热处理 第三章
第三章 食品的热处理和杀菌
酵母、霉 菌、酶
2、罐头杀菌工艺条件
罐头杀菌工艺条件制定的原则:在保证罐藏食品安 全性的基础上,尽可能地缩短加热杀菌的时间,以 减少热力对食品品质的影响,
正确合理的杀菌条件:既能杀灭罐内的致病菌和能 在罐内环境中生长繁殖引起食品变质的腐败菌,使 酶失活,又能最大限度地保持食品原有的品质。
t1 t2 t3 p
二、罐藏技术的历史沿革
Nichols Appert(法): 罐藏技术(1804); 《动物和植物物质的永久保存法》(1810); “阿培尔之家“(1812):世界上第一家罐头厂
Louis Paster (法):微生物作用导致变质(1864); 加热杀菌理论(1873)
Bigelow和Esty(20世纪初期): 食品的pH与细菌芽孢 的耐热性之间的关系
金属罐的清洗:人工清洗、机械清洗 玻璃瓶的清洗和消毒 ➢ 人工清洗:回收的旧瓶子:40~50 ºC、浓度2%~
3%的NaOH溶液浸泡5~10min;洗涤剂 ➢ 机械清洗:洗瓶机(喷洗式、浸喷组合式) ➢ 瓶盖:先用温水冲洗,烘干后以75%的酒精消毒。
2、罐盖的打印 3、空罐的钝化处理
定义:将空罐放在化学溶液中作短时间浸 泡或以化学溶液喷射,使其表面产生一 保护薄层,使锡的活泼性变得迟钝而不 易与食品发生作用。
配比:重铬酸钠 0.8kg NaOH 2.0kg 土耳其红油 300ml Na3PO4 0.9kg 自来水100kg
(二)原料选择及预处理
果蔬类原料:选择、分选、洗涤、去皮与修整 、热烫与漂洗、抽空处理
禽畜类原料:选择、解冻、分割、剔骨、整理 、预煮、油炸
水产类原料:选择、解冻、清洗、处理、盐渍 、脱水
热挤压:是指食品物料在螺杆挤压下因受高温、高压、高剪 切力作用,被压缩并形成熔融状态,然后被挤出模具孔, 因压力骤降,水分急骤闪蒸,产品膨胀,从而形成一定形 状和组织形态的产品。
第三章食品的热处理与杀菌
(2)热处理前细菌芽孢的培育和经历
生物有抵御周围环境的本能。食品污染前腐败菌 及其芽孢所处的生长环境对他们的耐热性有一定 影响
在含有磷酸或镁的培养基种生长出的芽孢具有较 强的耐热性;在含有碳水化合物和氨基酸的环境 中培养芽孢的耐热性很强;在高温下培养比在低 温下喂养形成的芽孢的耐热性要强
因此,弄清罐头腐败原因及其菌类是正确 选择合理加热和杀菌工艺,避免贮运中罐头腐 败变质的首要条件。
1. 食品pH值与腐败菌的关系
各种腐败菌对酸性环境的适应性不同,而各种食品 的酸度或pH值也各有差异。
根据腐败菌对不同pH值的适应情况及其耐热性, 罐头食品按照pH不同常分为四类:低酸性、中酸 性、酸性和高酸性
不过在低酸性食品中尚有存在抗热性更强的平 酸菌如嗜热脂肪芽孢杆菌,它需要更高的杀菌 工艺条件才会完全遭到破坏。
另外,由于中酸性食品的杀菌强度要求与低酸 性食品的要求相同,因此它也被并入低酸性食 品一类。
食品严重污染时某些腐败菌如酪酸菌和凝结芽 孢杆菌在pH低于3.7时仍能生长,因此pH3.7 就成为这两类食品的分界线。
