA 为半径的圆上,运动轨迹是GF ,点C 的运动轨迹是MN , 2MON GDF ∠=∠,设GDF α∠=,则2MON α∠= ∴218022rMN rGF απαπ⋅⋅==⋅⋅的长的长 故选:A .10.(3分)观察等式:232222+=-;23422222++=-;2345222222+++=-⋯已知按一定规律排列的一组数:502、512、522、⋯、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【分析】由等式:232222+=-;23422222++=-;2345222222+++=-,得出规律:231222222n n ++++⋯+=-,那么5051529910023100234922222(2222)(2222)+++⋯++=+++⋯+-+++⋯+,将规律代入计算即可.【解答】解:232222+=-;23422222++=-;2345222222+++=-;⋯231222222n n +∴+++⋯+=-,5051529910022222∴+++⋯++231002349(2222)(2222)=+++⋯+-+++⋯+10150(22)(22)=---1015022=-,502a =,10150222(2)22a ∴==,∴原式22a a =-.故选:C .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3= 4 .【分析】根据二次根式的性质求出即可.【解答】4,故答案为:4.12.(3分)武汉市某气象观测点记录了5天的平均气温(单位:C)︒,分别是25、20、18、23、27,这组数据的中位数是 23C ︒ .【分析】根据中位数的概念求解可得.【解答】解:将数据重新排列为18、20、23、25、27,所以这组数据的中位数为23C ︒,故答案为:23C ︒.13.(3分)计算221164a a a ---的结果是 14a + . 【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式24(4)(4)(4)(4)a a a a a a +=-+-+- 24(4)(4)a a a a --=+- 4(4)(4)a a a -=+- 14a =+. 故答案为:14a + 14.(3分)如图,在ABCD 中,E 、F 是对角线AC 上两点,AE EF CD ==,90ADF ∠=︒,63BCD ∠=︒,则ADE ∠的大小为 21︒ .【分析】设ADE x ∠=,由等腰三角形的性质和直角三角形得出DAE ADE x ∠=∠=,12DE AF AE EF ===,得出DE CD =,证出2DCE DEC x ∠=∠=,由平行四边形的性质得出63DCE BCD BCA x ∠=∠-∠=︒-,得出方程,解方程即可.【解答】解:设ADE x ∠=,AE EF =,90ADF ∠=︒,DAE ADE x ∴∠=∠=,12DE AF AE EF ===, AE EF CD ==,DE CD ∴=,2DCE DEC x ∴∠=∠=, 四边形ABCD 是平行四边形,//AD BC ∴,DAE BCA x ∴∠=∠=,63DCE BCD BCA x ∴∠=∠-∠=︒-,263x x ∴=︒-,解得:21x =︒,即21ADE ∠=︒;故答案为:21︒.15.(3分)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是 12x =-,25x = .【分析】由于抛物线2y ax bx c =++沿x 轴向右平移1个单位得到2(1)(1)y a x b x c =-+-+,从而得到抛物线2(1)(1)y a x b x c =-+-+与x 轴的两交点坐标为(2,0)-,(5,0),然后根据抛物线与x 轴的交点问题得到一元二方程2(1)(1)0a x b x c -+-+=的解.【解答】解:关于x 的一元二次方程2(1)a x c b bx -+=-变形为2(1)(1)0a x b x c -+-+=, 把抛物线2y ax bx c =++沿x 轴向右平移1个单位得到2(1)(1)y a x b x c =-+-+, 因为抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B ,所以抛物线2(1)(1)y a x b x c =-+-+与x 轴的两交点坐标为(2,0)-,(5,0),所以一元二方程2(1)(1)0a x b x c -+-+=的解为12x =-,25x =.故答案为12x =-,25x =.16.(3分)问题背景:如图1,将ABC ∆绕点A 逆时针旋转60︒得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图2,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是 229 .【分析】(1)在BC 上截取BG PD =,通过三角形求得证得AG AP =,得出AGP ∆是等边三角形,得出60AGC APG ∠=︒=∠,即可求得60APE ∠=︒,连接EC ,延长BC 到F ,使CF PA =,连接EF ,证得ACE ∆是等边三角形,得出AE EC AC ==,然后通过证得()APE ECF SAS ∆≅∆,得出PE PF =,即可证得结论;(2)以MG 为边作等边三角形MGD ∆,以OM 为边作等边OME ∆.