元件伏安特性的测定

合集下载

电学元件伏安特性测量报告

电学元件伏安特性测量报告

电学元件伏安特性的测量实验报告BME8 鲍小凡 2008013215【实验目的】(1)半定量观察分压电路的调节特性; (2)测定给定电阻的阻值;(3)测定半导体二极管正反向伏安特性; (4)戴维南定理的实验验证。

【实验原理】一、分压电路及其调节特性 1、分压电路的接法如图3.1.1所示,将变阻器R 的两个固定端A 和B 接到直流电源E 上,而将滑动端C 和任一固定端(A 或B ,图中为B )作为分压的两个输出端接至负载R L 。

图中B 端电位最低,C 端电位较高,CB 间的分压大小U 随滑动端C 的位置改变而改变,U 值可用电压表来测量。

变阻器的这种接法通常称为分压器接法。

分压器的安全位置一般是将C 滑至B 端,这时分压为零。

图3.1.1 分压电路 图3.1.2 分压电路输出电压与滑动端位置的关系2、分压电路的调节特性如果电压表的内阻大到可忽略它对电路的影响,那么根据欧姆定律很容易得出分压为:()BC LL BC BCR R U E RR R R R =+-从上式可见,因为电阻R BC 可以从零变到R ,所以分压U 的调节范围为零到E ,分压U 与负载电阻R L的大小有关。

理想情况下,即当R L >>R 时,U=ER BC /R ,分压U 与阻值R BC 成正比,亦即随着滑动端C 从B 滑至A ,分压U 从零到E 线性地增大。

当R L 不是比R 大很多时,分压电路输出电压就不再与滑动端的位移成正比了。

实验研究和理论计算都表明,分压与滑动端位置之间的关系如图3.1.2的曲线所示。

R L /R 越小,曲线越弯曲,这就是说当滑动端从B 端开始移动,在很大一段范围内分压增加很慢,接近A 端时分压急剧增大,这样调节起来不太方便。

因此作为分压电路的变阻器通常要根据外接负载的大小来选用。

必要时,还要同时考虑电压表内阻对分压的影响。

E R A BCR L V E A B C 端位移 输 出 电 压 U 理想情况 1/1 1/31/7 RL/R=1/20称为电学元件的伏安特性。

电子元件伏安特性的测定

电子元件伏安特性的测定
程。
• 针式仪表读数要读到有效位数(要估读1位)。
电子元件伏安特性的测定
伏安特性; • 实验原理; • 测量方法。
一、伏安特性
1.线性电阻:电阻值是一 常 数 ,I—U 特 性 曲 线 为一直线.
2.非线性电阻元件(如 二极管):电阻值变 化, R dU dI I—U曲线为曲线。
二、测量原理
1.基本思路:伏安测量法,Rx测
U I
目标:减少测量时电压表分流、电流表分
B)误差:很小,不存 在分流,又不存在分 压。
C)选择:任何电阻
均可用此法测量,当 较复杂。
补偿法测电阻
三、实验方法
1.实验板使用方法 2.电流表内、外接法的选择
电流表内接法: 电流表外接法:
RX RARV RX RARV
3.电表量程的选择和内阻的计算
• 电压表内阻:RV =每伏欧姆数(Ω/V)×量程。 • 电流表的内阻RA:查附录Ⅰ电表参数表。 • 常若电表的读数小于满刻度的1/3,应更换量
压产生的误差。
2. 伏安特性曲线测量的三种方法
• 电流表内接法
• 电流表外接法
• 补偿法
(1)电流表内接法
A)电路:
B)误差:偏大
U=IRx+IRA ,
Rx测
U I
I(Rx RA) I
R x RA
E内
Rx测 Rx
Rx
100%
RA 100% Rx
C)选择:当Rx>>RA时, 相对误差较小,可用 内接法测量。
内接法测电阻
(2)电流表外接法 A)电路: B)误差:偏小
Rx测
U ILeabharlann U IV IRU(
U 1
1