①低酸性食品胀罐时常见的腐败菌大多数属于
专性厌氧嗜热芽孢杆菌,如嗜热解糖梭状芽孢杆 菌,它最适生长温度为55℃,温度低于32℃生长 很缓慢,因此只要温度不高,就不会迅速繁殖, 但一旦处于高温条件下,就会导致罐头腐败变质。
厌氧嗜温芽孢菌,如肉毒杆菌、生芽梭状芽孢杆 菌等。
②酸性食品胀罐时常见的有专性厌氧嗜温芽孢杆菌如巴 氏固氮芽孢杆菌、酪酸梭状芽孢杆菌等解糖菌,常见 于梨、菠萝、番茄罐头中。
③高酸性食品胀罐时常见的有小球菌以及乳杆菌、明串 珠菌等非芽孢菌。
(2)平酸败坏
①现象:外观正常,内容物变质,呈轻微或严重酸味, pH可能可以下降到0.1-0.3。
3第三章 食品的热处理和杀菌
FOOD TECHNOLOGY
1. 食品pH值与腐败菌的关系
各种腐败菌对酸性环境的适应性不同,而各种食品的酸 度或pH值也各有差异。根据腐败菌对不同pH值的适应情 况及其耐热性,罐头食品按照pH不同常分为四类:
低酸性 中酸性 pH值>5.0 pH值4.6-5.0
酸
性
pH值3.7-4.6
pH值<3.7
•
酸性食品
嗜热酸芽孢杆菌
能在pH4或略低的介质中生长,最 适生长温度45℃,最高生长温度 56-60℃。
FOOD TECHNOLOGY
③ 黑变或硫臭腐败
在细菌的活动下,含硫蛋白质分解并产生H2S气体,与 罐内壁铁发生反应生成黑色硫化物(FeS),沉积于罐内 壁或食品上,以致食品发黑并呈臭味。 原因是致黑梭状芽孢杆菌的作用,只有在杀菌严重不足 时才会出现。
0 0 0
2500个平酸菌/10克 糖
95.8 75 54.2
原始菌数和玉米罐头杀菌效果的关系表
FOOD TECHNOLOGY
2. 微生物耐热性特征
① 热力致死速率曲线
微生物及其芽孢的热处理死亡数是按指数递减或按对数 循环下降的。 若以纵坐标为物料单位值内细胞数或芽孢数的对数值, 以横坐标为热处理时间,得到一直线,即热力致死速率 曲线。
第三章 食品的热处理和杀菌
第一节 概述 一.热加工的方法
1.
FOOD TECHNOLOGY
灭菌
灭菌是指将食品中所有微生物破坏。 至少需要在121℃下保持15分钟。 多数食品并不适合灭菌操作。
2.
商业无菌
商业无菌的杀菌程度是使所有的病原性微生物、产生 毒素的微生物以及其他可能在正常的存储条件下繁殖 并导致食品腐败的微生物完全被破坏。 一般在100℃下保持15分钟。 商业无菌处理过的产品货架寿命一般在2年以上。
第三章 食品的热处理和杀菌
9³105 9³104 9³103
105 104 103
5 4 3
4
5 6 7
103
102 101 100
9³102
9³101 9 0.9
102
101 100 0.1
2
1 0 -1
该实验的假设前提是:起始样品中微生物的细胞浓度为106个/ml,每加热1min有90%的细胞死亡, 加热温度为121℃
Survivor Curve
为什么细菌的芽孢比营养细胞更耐热?