连接ND ,可证GMO DME ∆≅∆,可得GO DE =,则MO NO GO NO OE DE ++=++,即当D 、E 、O 、N 四点共线时,MO NO GO ++值最小,最小值为ND 的长度,根据勾股定理先求得MF 、DF ,然后求ND 的长度,即可求MO NO GO ++的最小值.【解答】(1)证明:如图1,在BC 上截取BG PD =,在ABG ∆和ADP ∆中AB ADB D BG PD=⎧⎪∠=∠⎨⎪=⎩,()ABG ADP SAS ∴∆≅∆,AG AP ∴=,BAG DAP ∠=∠,60GAP BAD ∠=∠=︒,AGP ∴∆是等边三角形,60AGC APG ∴∠=︒=∠,60APE ∴∠=︒,60EPC ∴∠=︒,连接EC ,延长BC 到F ,使CF PA =,连接EF ,将ABC ∆绕点A 逆时针旋转60︒得到ADE ∆,60EAC ∴∠=︒,60EPC ∠=︒,AE AC =,ACE ∴∆是等边三角形,AE EC AC ∴==,180PAE APE AEP ∠+∠+∠=︒,180ECF ACE ACB ∠+∠+∠=︒,60ACE APE ∠=∠=︒,AED ACB ∠=∠,PAE ECF ∴∠=∠,在APE ∆和ECF ∆中AE ECEAP ECF PA CF=⎧⎪∠=∠⎨⎪=⎩ ()APE ECF SAS ∴∆≅∆,PE PF ∴=,PA PC PE ∴+=;(2)解:如图2:以MG 为边作等边三角形MGD ∆,以OM 为边作等边OME ∆.连接ND ,作DF NM ⊥,交NM 的延长线于F .MGD ∆和OME ∆是等边三角形OE OM ME ∴==,60DMG OME ∠=∠=︒,MG MD =,GMO DME ∴∠=∠在GMO ∆和DME ∆中OM ME GMO DME MG MD =⎧⎪∠=∠⎨⎪=⎩()GMO DME SAS ∴∆≅∆,OG DE ∴=NO GO MO DE OE NO ∴++=++∴当D 、E 、O 、M 四点共线时,NO GO MO ++值最小,75NMG ∠=︒,60GMD ∠=︒,135NMD ∴∠=︒,45DMF ∴∠=︒, 42MG =.4MF DF ∴==,6410NF MN MF ∴=+=+=,2222104229ND NF DF ∴=+=+=,MO NO GO ∴++最小值为229,故答案为229,三、解答题(共8题,共72分)17.(8分)计算:2324(2)x x x -.【分析】先算乘方与乘法,再合并同类项即可.【解答】解:2324(2)x x x -668x x =-67x =.18.(8分)如图,点A 、B 、C 、D 在一条直线上,CE 与BF 交于点G ,1A ∠=∠,//CE DF ,求证:E F ∠=∠.【分析】根据平行线的性质可得ACE D ∠=∠,又1A ∠=∠,利用三角形内角和定理及等式的性质即可得出E F ∠=∠.【解答】解://CE DF ,ACE D ∴∠=∠,1A ∠=∠,1801801ACE A D ∴︒-∠-∠=︒-∠-∠,又180E ACE A ∠=︒-∠-∠,1801F D ∠=︒-∠-∠,E F ∴∠=∠.19.(8分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”, B 表示“喜欢”, C 表示“一般”, D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取 50 名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为 ;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?【分析】(1)这次共抽取:1224%50÷=(人),D类所对应的扇形圆心角的大小103607250︒⨯=︒;(2)A类学生:502312105---=(人),据此补充条形统计图;(3)该校表示“喜欢”的B类的学生大约有23150069050⨯=(人).【解答】解:(1)这次共抽取:1224%50÷=(人),D类所对应的扇形圆心角的大小103607250︒⨯=︒,故答案为50,72︒;(2)A类学生:502312105---=(人),条形统计图补充如下该校表示“喜欢”的B类的学生大约有23150069050⨯=(人),答:该校表示“喜欢”的B类的学生大约有690人;20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使//AF DC,且AF DC=.(2)如图1,在边AB上画一点G,使AGD BGC∠=∠.(3)如图2,过点E画线段EM,使//EM AB,且EM AB=.【分析】(1)作平行四边形AFCD 即可得到结论;(2)根据等腰三角形的性质和对顶角的性质即可得到结论;(3)作平行四边形AEMB 即可得到结论.【解答】解:(1)如图所示,线段AF 即为所求;(2)如图所示,点G 即为所求;(3)如图所示,线段EM 即为所求.21.