实验2 电路元件伏安特性的测量

实验2   电路元件伏安特性的测量
I/mA
图2-7
五、实验注意事项 (1)稳压电源输出切勿短路 (2)接线、拆线前,应先关闭电源开关。 (3)测普通二极管正向特性时,稳压电源输出应由小至大 逐渐增加,时刻注意毫安表读数不得超过35毫安。 六、预习要求 (1)线性与非线性电阻的概念是什么?电阻器与二极管的伏安特性有何区别? (2)稳压二极管与普通二极管有何区别,其用途如何? (3)设某器件的伏安特性曲线的函数式为I=f(U),试问纵坐标、横坐标的变 量各是什么? (4)在图2-4中,设US=2V,UD+=.07V,则毫安表读数为多少? 七、实验报告要求 (1)根据各实验结果数据,分别在方格纸上绘制出光滑的伏安特性曲线。其中, 普通二极管与稳压二极管的正、反向特性均要求画在同一张图中,正、反向电压可 取不同比例。 (2)将实验结果与图2-1对比,分析各种元件的伏安特性。
0 2 4 6 8 10
图2-2
电阻两端电压UR 通过电压表读出
I=U/1000
流过电阻的电流 通过电流表读出源自实验台主面板图2-2
电流表内阻接近为0, 并联到负载两端相当 于将电压源短路,造 成严重故障
实验台主面板
2.测定白炽灯(非线性电阻元件)的伏安特性 按图2-3接线, 调节稳压电源的输出电压Us,使电阻的端电压 UR从0V开始缓慢地增加,一直到5V,在表2-3中记下毫安表随 电压Us变化的读数I。
I/mA
0 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
(2)测量反向特性 图2-6 按图2-6中的电源反接, R换成510Ω,电路变成图2-7所示电路,调节稳压电源的输出电 压Us(应在0~20V范围内),使二极管的反向压降UZ-从0V开始缓慢地减少到-4V,在表 2-7中记下毫安表随电压UZ- 变化的读数I。 0 -1 -2 -2.5 -3 -3.4 -3.7 -4.0 UZ-/V 表2-7

实验一 电路元件伏安特性的测试(含数据处理)

实验一      电路元件伏安特性的测试(含数据处理)

实验一电路元件伏安特性的测试(含数据处理)实验一--电路元件伏安特性的测试(含数据处理)实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌控线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理表明电路元件的特性一般可用该元件上的端电压u与通过该元件的电流i之间的函数关系i=f(u)来表示,即用i-u平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档就可以在某一特定的u和i之下测到对应的电阻值,因而无法测到非线性电阻的伏安特性。

通常就是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式r=u/i求测电阻值。

1.线性电阻器的伏安特性符合欧姆定律u=ri,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。

オオオオオオオオオオオオネ1-1元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。

通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得u/i不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。

3.半导体二极管也就是一种非线性电阻元件,其伏安特性例如图1-1(c)右图。

二极管的电阻值随其电压或电流的大小、方向的发生改变而发生改变。

它的正向压降不大(通常锗管及约为0.2~0.3v,硅管约为0.5~0.7v),正向电流随其正向压降的增高而急剧下降,而逆向电压从零一直减少至十几至几十伏时,其逆向电流减少不大,粗略地可以视作零。

电路元件伏安特性的测量

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量一、实验目的1. 掌握线性、非线性电阻元件及电源的概念。

2.学习线性电阻和非线性电阻伏安特性的测试方法。

3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。

二、实验仪器电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻三、实验原理1、数字万用表的构成及使用方法数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。

直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。

可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。

2、整体结构1)交直流电压测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于V量程档。

将测试表笔并联在被测元件两端2)交直流电流测量(1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。

(2)将功能开关置A量程。

(3)表笔串联接入到待测负载回路里。

3)电阻测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于Q量程。

(3)将测试表笔并接到待测电阻.上4)二极管和蜂鸣通断测量(1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。

(2)将功能开关置于二极管和蜂鸣通断测量档位。

(3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的读数为二极管正向压降的近似值。

将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。

同时LCD显示被测线路两端的电阻值。

3)线性电阻元件的伏安特性曲线是- -条通过坐标原点的直线。

如图1.1.1所示;非线性电阻元件,如半导体二极管,其伏安特性如图1.1.2所示,电压、电流关系不服从欧姆定律。

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。

(2)学习直流稳压电源、万用表、电压表的利用方式。

二、实验原理及说明(1)元件的伏安特性。

若是把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。

(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。

元件的电阻值可由下式肯定:R=u/i=(mu/mi)tgα,期中mu 和mi别离是电压和电流在u-i平面坐标上的比例。

三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。

(2)反向特性测量。

(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。

表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时必然要考虑正确利用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习利用大体电学仪器及线路连接方式。