蛋白质不同 不同种类的蛋白质具 水分含量及水分
活度不同
(1)芽孢中的水分含 量较低 (2)芽孢中的水大部 分为结合水
有不同的热凝固温度
微生物的污染量
C
B
D
A Time
图3-1 微生物的不同生长阶段
2.热处理温度和时间
热处理温度越高则杀菌效果 越好 加热时间延长,有时并不能
(二)热杀菌食品的pH分类
根据腐败菌对不同pH值的适应情况及其耐热性,(罐头) 食品按照pH值不同常分为四类:低酸性、中酸性、酸性 和高酸性。
酸度 低酸 性 中酸 性 酸性
pH值
食品种类
常见腐败 菌
杀菌要求 高温杀菌 105~121℃
> 5.0 虾、蟹、贝类、禽、牛 嗜热菌、嗜
肉、猪肉、火腿、羊肉、温厌氧菌、 蘑菇、青豆 嗜温兼性厌 蔬菜肉类混合制品、汤 氧菌
保藏热处理的代表产品
罐头食品
金属罐 玻璃瓶 铝箔或复合塑料薄膜
罐头食品的特点
可直接食用或开袋即食
货架期很长 风味、色泽、质构、营养成分受到影响 带有加热后的蒸煮味
适合于加工需要加热烧熟的食品原料
第三章氧化及热处理
25
2.1 2.1热氧化方法
1.干氧氧化: 1.干氧氧化:氧分子与硅直接反应生成二氧化硅 干氧氧化
Si (固态) + O(气态) → SiO (固态) 2 2
∆
温度:900-1200℃, 温度:900-1200℃,氧化速度慢 2.水汽氧化: 2.水汽氧化:高温下水汽与硅生成二氧化硅 水汽氧化
Si(固态) H 2O(气态) SiO2 + + 2 → (固态) 2H(气态)
18
Shallow Trench Isolation (STI)
STI
19
绝大多数晶园表面被覆盖了一层足够厚的氧化层来 绝大多数晶园表面被覆盖了一层足够厚的氧化层来 一层足够厚的氧化层 防止从金属层产生的感应,这时的SiO 称为场氧化 防止从金属层产生的感应 , 这时的 SiO2 称为 场氧化 物。 如图所示。 如图所示。
28
无论是干氧或者湿氧工艺,二氧化硅的生长都要消 无论是干氧或者湿氧工艺, 耗硅,如图所示。硅消耗的厚度占氧化总厚度的0.44, 耗硅,如图所示。硅消耗的厚度占氧化总厚度的 , 这就意味着每生长 每生长1µm的氧化物,就有 的氧化物, 这就意味着每生长 的氧化物 就有0.44µm的硅 的硅 消耗( 湿氧化略有差别)。 消耗(干、湿氧化略有差别)。
17
4.电容介质 电容介质
二氧化硅介电常数大, 二氧化硅介电常数大,为3~4,击穿耐压教 ~ , 高,电容温度系数小
5.器件隔离 器件隔离
集成电路的隔离有PN结隔离和介质隔离两种 结隔离和 两种,SiO2用于 集成电路的隔离有 结隔离 介质隔离两种 隔离 用于 介质隔离. 介质隔离 漏电流小,岛与岛之间的隔离电压大 岛与岛之间的隔离电压大,寄生电容小 漏电流小 岛与岛之间的隔离电压大 寄生电容小
金属学及热处理课后习题答案第三章
⾦属学及热处理课后习题答案第三章第三章⼆元合⾦的相结构与结晶3-1 在正温度梯度下,为什么纯⾦属凝固时不能呈树枝状⽣长,⽽固溶体合⾦却能呈树枝状成长?答:原因:在纯⾦属的凝固过程中,在正温度梯度下,固液界⾯呈平⾯状⽣长;当温度梯度为负时,则固液界⾯呈树枝状⽣长。
固溶体合⾦在正温度梯度下凝固时,固液界⾯能呈树枝状⽣长的原因是固溶体合⾦在凝固时,由于异分结晶现象,溶质组元必然会重新分布,导致在固液界⾯前沿形成溶质的浓度梯度,造成固液界⾯前沿⼀定范围内的液相其实际温度低于平衡结晶温度,出现了⼀个由于成分差别引起的过冷区域。
所以,对于固溶体合⾦,结晶除了受固液界⾯温度梯度影响,更主要受成分过冷的影响,从⽽使固溶体合⾦在正温度梯度下也能按树枝状⽣长。