(8分)已知AB 是O 的直径,AM 和BN 是O 的两条切线,DC 与O 相切于点E ,分别交AM 、BN 于D 、C 两点.(1)如图1,求证:24AB AD BC =;(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若2ADE OFC ∠=∠,1AD =,求图中阴影部分的面积.【分析】(1)连接OC 、OD ,证明AOD BCO ∆∆∽,得出AD OA BO BC=,即可得出结论; (2)连接OD ,OC ,证明COD CFD ∆≅∆得出CDO CDF ∠=∠,求出120BOE ∠=︒,由直角三角形的性质得出3BC =,3OB =,图中阴影部分的面积2OBC OBE S S ∆=-扇形,即可得出结果.【解答】(1)证明:连接OC 、OD ,如图1所示: AM 和BN 是它的两条切线, AM AB ∴⊥,BN AB ⊥,//AM BN ∴,180ADE BCE ∴∠+∠=︒ DC 切O 于E ,12ODE ADE ∴∠=∠,12OCE BCE ∠=∠, 90ODE OCE ∴∠+∠=︒,90DOC ∴∠=︒,90AOD COB ∴∠+∠=︒,90AOD ADO ∠+∠=︒,AOD OCB ∴∠=∠,90OAD OBC ∠=∠=︒,AOD BCO ∴∆∆∽, ∴AD OA BO BC=, 2OA AD BC ∴=,21()2AB AD BC ∴=, 24AB AD BC ∴=;(2)解:连接OD ,OC ,如图2所示: 2ADE OFC ∠=∠,ADO OFC ∴∠=∠,ADO BOC ∠=∠,BOC FOC ∠=∠, OFC FOC ∴∠=∠,CF OC ∴=,CD ∴垂直平分OF ,OD DF ∴=,在COD∆和CFD∆中,OC CFOD DFCD CD=⎧⎪=⎨⎪=⎩,()COD CFD SSS∴∆≅∆,CDO CDF∴∠=∠,180ODA CDO CDF∠+∠+∠=︒,60ODA BOC∴∠=︒=∠,120BOE∴∠=︒,在Rt DAO∆,3AD OA=,Rt BOC∆中,3BC OB=,:1:3AD BC∴=,1AD=,3BC∴=,3OB=,∴图中阴影部分的面积2120(3)12233332OBC OBES Sππ∆⨯=-=⨯⨯⨯-=-扇形.22.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量⨯(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是 40 元/件;当售价是 元/件时,周销售利润最大,最大利润是 元. (2)由于某种原因,该商品进价提高了m 元/件(0)m >,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.【分析】(1)①依题意设y kx b =+,解方程组即可得到结论;②该商品进价是50100010040-÷=,设每周获得利润2w ax bx c =++:解方程组即可得到结论;(2)根据题意得,2(40)(2200)2(2802)800200w x m x x m x m =---+=-++--,由于对称轴是1402mx +=,根据二次函数的性质即可得到结论. 【解答】解:(1)①依题意设y kx b =+, 则有501006080k b k b +=⎧⎨+=⎩解得:2200k b =-⎧⎨=⎩所以y 关于x 的函数解析式为2200y x =-+; ②该商品进价是50100010040-÷=, 设每周获得利润2:w ax bx c =++ 则有250050100036006016006400801600a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:22808000a b c =-⎧⎪=⎨⎪=-⎩,22228080002(70)1800w x x x ∴=-+-=--+,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,2(40)(2200)2(2802)800200w x m x x m x m =---+=-++--, 对称轴1402mx +=, ∴①当140652m+<时(舍),②当140652m +时,65x =时,w 求最大值1400, 解得:5m =.23.(10分)在ABC ∆中,90ABC ∠=︒,ABn BC=,M 是BC 上一点,连接AM . (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =. (2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=. ②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值.(用含n 的式子表示)【分析】(1)如图1中,延长AM 交CN 于点H .想办法证明()ABM CBN ASA ∆≅∆即可. (2)①如图2中,作//CH AB 交BP 的延长线于H .利用全等三角形的性质证明CH BM =,再利用平行线分线段成比例定理解决问题即可.②如图3中,作//CH AB 交BP 的延长线于H ,作CN BH ⊥于N .