2.掌握测量电学元件伏安特性曲线的大体方式及一种消除线路误差的方式。

3.学习按照仪表品级正确记录有效数字及计算仪表误差。

准确度品级见书66页。

100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告元件伏安特性的测定实验报告摘要:本实验旨在通过测量电阻、二极管和电容的伏安特性曲线,探究元件的电流与电压之间的关系。

实验结果表明,电阻的伏安特性为线性关系,二极管的伏安特性为非线性关系,而电容的伏安特性则呈现出充放电的特点。

引言:伏安特性是描述电子元件电流与电压之间关系的重要参数。

通过测量元件的伏安特性曲线,可以了解元件的工作状态、性能以及应用范围。

本实验将选取常见的电阻、二极管和电容进行测量,以探究它们的伏安特性。

实验方法:1. 实验仪器:万用表、电源、电阻箱、示波器等。

2. 实验步骤:a. 将电阻、二极管和电容依次连接到电路中。

b. 通过电源调节电压,同时用万用表测量电流和电压。

c. 记录不同电压下的电流数值,并绘制伏安特性曲线。

结果与讨论:1. 电阻的伏安特性:实验中选取了一个100欧姆的固定电阻进行测量。

结果显示,在不同电压下,电流与电压呈线性关系,即伏安特性为直线。

这符合欧姆定律,即电流与电压成正比,电阻为常数。

通过斜率可以计算出电阻值。

2. 二极管的伏安特性:实验中选取了一颗常见的硅二极管进行测量。

结果显示,在正向偏置时,电流与电压呈非线性关系,即伏安特性为曲线。

随着电压的增加,电流迅速增大,但增长速度逐渐减慢。

而在反向偏置时,二极管基本上不导电。

这说明二极管具有单向导电性,可用于整流等电路。

3. 电容的伏安特性:实验中选取了一个100μF的电容进行测量。

结果显示,在充电过程中,电容两端的电压随时间线性增加,而电流逐渐减小。

当电容充满电后,电流变为零。

而在放电过程中,电容两端的电压随时间线性减小,电流逐渐增大。

这说明电容具有储存和释放电能的特性,可用于滤波等电路。

结论:通过本实验的测量结果,可以得出以下结论:1. 电阻的伏安特性为线性关系,即电流与电压成正比。

2. 二极管的伏安特性为非线性关系,即正向偏置时电流迅速增大,反向偏置时基本不导电。

3. 电容的伏安特性表现为充放电过程,可储存和释放电能。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

1. 熟悉伏安特性实验的基本原理和操作步骤;2. 掌握伏安特性曲线的绘制方法;3. 研究电阻元件和二极管等非线性元件的伏安特性;4. 分析伏安特性曲线,了解元件的电气性能。

二、实验原理伏安特性曲线是指在一定条件下,元件两端电压与通过元件的电流之间的关系曲线。

对于线性电阻元件,其伏安特性曲线为一条通过坐标原点的直线,其斜率表示元件的电阻值。

对于非线性元件,其伏安特性曲线为曲线,无法用简单的线性关系表示。

本实验主要研究以下元件的伏安特性:1. 线性电阻元件:伏安特性曲线为直线,斜率为元件的电阻值;2. 二极管:伏安特性曲线为曲线,具有明显的非线性特性;3. 稳压二极管:伏安特性曲线为曲线,具有稳压特性。

三、实验仪器与设备1. 伏安特性测试仪;2. 直流稳压电源;3. 直流电压表;4. 直流电流表;5. 电阻元件;6. 二极管;7. 稳压二极管;8. 导线;9. 开关;10. 连接板。

1. 将伏安特性测试仪与直流稳压电源、直流电压表、直流电流表连接好;2. 将电阻元件、二极管、稳压二极管依次接入伏安特性测试仪;3. 设置直流稳压电源的输出电压,从低到高逐渐增加;4. 观察并记录伏安特性测试仪显示的电压与电流值;5. 绘制电阻元件、二极管、稳压二极管的伏安特性曲线;6. 分析伏安特性曲线,了解元件的电气性能。

