人教版初三数学竞赛及答案
数学初三奥赛试题及答案

数学初三奥赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.1010010001…(每两个1之间0的个数逐次增加)B. √2C. 0.33333…D. 1/7答案:B2. 如果一个等腰三角形的底边长为6,腰长为5,那么它的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 一个数列的前四项为1, 4, 9, 16,这个数列的通项公式是什么?A. \(n^2\)B. \(2n\)C. \(2^n\)D. \(n(n+1)\)答案:A4. 一个圆的直径为10,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B5. 计算下列表达式的值:\((2x + 3)(2x - 3)\)A. \(4x^2 - 9\)B. \(4x^2 + 9\)C. \(9 - 4x^2\)D. \(-4x^2 + 9\)答案:A6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C8. 一个长方体的长、宽、高分别为2, 3, 4,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A9. 下列哪个选项是方程\(x^2 - 5x + 6 = 0\)的解?A. 2B. 3C. 1和2D. 2和3答案:C10. 一个等差数列的前三项为2, 5, 8,那么它的第五项是多少?A. 11B. 12C. 15D. 18答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于它的相反数,这个数是______。
答案:0或12. 如果一个数的立方等于它本身,那么这个数可以是______。
答案:-1, 0, 13. 一个等比数列的前三项为2, 6, 18,那么它的公比是______。
答案:34. 一个圆的周长为44π,那么它的半径是______。
人教版 初三数学 竞赛专题:平行线分线段成比例(包含答案)

人教版 初三数学 竞赛专题:平行线分线段成比例(含答案)【例1】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.【例2】如图,在△ABC 中,D ,E 是BC 的三等分点,M 是AC 的中点,BM 交AD ,AE 于G ,H ,则BG ︰GH :HM 等于( )A .3︰2︰1B .4︰2︰1C .5︰4︰3D .5︰3︰2【例3】如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA ,BC 的延长线于Q ,R ,交CD ,AD 于S ,T . 求证:PQ •PT =P R •PS .【例4】梯形ABCD 中,AD //BC ,AB =DC .(1)如图1,如果P ,E ,F 分别是BC ,AC ,BD 的中点,求证:AB =PE +PF ;(2)如图2,如果P 是BC 上的任意一点(中点除外),PE ∥AB ,PF ∥DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.QARBCD SPABCDEGH MQA BCDEFP【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .求证:MN +PQ =2PN .【例6】已知:△ABC 是任意三角形.(1)如图1,点M ,P ,N 分别是边AB ,BC ,CA 的中点,求证:∠MPN =∠A ; (2)如图2,点M ,N 分别在边AB ,AC 上,且AM AB =13,AN AC =13,点P 1,P 2是 边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由;ABCM NP图1ABC MN1P 2P 图2AMNBC1P 2P 2009P g g g 图3QA BCDEFGM NPA B CD E FP图2A BCD E F P图1能力训练A 级1.设K =a b c c +-=a b c b -+=a b ca-++,则K =____. 2.如图,AD ∥EF ∥BC ,AD =15,BC =21,2AE =EB ,则EF =____.3.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____. 4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =F A =b (a >b ),当BF 平分AE 时,则ab的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰29.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FGABCDE F第6题QABCP第7题AB CDEF 第8题A BCD E F 第2题ABCD M N第3题ABCDEFGH第4题A BCEFG第5题⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF.12.如图,四边形ABCD 是梯形,点E 是上底边AD 上的一点,CE 的延长线与BC 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,MB 与AD 交于点N .求证:∠AFN =∠DME .ABCDE FGO第9题ABCDEG第10题ABCD EFO第11题B 级1.如图,工地上竖立着两根电线杆AB ,CD ,它们相距15cm ,分别自两杆上高出地面4m ,6m 的A ,C 处,向两侧地面上的E ,D 和B ,F 点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD 与BC 的交点P 离地面的高度为____m .2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰F A =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD =____.4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .186.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于A BCDE F第5题ABCD EF L KM N第4题AB DEFM第6题ABCDEF O第2题ABCD EF 第3题QABCD EF 第1题ABCDEF M NP点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- 7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .168.