3-2 何谓合⾦平衡相图,相图能给出任⼀条件下合⾦的显微组织吗?答:合⾦平衡相图是指在平衡条件下合⾦系中合⾦的状态与温度、成分间关系的图解,⼜称为状态图或平衡图。
由上述定义可以看出相图并不能给出任⼀条件下合⾦的显微组织,相图只能反映平衡条件下相的平衡。
3-3 有两个形状、尺⼨均相同的Cu-Ni 合⾦铸件,其中⼀个铸件的W Ni =90%,另⼀个铸件的W Ni =50%,铸后⾃然冷却。
问凝固后哪⼀个铸件的偏析严重?为什么?找出消除偏析的措施。
答:W Ni =50%铸件凝固后偏析严重。
解答此题需找到Cu-Ni 合⾦的⼆元相图。
原因:固溶体合⾦结晶属于异分结晶,即所结晶出的固相化学成分与母相并不相同。
由Cu-Ni 合⾦相图可以看出W Ni =50%铸件的固相线和液相线之间的距离⼤于W Ni =90%铸件,也就是说W Ni =50%铸件溶质Ni 的k 0(溶质平衡分配系数)⾼,⽽且在相图中可以发现Cu-Ni 合⾦铸件Ni 的k 0是⼤于1,所以k 0越⼤,则代表先结晶出的固相成分与液相成分的差值越⼤,也就是偏析越严重。
消除措施:可以采⽤均匀化退⽕的⽅法,将铸件加热⾄低于固相线100-200℃的温度,进⾏长时间保温,使偏析元素充分扩散,可达到成分均匀化的⽬的。
热处理课件 第三章 钢的珠光体转变
二、珠光体的机械性能
图3-5 共析碳素钢的珠光体形成温度 对片层间距和团直径的影响
图3-6 共析碳素钢珠光体团的直径和 片层间距对断裂强度的影响
图3-7 共析碳素钢珠光体团的直径和 片层间距对断面收缩率的影响
珠光体团直径和片层间距越小,强度、硬度越高, 塑性也越好。
图3-8 共析碳素钢不同组织的应力-应变图
第三章 钢的珠光体转变
§3-1 珠光体的组织形态与性能特点
一、珠光体的组织形态 γ → P (α + Fe3C)
面心立方 体心立方 复杂斜方 0.77%C 0.0218%C 6.69%C 根据在铁素体基体上分布的渗碳体形状,珠光体 可分为片状珠光体和粒状珠光体。
图3-1 共析碳钢(0.8%C,0.76%Mn)的C曲线
(1) 珠光体:在A1~650℃范围内形成,层片较粗, 片层间距平均大于0.3μm,在放大400倍以上的光学 显微镜下便可分辨出层片;
(2) 索氏体:在650~600℃范围内形成,层片比 较细,片层间距平均为0.1~0.3μm,在大于1000倍的 光学显微镜下可分辨出层片;
(3) 屈氏体:在600~550℃范围内形成,层片很 细,片层间距平均小于0.1μm,即使在高倍光学显微 镜下也无法分辨出片层,只有在电子显微镜下才能 分辨开层片。
1-片状珠光体 2-粒状珠光体
在退火状态下,对于相同含碳量的钢料,粒状珠 光体的强度、硬度比片状珠光体低,塑性、切削加工 性和淬火工艺性等比片状珠光体好。
§3-2 珠光体转变的机理
γ → P (α + Fe3C) 面心立方 体心立方 复杂斜方 0.77%C 0.0218%C 6.69%C
一、珠光体的形核
图3-9 片状珠光体形核与长大过程示意图
第3章钢的热处理
化学热处理
渗碳 碳氮共渗 渗氮 氮碳共渗 渗其它非金属 渗金属 多元共渗 溶渗
三、热处理的原理
铁碳合金相图是确定热处理工艺的重 要依据。它是表示平衡状态下不同化学成 分的铁碳合金在不同温度时所具有的组织 和状态的图形。
热处理的过程
金属材料零件
加热至某一温度区间 保温
奥氏体组织
屈氏体组织
马氏体组织 索氏体组织 贝氏体组织
3、球化退火的应用范围为( A. 亚共析钢和合金钢件 C. 不能用于过共析钢
4. 比较正火与退火的异同点,生产中如何选用退火与正火?