五、实验数据及结果1. 电阻元件伏安特性曲线(1)线性电阻元件伏安特性曲线为直线,斜率为元件的电阻值;(2)曲线通过坐标原点,表示电阻值与电压、电流无关。

2. 二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,随着电压的增加,电流几乎不变。

3. 稳压二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,当电压达到稳压值时,电流急剧增大。

六、实验结论1. 伏安特性实验可以直观地了解元件的电气性能;2. 伏安特性曲线的绘制方法简单易行;3. 通过分析伏安特性曲线,可以判断元件的质量和性能。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告一、实验目的。

本实验旨在通过对电路中元件的伏安特性进行测定,掌握元件的电压-电流关系,并进一步了解元件的特性及其在电路中的应用。

二、实验仪器与设备。

1. 直流稳压电源。

2. 万用表。

3. 电阻箱。

4. 耐压表。

5. 电路连接线。

6. 待测元件。

三、实验原理。

在电路中,元件的伏安特性是指元件的电压与电流之间的关系。

对于电阻元件,其伏安特性为线性关系,即电阻元件的电流与电压成正比。

而对于二极管等非线性元件,其伏安特性则呈现出非线性关系。

四、实验步骤。

1. 将待测元件与电路连接线连接到电路中,注意连接的正确性和稳固性。

2. 调节直流稳压电源,使其输出电压逐渐增加,同时通过万用表记录电路中元件的电压和电流数值。

3. 根据记录的电压-电流数值,绘制出元件的伏安特性曲线。

4. 对非线性元件,如二极管等,进行反向电压测量,记录其反向击穿电压。

五、实验数据与分析。

通过实验测得的数据,我们可以得到元件的伏安特性曲线。

对于电阻元件,其伏安特性曲线为一条直线,而对于二极管等非线性元件,则呈现出非线性特性的曲线。

通过分析伏安特性曲线,我们可以了解元件的工作状态及其在电路中的作用。

六、实验结论。

通过本次实验,我们成功测定了元件的伏安特性,并绘制出了相应的伏安特性曲线。

通过对曲线的分析,我们可以更加深入地了解元件的特性及其在电路中的应用。

同时,我们也掌握了测定伏安特性的实验方法和步骤。

七、实验总结。

本次实验通过测定元件的伏安特性,使我们对元件的工作特性有了更深入的了解。

同时,实验过程中我们也掌握了一定的实验技能和操作方法。

在今后的学习和工作中,我们将能更加熟练地运用这些知识和技能,为电路设计和调试提供更加可靠的支持。

八、参考文献。

[1] 《电路原理与技术》。

[2] 《电子技术基础》。

以上为本次实验的实验报告,希望能对大家的学习和工作有所帮助。

电子元件伏安特性的测定

电子元件伏安特性的测定

电子元件伏安特性的测定电子元件的伏安特性是指元件在不同电压下的电流大小关系,一般来说,通过伏安特性的测定可以确定元件参数,以及有效地评估其性能及功能。

因此,在电子元件的设计、制造和应用过程中,伏安特性测试是必不可少的一步。

伏安特性的测定其实就是通过将电子元件连接到电路中,接通电源后测量其电流大小和电压变化,得到伏安特性曲线,从而评估元件的特性和性能。

以下是详细的测量步骤:步骤一:准备测量工具和样品首先要准备好测量工具和待测样品。

一般来说,用于伏安特性测定的仪器有万用表、示波器、电压源、电流源等。

待测样品可以是二极管、晶体管等半导体器件,也可以是电阻器、电容器等被动元件。

步骤二:准备电路接下来要根据待测样品的性质和特点准备相应的电路。

如果是二极管等半导体器件,可以采用反向偏置法或前向偏置法激励。

如果是电阻器,可以将其串联在电路中,通过改变电压和电流的大小得到伏安特性曲线。

如果是电容器,则可以采用激励电源将电容器充电放电,得到伏安特性曲线。

步骤三:进行测量和记录接下来就是将待测样品连接到电路中,接通电源,测量其电流和电压的大小,得出伏安特性曲线。

在测量过程中要注意记录测量数据,包括电压、电流值等,以备分析和处理。