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .19.如图,P 是梯形ABCD 的中位线MN 所在直线上的任意一点,直线AP ,BP 分别交直线CD 于E ,F .求证:MN NP =1()2AE BFEP FP+.10.如图,在四边形ABCD 中,AC 与BD 相交于O ,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别交于点M ,N ,R ,S 和P .求证:PM ·PN =P R ·PS .ABCDEF第11题SA R BC DMN OPl第10题ABCD EFG第7题ABCDE F第8题ABCD E F MNP第9题11.如图,AB⊥BC,CD⊥BC,B,D是垂足,AD和BC交于E,EF⊥BD于F.我们可以证明:11AB CD+=1EF成立(不要求证出).以下请回答:若将图中垂直改为AB∥CD∥EF,那么,(1)11AB CD+=1EF还成立吗?如果成立,请给出证明;如果不成立,请说明理由.(2)请找出S△ABD,S△BED和S△BDC的关系式,并给出证明.12.在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过D点的直线PQ交边AC于点P,交边AB的延长线于点Q.(1)如图1,当PQ⊥AC时,求证:11AQ AP+=AD;(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)参考答案AQB CDP图1AQB CDP图2AQB CDP图3例1aba b+ 提示:由AP DQ a PF QF b ==,推得PQ ∥AD 。
(完整word版)九年级数学竞赛及答案

同顺序的取法的种数有()B . 6 种C . 10 种D . 12 种、填空题(本大题共 6个小题,每小题 5分,共30 分)2014年吉安县桐坪中学数学竞赛九年级试题(刘书文)(本卷满分120分,考试时间120分钟) 、选择题(本大题共 6个小题,每小题 5分,共30分) 1.从长度是2cm ,2cm , 4cm , 4cm 的四条线段中任意选三条线段,这 三条线段能够组成等腰三角形的概率是( ) B. C. D. 1 (第2题图)2.如图,M 是厶ABC 的边BC 的中点,AN 平分/ BAC , AN 丄BN 于 N ,且 AB=10, BC=15, MN=3,则△ ABC 的周长为( ) A . 38 B . 39 C . 40 D. 41 23.已知 xy =1,且有 5x 22011x 9 =0 , 9y 22011y • 5 =0 ,则-的值等于( y 5 9 2011A .—B .C .D . 9 5 54.已知直角三角形的一直角边长是 4,以这个直角三角形的三边 为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴 影图形)的面积之和是10,那么以下四个整数中,最接近图 中两个弓形(带点的阴影图形)面积之和的是( ))A . 6B. 7C . 8D . 95. 如图,Rt A ABC 中,AB 丄AC , AB=3, AC=4 , P 是 BC 边上一点, 作 PE 丄 AB 于 E , PD 丄 AC 于 D ,设 BP = x ,贝U PD+PE =()x x 7 12x 12x 2 A. -3 B. 4C. -D.5525256. 计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取 出按照“先进后出”的原则,如图,堆栈(1)中的2个连续存储单元已依次存入数据b , a ,取出数据的顺序是 a , b ;堆栈(2)的3个 连续存储单元已依次存入数据 e , d , c ,取出数据的顺序是 c , d ,ne ,现在要从这两个堆栈中取出5个数据(每次取出 1个数据),则不7•若x2— 2x —1 —4=0,则满足该方程的所有根之和为&如图,等边三角形ABC中,D,E分别为AB, BC边上的两个动点,且总使AD=BE ,FGAE与CD交于点F , AG丄CD于点G ,贝UAF4 2. 22a -3xa +2 2 mt[9.已知a2 -a -^0,且一- ,贝V x=_________ •a3+2xa2—a 310•元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 ______________ 件.11 •如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD 与地面成45°,/ A=60o, CD=4m, BC= (4. 6 - 2、2) m,则电线杆AB 的长为 ________________ m.三、解答题(本大题共4个小题,共60分)13. (本题满分10分) 已知平行四边形ABCD的两边AB, AD的长是关于x的pm 1方程:X2—mx+ —=0的两个实数根,2 4(1) 当m为何值的,四边形ABCD是菱形?求出这时菱形的边长;(2) 当AB=2时,平行四边形ABCD的周长是多少?14 (本题满分10分)•如图所示,不透明圆锥 DEC 放在水平面上,在A 处灯光照射下形成影子,设BP 过圆锥底面的圆心,已知圆锥的高为(1) 求/ B 的度数;15.(本题满分20分)如图,将 OA = 6, AB = 4的矩形OABC 放置在平面直角坐标系中, 动点M , N以每秒1个单位的速度分别从点 A , C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了 t 秒时,过点 N 作NP 丄BC ,交OB 于点P ,连接MP .点 B 的坐标为 _____________ ;用含 t 的式子表示点 P 的坐标为 _________________ ; 记厶OMP 的面积为S,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有 最大值? 试探究:当S 有最大值时,在y 轴上是否存在点 T ,使直线MT 把厶ONC 分割成 三角形和四边形两部分,且三角形的面积是△ ONC 面积的1 ?若存在,求出点 T2 ..3 m ,底面半径为 2 m , BE=4 m. (1) (2) (3)的坐标;若不存在,请说明理由16.(本题满分20分)(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图21②,M是正方形ABCD内一定点,请在图21②中作出两条直线(要求其中一M),使它们将正方形ABCD的面积四等分,并说明理由.