不妨设2BC =,则2AB n =.想办法求出CN ,PN (用n 表示),即可解决问题. 【解答】(1)证明:如图1中,延长AM 交CN 于点H .AM CN ⊥, 90AHC ∴∠=︒, 90ABC ∠=︒,90BAM AMB∴∠+∠=︒,90BCN CMH∠+∠=︒,AMB CMH∠=∠,BAM BCN∴∠=∠,BA BC=,90ABM CBN∠=∠=︒,()ABM CBN ASA∴∆≅∆,BM BN∴=.(2)①证明:如图2中,作//CH AB交BP的延长线于H.BP AM⊥,90BPM ABM∴∠=∠=︒,90BAM AMB∠+∠=︒,90CBH BMP∠+∠=︒,BAM CBH∴∠=∠,//CH AB,90HCB ABC∴∠+∠=︒,90ABC∠=︒,90ABM BCH∴∠=∠=︒,AB BC=,()ABM BCH ASA∴∆≅∆,BM CH∴=,//CH BQ,∴PC CH BM PQ BQ BQ==.②解:如图3中,作//CH AB交BP的延长线于H,作CN BH⊥于N.不妨设2BC=,则2AB n=.则1BM CM ==,1CH BM ==,2125BH =+=2214AM n + 1122AM BP AB BM =, 214PB n ∴=+ 1122BH CN CH BC =, 5CN ∴= CN BH ⊥,PM BH ⊥, //MP CN ∴,CM BM =, 214PN BP n∴==+,BPQ CPN ∠=∠,225205tan tan 214NCn BPQ CPN n PNn +∴∠=∠===+.24.(12分)已知抛物线21:(1)4C y x =--和22:C y x = (1)如何将抛物线1C 平移得到抛物线2C ?(2)如图1,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线//PQ y 轴交抛物线1C 于点Q ,连接AQ . ①若AP AQ =,求点P 的横坐标; ②若PA PQ =,直接写出点P 的横坐标.(3)如图2,MNE ∆的顶点M 、N 在抛物线2C 上,点M 在点N 右边,两条直线ME 、NE 与抛物线2C 均有唯一公共点,ME 、NE 均与y 轴不平行.若MNE ∆的面积为2,设M 、N 两点的横坐标分别为m 、n ,求m 与n 的数量关系.【分析】(1)2(1)4y x =--向左评移1个单位长度,再向上平移4个单位长度即可得到2y x =;(2)易求点(3,0)A ,4b =,联立方程244(1)43x x -+=--,可得7(3B -,64)9;设4(,4)3P t t -+,2(,23)Q t t t --,①当AP AQ =时,则有244233t t t -+=--,求得13t =;②当AP PQ =时,2273PQ t t =++,5(3)3PA t =-,则有2257(3)33t t t ++=-,求得23t =-;(3)设经过M 与N 的直线解析式为2()y k x m m =-+,∴22()y x y k x m m⎧=⎨=-+⎩,则可知△22244(2)0k km m k m =-+=-=,求得2k m =, 求出直线ME 的解析式为22y mx m =-,直线NE 的解析式为22y nx n =-,则可求(2m nE +,)mn ,再由面积2222111[()()]()()()()()222222m n m nn mn m mn m n n mn n m mn m ++-+-⨯---⨯---⨯-=,可得3()8m n -=,即可求解;【解答】解:(1)2(1)4y x =--向左评移1个单位长度,再向上平移4个单位长度即可得到2y x =;(2)2(1)4y x =--与x 轴正半轴的交点(3,0)A , 直线43y x b =-+经过点A ,4b ∴=,443y x ∴=-+,443y x =-+与2(1)4y x =--的交点为244(1)43x x -+=--的解,3x ∴=或73x =-,7(3B ∴-,64)9,设4(,4)3P t t -+,且733t -<<,//PQ y 轴,2(,23)Q t t t ∴--, ①当AP AQ =时, 24|4||23|3t t t -=--,则有244233t t t -+=--,13t ∴=,P ∴点横坐标为13;②当AP PQ =时,2273PQ t t =++,5(3)3PA t =-,2257(3)33t t t ∴++=-,23t ∴=-;P ∴点横坐标为23-;(3)设经过M 与N 的直线解析式为2()y k x m m =-+, ∴22()y x y k x m m ⎧=⎨=-+⎩, 则有220x kx km m -+-=, △22244(2)0k km m k m =-+=-=, 2k m ∴=,直线ME 的解析式为22y mx m =-,直线NE 的解析式为22y nx n =-,(2m nE +∴,)mn , ∴2222111[()()]()()()()()222222m n m n n mn m mn m n n mn n m mn m ++-+-⨯---⨯---⨯-=, 22()()42m n m n -∴--=,3()8m n ∴-=, 2m n ∴-=;。