为了减少误差,最好重复多次测量,取平均值作为测量结果。

步骤四:分析和处理测量数据最后要对测量数据进行分析和处理。

通常,可以采用图形分析法、数据处理法等方法进行分析。

通过伏安特性曲线可以评估元件的特性和性能,如导通电压、截止电流等参数。

值得注意的是,测量过程中要保持测试环境稳定,如温度、湿度等变化会影响元件的性能。

实验三电路元件伏安特性的测定

实验三电路元件伏安特性的测定

实验三电路元件伏安特性的测定一、实验原理电路元件的伏安特性是指在一定的电压下,元件所承受的电流大小的特性,也就是说,对于一个电路元件,它承受的电流大小是随着电压变化而变化的,在电压变化的过程中,元件所承受的电流的大小也会随之变化。

用伏安特性图表示电路元件的伏安特性,该图是一条由电流和电压组成的曲线,它描述了电路元件在不同电压下所产生的不同电流的大小关系。

在现实中,通常会有一些电路元件不符合欧姆定律,即电流I不能简单地通过单位电压V,而应该使用非线性模型来描述其伏安特性。

这种模型称为理想二极管特性模型,该模型的伏安特性曲线是一个非线性曲线,可以表示为:I = Is(e^(V/T)-1)。

其中,I是电流,V是电压,T是温度,Is是二极管正向饱和电流。

二、实验目的本次实验旨在通过测定不同电路元件的伏安特性,来研究不同电路元件在不同电压下所承受的电流大小,并通过实验数据来验证电路元件的理论伏安特性图中的线性或非线性特性。

三、实验器材与设备1.数字万用表2. 电源3. 变阻器4. 二极管5. 电阻6. 电容7. 充电电路电路元件的伏安特性是指电路元件在不同电压下所产生的不同电流的大小关系,即I-V曲线。

2. 二极管的伏安特性普通二极管有正向和反向两种工作状态,其伏安特性图如下所示:(1)正向偏置普通二极管在正向偏置状态下,氧化物堆叠层将通电,拉近了正负离子距离,电子就越容易穿过PN结,正向偏置的电路中,二极管之间具有几乎恒定的电压0.6~0.7 V,可以达到开关效果。

当二极管处于反向偏置的状态时,随着反向电压不断增加,PN结会不断扩散,增加的电子和空穴不断被分开,在达到一定电压下,出现击穿现象,此时的反向电流远大于漂移电流。

因此,在使用二极管的过程中,需注意不要使其承受过高的电压。

五、实验步骤1. 电阻的伏安特性的测定(1)将变阻器选择为10 kΩ,将短接线接在变阻器的输出端,将长接线连接在电源的正极上,另一根短接线连接到变阻器的输入端。

实验三电路元件伏安特性的测定

实验三电路元件伏安特性的测定

1套
河南理工大学电工电子实验中心
三、实验原理
1. 在电路中,电路元件的特性一般用该元件上的电压与通过该 元件的电流之间的函数关系来表示,这种函数关系称为该元 件的伏安特性,有时也称外部特性。
2. 线性电阻元件的伏安特性服从欧姆定律,画在平面上是一条 通过原点的直线,符合欧姆定律。线性电阻的伏安特性与元 件电压、电流的大小和方向无关,所以线性电阻元件是双向 性元件。
河南理工大学电工电子实验中心
四、实验内容
1.测定线性电阻的伏安特性 D01中间100 欧
2. 测 定 非 线 性 电 阻 的 伏 安 特 性
(U<6.3V)
+
直流
K
+A - +
非 线
稳压
VR

电源 -
-
电 阻
D02
图3-2 实验电路图
河南理工大学电工电子实验中心
3.测量硅二极管的正向伏安特性(U≤0.7V)
V
R
图3-5 实验电路图
河南理工大学电工电子实验中心
五、实验注意事项
1. 实验过程中,电压源不能短路,电流源不 能开路,以免损坏设备。
2. 实验时,电流表要与负载串联,电压表要 与负载并联,且极性不得接反。
3. 实验过程中,如需换接电路,或出现故障 时,都要先关闭电源,严禁带电操作。
4. 注意各仪表量程的选取。
河南理工大学电工电子实验中心
六、实验报告要求
1. 根据测量数据,在坐标纸上按比例绘出各 伏安特性曲线图。
2. 绘制伏安特性曲线时,注意坐标比例的合 理选取,电量及其单位应标明。
3. 图表规范,数据正确。 4. 铅笔尺子橡皮绘图。
河南理工大学电工电子实验中心