条直线必须过点(3)如图③,在四边形ABCD中,AB// CD , AB+CD=BC,点P是AD的中点,如果AB=a, CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.2013年九年级试卷 参考答案5 分,共 30 分)1 —6 C D B A DAC— 16 1 7. 2 - 6 ; 8. A :; B : ; 9. 4 ; 10. 12; 11. 62 ;5211(亍-1) (-;,-1). 2 2 三、解答题:(每题20分,共60分) 13.解:(1)v 四边形 ABCD 为菱形, ••• AB=AD.m 1又T △ =m 2— 4 ( ~ — 4 ) =m 2— 2m+1=(m — 1)2. .••当(m — 1)2=0,即卩m=1时,四边形 ABCD 是菱形.1 1 1 _2 _________________ ____________________=0 得 X — X+ =0 ,• X 1=X 2=.44 21•菱形ABCD 的边长为-.m 1m 1(1) 把 x=2 代入 x 2 — mx+ —=0 得 4— 2m+— =0,2 4 2455 m 1 5解得 m=.把 m= 代入 x 2 — mx+ ~ —: =0 得 x 2— ? x+1=0,、选择题(每小题 、填空题(每小题 5分,共30分):12.m 把 m=1 代入 x 2— mx+ —2•••四边形ABCD 为平行四边形V•平行四边形ABCD 的周长为2 点拨:把平行四边形的边长与一元二次方程的根相联系,那么平行四边形的性质和一元二 次方程根的性质都要掌握•首先平行四边形变为菱形,各边相等,那么一元二次方程就有两 个相等的实数根•对于(2)就是已知一元二次方程的一根再求另一根 22.解:(1)圆锥的高DO=2 3 m.在 Rt △ DOB 中,OB=BE+EO=4+2=6(m ). 二 BD 2=BO 2+DO 2=62+(2 .3)2=48. ••• BD=4 3 m,则 BD=2DO.•••/ B=30° .(2)过A 作AF 丄BP 于F.•••/ ACP= / B+Z BAC=2 / B , •••/ B=Z BAC=30° .• AC=BC=BE+EC=8(m).在 Rt △ ACF 中,Z CAF=90°—Z ACP=90° - 2Z B=30• CF= AC=4(m).• AF=.AC 2-CF 2 = .82-42 =4 3 (m). 故光源A 距水平面的高度为 4 3 m.点拨:投影问题在本题中转化为在直角三角形中求角度和边长的问题,通过作高,构造直 角三角形,应用直角三角形中边、角之间的关系去求值.214. ............................................................................................................................................... 解:(1) (6, 4); ( t,_t ).(其中写对 B 点得 1 分) .......................................31 2(2) - SA OMP = X OM X — t ,2 31 211S = X( 6 -1 )X — t = t 2+2t = (t ~3)2 3 (0 < t <6 ).解得 1 1X 1=2,X 2=22 3 3 3•••当t =3时,S有最大值. ............................ 8分(3)存在.由(2)得:当S有最大值时,点M、N的坐标分别为:M ( 3, 0), N ( 3, 4), 则直线ON的函数关系式为:设点T的坐标为(0, b),则直线MT的函数关系式为:3b4 b 4b 4 b4 !x解方程组 y 得x 龙3jy = _b x b yI 3 I. •直线ON 与MT 的交点R 的坐标为(3b 4b ). 4 +b'4 +b• .1 . 1 -S A OCN = X 4 X 3 = 6,.. S A ORT = OCN = 2 . • 2 3一、 当点T 在点O 、C 之间时,分割出的三角形是△ OR 1T 1, 二、 如图,作 R 1D 1丄y 轴,D 1为垂足, 则 S A O R 1T1= 1?RD 1?OT = 1 ? 3b ?b = 2. 2 2 4+b• 3b 2 -4b -16=0, b = 2 2 13 .• b 1 = 2 2 13 , b ? = 2-2 13(不合题意,舍去) 3 3 3 此时点T 1的坐标为(0, 2 213) ........ .................... 3 ② 当点T 在OC 的延长线上时,分割出的三角形是△ R 2NE , 3b —12 •••点E 的纵坐标为4,•由①得点E 的横坐标为 --- b 作R 2D 2丄CN 交CN 于点D 2,贝U1 13b -12 4b 96S^ R 2NE = ?EN?D 2= ?(3 ) ? (4 ): 2 2 b 4 +b b(4 +b) ••• b 2 4b -48=0, b=彳 16 448 = 2 13 _2. 10分15分2 --b r 2.13 -2 , b 2 = -2*3-2 (不合题意,舍去). •此时点T 2的坐标为(0, 2,13-2 ). 2*2用),T 2 (0, 2/13-2 )符合条件.…20分 3综上所述,在y 轴上存在点「(0 15 (1)如答图3①.答图3(3) 如答图3②理由如下: •••点O 是正方形 ABCD 的对角线的交点,•••点O 是正方形 ABCD 的对称中心,• AP=CQ ,EB=DF ,在△ AOP 和厶 EOB 中,•••/ AOP=90° -Z AOE ,/ BOE=90° -Z AOE ,•••/AOP= Z BOE ,v OA=OB ,Z OAP=Z EBO=45°, •••△ AOP ◎△ BOE ,• AP=BE=DF=CQ , 设O到正方形ABCD 一边的距离为d ,1 1 12 (AP+AE ) d=2 ( BE+BQ ) d=㊁(CQ+CF )边形BEOQ= S 四边形CQOF =S 四边形DPOF ,•直线EF 、OM 将正方形ABCD 面积四等分;答图4(3)存在,当BQ = CD=b 时,PQ 将四边形ABCD 的面积二等分.理由如下:如答图 4,延长BA 至点E ,使AE=b ,延长CD 至点F ,使DF =a ,连接EF. • BE // CF , BE=CF , •四边形BCFE 为平行四边形, ■/ BC=BE=a+b ,•平行四边形 BCFE 为菱形•连接BF 交AD 于点M , 则厶 MAB ◎△ MDF , • AM = DM.即点P 、M 重合••••点P 是菱形EBCF 对角线的交点, 在 BC 上截取 BQ=CD = b ,贝U CQ=AB=a.设点P 到菱形EBCF 一边的距离为d.连接CP ,即 S 四边形ABQP =S 四边形PQCD .•当BQ=b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分d=2(PD + DF ) d ,• S 四边形 AEOP =S 四--& ABP +S ^QBP = 2(AB+BQ)d= (CQ+CD)d=S ^CQP +S ^oDP ,。