一、淬火
1、淬火的概念和目的 淬火是将工件加热到奥氏体化后,保持一 定的时间,以适当方式冷却(水冷或油冷), 获得马氏体或贝氏体组织的热处理工艺 马氏体是碳或合金元素在α-Fe中的过饱 和固溶体,硬度较高,用M表示,马氏体中 含碳量越高,其硬度也越高。
工艺 特点
应用 范围
一、淬火
2、淬火方法和应用
一、淬火
2、淬火方法和应用 淬火开裂现象
一、淬火
3、钢的淬透性 淬透性是以在规定条件下钢试样淬硬深度 和硬度分布表征的材料特性。 淬硬深度是从淬硬的工件表面量至规定硬 度值(一般为550HV)处的垂直距离。 淬硬深度愈深,淬透性愈好。 影响钢淬透性的决定因素是马氏体临界冷 却速度。大多数合金元素(除钴外)降低钢的马 氏体临界冷却速度,因而能显著提高钢的淬透 性。
用于淬火返修件,消除淬火应力,细化 组织,防止重新淬火后变形或开裂。
练习
1、用锻、铸、方法制造的零件毛坯,为消除毛坯内应力,均匀 组织,改善切削加工性能,为后序工作做准备,常采用( A、调质 B、淬火 C、回火 D退火或正火 )
2、为了细化晶粒提高力学性能改善切削加工性,常对低碳钢件 进行的热处理是( A. 完全退火 ) B. 球化退火 ) B. 过共析钢和合金工具钢等 D. 以上都对 C. 正火 D. 淬火
《金属材料与热处理》第三章金属的塑性变形对组织性能
重冷塑性变形的金属,经1小时加热后能完全再结晶的 最低温度来表示。
最低再结晶温度:
T再=0.4T熔点 式中温度单位为绝对温度(K)。
8
学习情境三:金属的塑性变形对组织性能的影响 3.2
(3)再结晶温度影响因素:
1)变形程度 ➢2)金金属属再纯结度晶前:塑纯性度变越形高的, 最相低对再变结形晶量温称度为也预就先越变低形 度➢。3)预;加先热变速形度越大, 金属的晶体缺陷就越多, 组织越不 稳➢➢杂再定质结, 最和晶低合是再金一结元扩晶素散温(过度高程也熔, 需就点一越元定低素时;)间阻才碍能原完子成扩;散和晶 ➢界➢当提迁预高移先加, 可变热显形速著度度提达会高一使最定再低大结再小晶结后在晶,较最温高低度温再;度结下晶发温生度;趋于某 一➢高原稳纯始定度晶值铝粒。(越99粗.9大9,9再%结)最晶低温再度结越晶高温。度为80 ℃; ➢工业纯铝(99.0%)最低再结晶温度提高到290 ℃。
3
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、热加工晶粒大小控制措施
(1).控制较低的加工终了温度 (2).控制较大的变形程度 (3).控制较快的冷却速度
0
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、产生残余内应力 ➢定义:外力去除后,金属内部残留下来的应力。
产生原因:金属发生塑性变形时,内部变形不均匀, 位错、空位等晶体缺陷增多,会产生残余内应力。
➢1)宏观内应力 ➢2)微观残余应力 ➢3)晶格畸变应力
1
学习情境三:金属的塑性变形对组织性能的影响 3.2
3
学习情境三:金属的塑性变形对组织性能的影响 3.1
第一节 金属的塑性变形
食品工艺学-第三章+食品的热处理和杀菌
以热处理温度为横 坐标,以微生物全部杀灭 时间为纵坐标(对数值) 得到一条直线,即热力致 死时间曲线。
2. 热处理温度
❖热处理温度越高,杀死一定量腐败菌芽孢 所需要的时间越短。
图1 不同温度时炭疽菌芽孢的活菌残存数曲线
表2 热处理温度对玉米汁中平酸菌死亡时间的影响
3.热处理时介质或食品成分的影响
(1)酸度 pH ▪ 许多高耐热性的微生物,在中性时耐热性最强,
随着pH偏离中性的程度越大,死亡率越大 ▪ 对大多数芽孢杆菌来说,在中性范围内耐热性最
1. 罐头常见的腐败变质的现象