电学元件伏安特性的测量

电学元件伏安特性的测量

实验原理
一、基本原理
电学元件的伏安特性是指该元件两端电压与通过 它的电流之间的关系特性。
这种关系既可以用它的 I ~ U 曲线表示,也可 以用该元件在某种条件下具有多大的电阻来表示。
在一定温度下,在待测电阻 Rx 两端加上直流电 压,即会有直流电流通过。用电压表和电流表测量出
电压 U 和电流 I 的数值则可由欧姆定律计算出其电
同样地,要较准确地测量 I
二极管的正向伏安特性曲线,
也要选择合适的测量电路,以
减小测量的系统误差。
实验器材
0
U
图8-3
电源E、开关K、滑线变阻器 R0 、电流表mA 、 电压表V 、待测线性电阻 Rx1 、 Rx2 、待测二极管。
实验内容及步骤
1. 实验内容:对 Rx1 和 Rx2 分别按图8-4(a)、8-4(b)的电路用
2(b)。
PN结
P区
N区
(a)
(b)
图8-2
当二极管的P端接高电位、N端接低电位时,称为正向连 接;当二极管的P端接低电位、N端接高电位时,称为反向连 接。二极管正向连接时,外加电场的方向与PN结的内电场方 向相反,当外加电场大于内电场时,二极管中有较大的正向 电流通过。二极管反向连接时,外加电场的方向与PN结的内 电场方向相同,二极管中没有电流通过(实际上有很小的反向 饱和电流),这就是二极管的“正向导通,反向截止”。
3. 测量二极管时必须从低电压开始,电压间隔为0.1V。
测量次数n
R 的外接法测量数据
12
……
U (V)
I (mA)
R1 U / I ()
R 的内接法测量数据
测量次数n 1 2
……
U (V)

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)

实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U 作用下,测量出相应的电流I ,然后逐点绘制出伏安特性曲线I =f (U ),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表 1 块3.直流电流表 1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管 1 只7.稳压二极管 1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性 按图1-2接线。

调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表1-1中记下相应的电压表和电流表的读数。

表1-1 测定线性电阻的伏安特性U (V ) 0 1 2 3 4 5 6 78 9 10I (mA ) 011.982.993.984.975.966.967.968.949.942.测定白炽灯泡的伏安特性将图1-2中的1kΩ线性电阻R 换成一只12V ,0.1A 的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电子元件伏安特性的测定

电子元件伏安特性的测定

实验一电子元件伏安特性的测定一、实验目的1. 掌握电压表、电流表、直流稳压电源等仪器的使用方法 2. 学习电阻元件伏安特性曲线的测量方法3. 加深理解欧姆定律,熟悉伏安特性曲线的绘制方法二、原理假设二端元件的特性可用加在该元件两端的电压U 和流过该元件的电流I 之间的函数关系I =f (U )来表征,以电压U 为横坐标,以电流I 为纵坐标,绘制I-U 曲线,那么该曲线称为该二端元件的伏安特性曲线。

电阻元件是一种对电流呈阻力特性的元件。

当电流通过电阻元件时,电阻元件将电能转化为其它形式的能量,例如热能、光能等,同时,沿电流流动的方向产生电压降,流过电阻 R 的电流等于电阻两端电压U 与电阻阻值之比,即RUI〔1-1〕 这一关系称为欧姆定律。

假设电阻阻值R 不随电流I 变化,那么该电阻称为线性电阻元件,常用的普通电阻就近似地具有这一特性,其伏安特性曲线为一条通过原点的直线,如图1-1所示,该直线斜率的倒数为电阻阻值R 。

线性电阻的伏安特性曲线对称于坐标原点,说明在电路中假设将线性电阻反接,也不会不影响电路参数。

这种伏安特性曲线对称于坐标原点的元件称为双向性元件。

白炽灯工作时,灯丝处于高温状态,灯丝的电阻随温度升高而增大,而灯丝温度又与流过灯丝的电流有关,所以,灯丝阻值随流过灯丝的电流而变化,灯丝的伏安特性曲线不再是一条直线,而是如图1-2所示的曲线。