人教版 九年级数学上册 竞赛专题:圆与圆的位置关系(含答案)

人教版 九年级数学上册 竞赛专题:圆与圆的位置关系(含答案)【例1】 如图,大圆⊙O 的直径a AB =cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2.【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B , ⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A.c a b +=2 B.c a b +=2C.b ac 111+= D.ba c 111+=【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ;(2)CB AC PC PB PA ∙+=∙2.B【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y . (1)求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)若以D 为圆心,21为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积.【例6】 如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求NCBN的值. PBCDADCPBA【能力与训练】1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.(第1题图)(第2题图)(第3题图)3.如图,半圆O的直径AB =4,与半圆O 内切的动圆O 1与AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x 的函数关系是_________________.(要求写出自变量x 的取值范围)4.已知直径分别为151+和315-的两个圆,它们的圆心距为115-,这两圆的公切线的条数是__________.5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是( ) A.60° B.65° C.70° D.75°6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为( )A.52:3B.3:52C.1:52D.2:5 (第5题图) (第6题图) (第7题图)N PB A CD E7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是( )A.65B.10C.610D.1339208.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(222=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是( )A.外切B.内切C.外离D.外切或内切9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .(1)证明:DO 1⊥AC ;(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论.图1 图210.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .(1)求证:△BCP ∽△HAP ;(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .11.如图,已知⊙B ,⊙C 的半径不等,且外切于点A ,不过点A 的一条公切线切⊙B 于点D ,切⊙C 于点E ,直线AF ⊥DE ,且与BC 的垂直平分线交于点F .求证:BC =2AF .12.如图,AB 为半圆的直径,C 是半圆弧上一点.正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 得内切圆圆心O ,且点E 在半圆弧上.(1)若正方形的顶点F 也在半圆弧上,求半圆的半径与正方形边长的比;(2)若正方形DEFG 的面积为100,且△ABC 的内切圆半径4 r ,求半圆的直径AB .1.相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,这两圆的圆心距为_______.2.如图,⊙O 过M 点,⊙M 交⊙O 于A ,延长⊙O 的直径AB 交⊙M 于C .若AB =8,BC =1,则AM =_______.D AP(第2题图) (第3题图) (第4题图)3.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为___________cm .4.如图,已知PQ =10,以PQ 为直径的圆与一个以20为半径的圆相切于点P .正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点Q .若AB =n m +,其中m ,n 为整数,则=+n m ___________.5.如图,正方形ABCD 的对角线AC ,BD 交于点M ,且分正方形为4个三角形,⊙O 1,⊙O 2,⊙O 3,⊙O 4,分别为△AMB ,△BMC ,△CMD ,△DMA 的内切圆.已知AB =1.则⊙O 1,⊙O 2,⊙O 3,⊙O 4所夹的中心(阴影)部分的面积为( )A.(4)(316π--B. (34π-C.(4)(34π-- D. 416π-(第5题图) (第6题图) (第7题图)6.如图,⊙O 1与⊙O 2内切于点E ,⊙O 1的弦AB 过⊙O 2的圆心O 2,交⊙O 2于点C ,D .若AC :CD :BD =2:4:3,则⊙O 2与⊙O 1的半径之比为( )A.2:3B.2:5C.1:3D.1:47.如图,⊙O 1与⊙O 2外切于点A ,两圆的一条外公切线与⊙O 1相切于点B ,若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为( )A.2:5B.1:2C.1:3D.2:38.