半导体二极管的伏安特性曲线取决于PN 结的特性。

在半导体二极管的PN 结上加正向电压时,由于PN 结正向压降很小,流过PN 结的电流会随电压的升高而急剧增大;在PN 结上加反向电压时,PN 结能承受和大的压降,流过PN 结的电流几乎为零。

所以,在一定电压变化范围内,半导体二极管具有单向导电的特性,其伏安特性曲线如图1-3所示。

姓名 学号专业实验台号 实验时间1403.图1-1 线性电阻元件的伏安特性曲线图1-2 小灯泡灯丝的伏安特性曲线图1-4 稳压二极管的伏安特性曲线稳压二极管是一种特殊的二极管,其正向特性与普通半导体二极管的特性相似。

(完整word版)实验4元件伏安特性的测定

(完整word版)实验4元件伏安特性的测定

实验4 电阻元件伏安特性的测量【实验目的】1.验证欧姆定律;2.掌握测量伏安特性的基本方法;3.学会直流电源、电压表、电流表、电阻箱等仪器的正确使用方法。

【实验仪器】V~特性实验仪1台、专用连接线10根、电源线1根、保险丝(1A,FB型电阻A321已在电源插座中)2根、待测二极管、稳压二极管、小灯泡各2只。

【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。

在欧姆定律R=式中,电压U的单位U⋅I为伏特,电流I的单位为安培,电阻R的单位为欧姆。

一般以电压为横坐标和电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。

图4-1 线性元件的伏安特性图4-2 非线性元件的伏安特对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。

这类元件称为线性元件,如图4-1所示。

至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线。

这类元件称为非线性元件,如图4-2所示为某非线性元件的伏安特性。

在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电压和通过的电流均不超过额定值。

此外,还必须了解测量时所需其它仪器的规格(如电源、电压表、电流表、滑线变阻器等的规格),也不得超过其量程或使用范围。

根据这些条件所设计的线路,可以将测量误差减到最小。

2.实验线路的比较与选择a 电流表内接b 电流表外接图4-3 电流表的内、外接线路在测量电阻R 的伏安特性的线路中,常有两种接法,即图4-3 (a)中电流表内接法和图4-3 (b)中电流表外接法。

电压表和电流表都有一定的内阻(分别设为V R 和A R )。

简化处理时直接用电压表读数U 除以电流表读数I 来得到被测电阻值R ,即I U R /=,这样会引进一定的系统性误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5.1.1
元件伏安特性的测定
一、实验目的: 1.学会识别常用电路元器件的方法。 2.熟悉简单直流电路的连接方法。
3.掌握线性电阻和非线性元件伏安特性的逐点测试法,
掌握电压源外特性的测试方法。
二、实验仪器和器材:
(一) 仪器仪表 1.直流稳压电源 2.数字万用表 3.直流电流表 1台 1台 1台 若干 1只
实际电压源的伏安特性
四、基本实验内容: 1、测定线性电阻的伏安特性
*
RL=1k/2W
U/V
1
2
4
6
8
10
线性 电阻
I/mA
2、测定二极管和稳压管的伏安特性
R安特性
R1=100/2W R2=1k的电位器 US=10V 取直流稳压电 源作为理想电 压源
3.在测量不同的电量时,应首先估算电压和电流值, 以选择合适的仪表量程。并且应注意仪表的极性不 能接错。 4.换接线路时,必须关闭电源开关。
(二) 器材器件
1.线性电阻(1k/2W,51/2W,100/2W) 2.电位器(建议:1k)
3.电流插孔
4.半导体二极管(建议:1N4007) 5.稳压二极管(建议:稳压值6V)
3只
1只 1只
三、实验原理:
1-线性电阻 2-白炽灯 3-二极管 4-稳压管
二端元件的伏安特性
理想电压源的伏安特性
外加电阻 2、实际理想电压源的伏安特性 作为内阻 R0=51/2W R1=100/2W US=10V R2=1k的电位器
六、实验注意事项:
1.在实验过程中,直流稳压电源不能短路,以免损坏 电路设备。
2.测量二极管的正向特性时,稳压电源输出应由小到 大逐步增加,时刻注意电流表读数不能超过所选二 极管的最大电流。测量二极管的反向特性时,所加 反向电压不能超过所选二极管的最大反向工作电压。
相关文档
最新文档