如图,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线,交⊙O 2于点C ,过点B 作两圆的割线分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P . (1)求证:PA PE PC PD ∙=∙(2)当AD 与⊙O 2相切且P A =6,PC =2,PD =12时,求AD 的长.DA9.如图,已知⊙O 1和⊙O 2外切于A ,BC 是⊙O 1和⊙O 2的公切线,切点为B ,C .连接BA 并延长交⊙O 1于D ,过D 点作CB 的平行线交⊙O 2于E ,F . (1)求证:CD 是⊙O 1的直径;(2)试判断线段BC ,BE ,BF 的大小关系,并证明你的结论.10.如图,两个同心圆的圆心是O ,大圆的半径为13,小圆的半径为5,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,AD ,BE 相交于点G ,连接BD . (1)求BD 的长;(2)求2ABE D ∠+∠的度数;(3)求BGAG的值.11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙O 1与△BCH 的外接圆⊙O 2相交于点D ,延长AD 交CH 于点P .求证:P 为CH 的中点.12.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点,以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ,以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A ,⊙B 相切.参考答案例121a 6提示:连接14QP CP ==必过点O ,则34O O ⊥AB ,设⊙3O ,⊙4O 的半径为xcm ,在Rt △31O O O 中,有222a a a x =x 424⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x= a 6.例2 D 提示:连接AB ,1AA ,1BB ,作2AB ⊥1BB ,则22222ABAB BB =+,即()()2222a b =b a AB ++-,得22211=A B 4ab AB =,同理,211A 4ac C =,2114bc C B =,由111111=A B AC C B +,故.例3 提示:⑴过P 点作两圆的公切线. ⑵即证PA PB PC PD ∙=∙. 例4 12B OC B A C ∠=∠,1112BO D BAC BO C ∠=∠=∠,则1O D 为1BO C ∠的平分线,又11O B O C =,故1O D BC ⊥.例5 ⑴过D 作DQ ⊥BC 于Q ,则BQ=AD=1,AB=DQ=2,CQ=,故B()1y=13x 2=4x2+-⨯-(0<x<3).⑵分两种情况讨论:①当⊙P 与⊙D 外切时,如图1,QC=2,PC=x ,QP= 2x -,PD=x+12,DQ=2,在Rt △DQP 中,由()22212x 2=x+2⎛⎫-+ ⎪⎝⎭得,31x=20,3149y=4=2020-.②当⊙P 与⊙D 内切时,如图2,PC=x ,QC=2,PQ=x-2,PD=x-12,DQ=2,在Rt △DPQ 中,由()2221x 22=x-2⎛⎫-+ ⎪⎝⎭得,31x=12,3117y=4=1212-. 例6 就图1给出解答:连接CP 并延长交AB 于点Q ,连接BP ,得∠BPC90°,又22QAQP CQ QB =∙=,得AQ=QB=12AB ,在Rt △CQP 中,2214BQ QP CQ QP BC CP CQ CP ∙===∙.过Q 作QM ∥BC 交AN 于M ,则MQ=12BN .由△MQP ∽△NCP ,得14MQ QP CN CP ==,故BN NC=2142MQ MQ = .A 级1.12或32 2.2 3.y =214x -+x (0<x <4) 4. 3条 5.D 6.D 7.B 8.D 9.提示:(1)连结AB ,A 1O ,并延长交⊙1O 于E ,连结CE . (2)结论仍然成立. 10.(1)略 (2)提示:设AP =3t ,由BC ·BH =BP ·BA ,BH =2BC ,BC t .易证△HAP ∽△BAH ,得HA =t ,故HABC=11.连结BD ,CE ,作BM ⊥CE 于M ,作HN ⊥CE 于N ,则BM ∥HN .∵H 是BC 的中点,故N 是CM 的中点,∴CN =12CM =12(CE -EM )=12(CE -BD ),而AH =BH -AB =12BC -AB =12 (AB +AC ) –AB =12(AC -AB ),因此CN =AH .由CE ⊥DE ,AF ⊥DE ,得CE //AF ,故∠NCH =∠HAF ,又∠CNH =∠AHF =90°,得△CNH ≌△AHF ,从而BC =2CH =2AF .12. (l :2 提示:由题意,设正方形边长为l ,则22212Rl l ⎛⎫=+ ⎪⎝⎭,得R :l :2.由2ED =AD ×DB ,DE =10,得AD ×DB =l 00.设AC 与内切圆交点S ,CB 与内切圆交点H ,设AD =r ,DB =100x.AB =x +100x, AS =AD =x ,BH =BD =100x.又△ABC 为直角三角形。
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

(第 3 题图)
(第 4 题图)
4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在 AB 上滚动,切点为 T,⊙O 交 AO,BO 于 M,N,则 弧 MTN( )
A.在 0°到 30°变化
B.在 30°到 60°变化
C.保持 30°不变
D.保持 60°不变
5.如图,AB 是⊙O 的直径,且 AB=10,弦 MN 的长为 8.若 MN 的两端在圆上滑动时,始终与 AB 相交, 记点 A,B 到 MN 的距离分别为 h1,h2,则∣h1-h2∣等于( )
A
C
(P) O
D
B
①
D
A
C P O
B D ①
D
C
PB O
D ①
O
C A
P
①
B
O
C
P
A (B)
①
O
(D)C
A(B)
P ①
(2)已知⊙O 的半径为一定值 r,若点 P 是不在⊙O 上的一个定点,请你过点 P 任作一直线交⊙O 于 不重合的两点 E,F. PE·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文 字叙述出来.
(第 7 题图)
(第 8 题图)
8.如图,设 H 是等腰三角形 ABC 两条高的交点,在底边 BC 保持不变的情况下让顶点 A 至底边 BC 的 距离变小,这时乘积 S△ABC·S△HBC 的值变小、变大,还是不变?证明你的结论.
9.如图,在平面直角坐标系 xOy 中,抛物线 y 1 x 2 4 x 10 与 x 轴的交点为点 A,与 y 轴的交点 18 9
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
【例 1】 如图,已知 P 为正方形 ABCD 的外接圆的劣弧A⌒D上任意一点.求证: PA PC 为定值. PB
初三数学竞赛试卷答案

一、选择题1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C解析:绝对值表示一个数与0的距离,因此绝对值最小的数是0。
2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 2答案:A解析:根据不等式的性质,两边同时加上或减去同一个数,不等号的方向不变。
3. 已知一元二次方程x^2 - 5x + 6 = 0,则其判别式Δ等于()A. 1B. 4C. 9D. 16答案:B解析:一元二次方程的判别式Δ = b^2 - 4ac,代入a = 1, b = -5, c = 6,得Δ = (-5)^2 - 4×1×6 = 25 - 24 = 1。
4. 在直角坐标系中,点P(2, 3)关于y轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:B解析:关于y轴对称的点,其横坐标互为相反数,纵坐标相同。
5. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = x^3D. y = x^4答案:C解析:奇函数满足f(-x) = -f(x),代入选项中只有y = x^3满足条件。
二、填空题6. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。
答案:37解析:利用平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 2×6 = 25 - 12 = 13。
7. 在等腰三角形ABC中,底边BC = 8,腰AB = AC = 10,则顶角A的度数为______。
答案:60°解析:在等腰三角形中,底边上的高将底边平分,因此顶角A的度数为60°。
8. 若等比数列的前三项分别为2,4,8,则该数列的公比q为______。
人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值.【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变C.等分DB⌒ D.随C 点的移动而移动【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.P AB CDAPB【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.【能力训练】1.如图,点A ,B 是双曲线xy 3上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则BOACE HG D A=+21S S _______.(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( ) A .在平分AB 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动(第5题图) (第6题图) 6.如图,A ,B 是函数xky =图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.A ABCDEFAB'(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.⑥⑤④③②①P(B )A PB9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).P D CB A A折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + )A. ∠1+∠2=900°-2α B. ∠1+∠2=1080°-2α C. ∠1+∠2=720°-α D. ∠1+∠2=360°-21α(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( )A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A.5B.6C.7D.8(第5题图) 12GF EDCHBAB6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.NKMB AC HCBA(第9题图) (第10题图) 10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN =DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OFPF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •P A +PC •AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×()23=6.故P A 2+PB 2+PC 2为定值.A 级 1.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273 提示:1+3+5=9是等边三角形的高. 3.r 2提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP •2a ,DP •a =BP •a +AP •2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a +2a ),从而21AP BPCP DP+=-+为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PMEC PC=,即()2112x x EC--=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989)⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 185. ⑶即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +2=244414255=.∴t = 4145-2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.由于224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4145-2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=12AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.。
九年级数学竞赛题(含答案)

初三数学竞赛题(含答案)(全卷满分120分考试时间90分)姓名_________班级________指导教师_________ 得分_________一 .单项选择题(每题6分,共30分)1.22016-22017=( )A.-22016B.-2C. 22016D.22.若关于x 的多项式x 2-6x+m 2是一个完全平方式,则m=( ) A. 3 B. ±3 C. 9 D. ±93.圆锥的侧面展开是圆心角为90°的扇形,则圆锥的母线与底面半径之比为() A . 6:1 (B ). 4:1 (C ).3:1 (D ).2:14.如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形AB CD 外部的点A 1、D 1处,则阴影部分图形的周长为() A.15 B.20 C.25 D.305.如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF和EG .记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,n = ( )A.3B. 4C.6D.8第4题图第5题图二 .填空题(每题6分,共30分)6.已知2cos 2β+3sin β-3=0,则锐角β=________. 7.化简:324324--+=________8.(1+2+3+…+99)(2+3+4+…+100)-(1+2+3+…+100)(2+3+4+…99)=________. 9.已知关于x 的分式方程111=--++x kx k x 的解为负数,则k 的取值范围是_______. 10.如图,点A 1,A 2依次在的图象上,点B 1,B 2依次在x 轴的正半轴上,若ΔA 1OB 1 ,ΔA 2B 1B 2均 为等边三角形,则点B 2的坐标为 . 三.解答题(每题20分,共60分)11.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?BCAD12. 如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.13.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.数学竞赛答案1.A2.B3.D4. D5. C6.3007.28.1009. k>1/2, 且k≠1 10.(26,0)11. 解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,12. 解:(1)∵顶点A的横坐标为x==1,且顶点A在y=x-5上,∴当x=1时,y=1-5=-4,∴A(1,-4).(2)△ABD是直角三角形.将A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,∴c=-3,∴y=x2-2x-3,∴B(0,-3)当y=0时,x2-2x-3=0,x1=-1,x2=3∴C(-1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x-5交y轴于点A(0,-5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线并交于点C设P(x1,x1-5),则G(1,x1-5)则PC=|1-x1|,AG=|5-x1-4|=|1-x1|PA=BD=3由勾股定理得:(1-x1)2+(1-x1)2=18,x12-2x1-8=0,x1=-2,4∴P(-2,-7),P(4,-1)存在点P(-2,-7)或P(4,-1)使以点A.B.D.P为顶点的四边形是平行四边形.第12题图第13题图S△AEM =.13.(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE =,∴BE=6-=;(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=-+x=-(x-3)2+,∴AM=-5-CM ═(x-3)2+,∴当x=3时,AM 最短为,又∵当BE=x =3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE ==4,此时,EF⊥AC,∴EM ==,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛一、 填空题(1~5题每小题6分,6~10题每小题8分,共70分)1. 在2002当中嵌入一个数码组成五位数2002,若这五位数能被7整除,则嵌入的数码“”是________________。
【解析】 2或9 设“”中数字为a ,那么五位数2002的数值为210000100220002100a a ⨯+⨯+=+⨯,因为2002除以7的余数为3,所以,要使得五位数2002能被7整除,那么100a ⨯除以7的余数必须为4,而0,100,200,300,,900中,被7除余数为4的只有200和900,即2a =或者9,所以,嵌入的数码“”是2或92. 若实数a 满足32a a a <<,则不等式1x a ax +>-解为_____________。
【解析】 11ax a-<+ 已知32a a a <<,即232(1)0(1)0a a a a a a a a ⎧-=-<⎪⎨-=-<⎪⎩ (1) 如果0a >,上不等式组等价于201010a a a ⎧>⎪-<⎨⎪-<⎩即,0111a a a >⎧⎪>⎨⎪-<<⎩,这是一个矛盾不等式组,所以这种情况应舍去。
(2) 如果0a <,上不等式组等价于201010a a a ⎧<⎪->⎨⎪->⎩,即0111a a a a <⎧⎪<⎨⎪<->⎩或者,解得1a <-,此时,不等式1x a ax +>-等价于(1)1a x a +>-,因为1a <-,即10a +<,那么(1)1a x a +>-等价于11a x a -<+,所以,原不等式的解为11ax a-<+。
3. 如图,一张矩形纸片沿BC 折叠,顶点A 落在点'A 处,第二次过'A 再折叠,使折痕DE BC 若2AB =.3AC =,则梯形BDEC 的面积为______________。
【解析】 9EC A'DB A由纸片的折叠方式知,'A BC ABC ∆≅∆,所以,过A 点到BC 的高等于过'A 点到BC 的高,即ABC ∆中BC 上的高与ADE ∆中DE 上的高的比例为1:2=,又因为DE BC 所以ABCADE ∆∆,由相似三角形的性质得ABC ∆的面积:ADE ∆的面积21124⎛⎫== ⎪⎝⎭,从而,梯形BDEC 的面积为ABC ∆的面积的3倍,已知2AB =,3AC =,所以,ABC ∆的面积为12332⨯⨯=从而梯形BDEC 的面积为339⨯=。
4. 已知关于正整数n 的二次式2(y n an n =+为实常数),若当且仅当5n =,y 最小值,则实数a 的取值范围是_________________.【解析】 119a -<<-5. 如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点10,0A ()、(0,10)B 、(10,0)C -、(010)D -,,则该正方形内及边界上共有_____________【解析】 221已知(10,0)A 、(0,10)B ,所以,直线AB 的方程为10y x =-+在ABO ∆内,当一个点的横坐标为1时,如果这个点在直线AB 上,那么这个点的纵坐标为1109-+=,所以,只要横坐标为1,纵坐标大于等于0小于等于9的点都在ABO ∆的内部或者AB 边或者AO 边上,共10个点,显然这些点均符合题意。
同理,当一个点的横坐标为2 时,如果这个点在直线AB 上,那么这个点的纵坐标为2108-+=,所以,只要横坐标为2,纵坐标大于等于0小于等于8的点都在ABO ∆的内部或者AB 边或者AO 边上,共9个点,显然这些点均符合题意。
当一个点的横坐标为9时,如果这个点在直线AB 上,那么这个点的纵坐标为9101-+=,所以,只要横坐标为9,纵坐标大于等于0小于等于1的点都在ABO ∆的内部或者AB 边或者AO 边上,共2个点,显然这些点均符合题意。
当一个点的横坐标为10时,只有(10,0)点符合题意,所以,在ABO ∆内共有1098111555++++=⨯=个点符合题意,由正方形的对称性知,BOC ∆、DOC ∆、AOD ∆中各有55个点符合题意,显然,(0,0)点也符合题意。
综上,符合题意的点共有5541221⨯+=个。
6. 如图,P 为ABC ∆形内一点,点D 、E 、F 分别在BC 、CA 、AB 上,过A 、B 、C 分别作PD 、PE 、PF 的平行线,交对边或对边的延长线于点X 、Y 、Z 若14PD PA =,13PE BY =,则PFCZ=________________。
ZY ECF PDBXA【解析】5127. 若ABC ∆,且中线AD 、BE 的长分别为1和2,则中线CF 的长为____________________。
【解析】8. 计算:222222221299110050002200500010050009999005000k k k +++++=-+-+-+-+___________ 【解析】 999. 若正数x 、y 、z 满足()4xyz x y z ++=,则()()x y y z ++的最小可能值为______________。
【解析】 4因为x 、y 、0z >,则()()()x y y z xy yy xz yz x y z y yz ++=+++=+++, 令()x y z y a ++=,yz b =,则()()()x yy z xy yy xzyz x y z yyz a b ++=+++=+++=+,又因为22a b+≥===,所以a b +的最小值为4,即()()x y y z ++的最小值为4。
10. 若关于x13c =恰有两个不同的实数解,则实数a 的取值范围______。
【解析】 0a ≥或316a =-y =2y =,那么原方程等价于2110(1)23y y a +--=y =,所以,211023y y a +--=必有一个实数解,未完二、(16分)已知p 为质数,使二次方程222510x px p p -+--=的两根都是整数,求出p 的所以可能值。
【解析】 因为已知整系数二次方程有整数根,所以2244(51)4(51)p p p p ∆=---=+为完全平方,从而,51p +为完全平方,,令251p n +=,注意到2p ≥,故4n ≥,且n 为整数,于是5(1)(1)p n n =+-则1n +、1n -中至少有一个是5的倍数,即51n k =± (k 为正整数),因此,25125101p k k +=±+,(52)p k k =±,由p 为质数,521k ±>,知1k =,3p =或7;当3p =时,已知方程变成2670x x --=,解得11x =-,27x =;当7p =时,已知方程变成214130x x -+=,解得11x =,213x =,所以3p =或7。
三、(16分)已知XYZ ∆是直角边长为l 的等腰直角三角形90Z ∠=(),它的3个顶点分别在等腰(90)Rt ABC C ∆∠=的三边上,求ABC ∆直角边长的最大可能值。
【解析】 (1)如图BX顶点Z 在斜边AB 上,取XY 的中点M ,选CM 、ZM 、CZ 并作边AB 上的高CN ,则12CZ CM MZ XY ≤+=CZ ≤,所以CN ≤,2CA =≤(2)如图顶点Z 在直角边(CA 或)CB 上,由对称性,不妨设Z 在CA 上,设CX x =,CZ y =,并过Y 作YH CA ⊥于H ,易证ZYH XZC ∆≅∆,得HZ CX x ==,HY CZ y ==,又显然AHY ∆为等腰三角形,则AH y =,设AC b =,则2y x b +=,则2x b y =-,在CXZ ∆中,由勾股定理有222(2)1y b y +-=,即225410y by b -+-=,因为y 为实数,则2221620(1)2040b b b ∆=--=-≥,b ≤,当b =时,5y =,5x =综合(1)、(2)知,b 四、(18分)平面上有7个点,他们之间可以连一些线段,使7点中的任意3点必存在2点有线段相连,问至少要连多少条线段?证明你的结论。
【解析】(1) 若7个点中,有一点孤立(即它不与其他点连线),则剩下6点每2点必须连线,此时至少要连15条。
(2) 若7个点中,有一点只与另一点连线,则剩下5点每2点必须连线,此时至少要连11条。
(3) 若每点至少引出3条线段,则至少要连732⨯条线段,由于线段数为整数,故此时至少要连11条。
(4) 若每点至少引出2条线段,且确有一点(记为A )只引出2条线段AB 、AC ,则不与A 相连的4点每2点必须相连,要连4362⨯=条,由B 引出的线段至少有2条,即除BA 外还至少xB X有一条,因此,此时至少要连6219++=条,图中所给出的是连++=条线的情况。
6219综合(1)~(4),至少要连9条线段,才能满足要求。