❖罐头食品贮运过程中常会出现胀罐、平盖 酸败、黑变和发霉等腐败变质的现象,此 外还有中毒事故。
(1)胀罐
❖ 原因 –微生物生长繁殖——细菌性胀罐 –食品装量过多或罐内真空度不够引起假胀— 物理性胀罐 –罐内食品酸度太高,腐蚀罐内壁产生氢气,引 起氢胀—化学性胀罐
❖ 出现细菌性胀罐的原因 –杀菌不足 –罐头裂漏
原料污染情况 新鲜度 车间清洁卫生状况 生产技术管理 杀菌操作技术要求 (3)罐头裂漏 (4)嗜热菌生长
(四)微生物耐热性参数
1. 热力致死时间曲线(TDT曲线) Thermal Death Time 热力致死时间用以表示将在一定环 境中一定数量的某种微生物恰好全部杀灭 所采用的杀菌温度和时间组合。
1. 污染微生物的种类和数量
(1)菌种与菌株
–菌种不同,耐热性不同 –同一菌种,菌株不同,耐热性也不同 –正处于生长繁殖的细菌的耐热性比它的芽孢弱 –各种芽孢中,嗜热菌芽孢耐热性最强,厌氧菌芽
孢次之,需氧菌芽孢最弱。 –同一种芽孢的耐热性也会因热处理前菌龄、培育
条件、贮存环境的不同而异
热处理前细菌芽孢的培育和生长
第三章钢的热处理
热处理是一种重要的加工工艺,在制造业被广泛应用。
在机床制造中约60-70%的零件要 经过热处理。
在汽车、拖拉机制造业中需热处理 的零件达70-80%。
模具、滚动轴承100%需经过热 处理。
总之,重要零件都需适当热处理 后才能使用。
2、热处理特点: 热处理区别于
其他加工工艺如铸造、压力加
工等的特点是只通过改变工件
的组织结构来改变性能,而不
铸造
改变其形状。
3、热处理适用范围:
只适用于固态下发生
相变的材料,不发生
固态相变的材料不能
轧制
用热处理强化。
4、热处理分类
根据加热、冷却方式及钢组织性能变化特点不同,将热处理
工艺分类如下: 普通热处理
退火 正火 淬火 回火
热处理 表面热处理
表面淬火—感应加热、火焰加热、 电接触加热等
等温 30-40 处理
贝
B上
550~350
半扩
羽毛状,短棒状Fe3C分布于 过饱和F条之间
40-50
等温 处理
氏 体
B下
350~MS
散型
竹叶状,细片状Fe3C分布于 过饱和F针上
50-60
等温 淬火
马 氏
M*板条 MS~Mf 无扩 板条状
体
M针
MS~Mf
散型 针状
第三章钢的热处理
50 淬火 60-65 淬火
二、钢在冷却时的组织转变
过冷奥氏体转变曲线
过冷奥氏体的转变方式有等温转变和连续冷却转变两种。
两种冷却方式 示意图
1——等温冷却 2——连续冷却
1、过冷奥氏体的等温转变曲线
过冷奥氏体的等温转 变图是表示奥氏体急 速冷却到临界点A1 以 下在各不同温度下的 保温过程中转变量与 转变时间的关系曲线. 又称C 曲线、S 曲线 或TTT曲线。
第三章金属材料和热处理-pdf
第三章金属材料及热处理金属材料是现代机械工业使用最广泛的材料,品类繁多,性能各不相同,合理选用金属材料和正确运用热处理方法,可以充分发挥金属材料的机械性能,提高产品的质量。
金属可以分为黑色金属和有色金属,黑色金属主要是指钢和铸铁,以铁和碳为基本组成元素形成铁碳合金,即碳素钢。
在铁碳合金中加入一定量的合金元素,如铬、锰、镍、钴等成为合金钢。
有色金属是指非铁金属及其合金,如铝、铜、铅、锌等金属及其合金。
一、碳素钢的分类、编号和用途碳素钢简称碳钢,是含碳量小于 2.11%的铁碳合金,具有较好的机械性能、良好的锻压性能、焊接性能和切削加]:性能,价格比合金钢低,在机械工业中得到广泛使用。
(一)碳素钢的分类1.按钢的含碳量分类低碳钢——含碳量≤0.25%;中碳钢——含碳量:0.30%-0.55%;高碳钢——含碳量≥0.60%。
2.按钢的质量分类普通碳素钢:硫、磷含量分别≤O.055%和 O.045%优质碳素钢:硫、磷含量均≤0.040%;高级优质碳素钢:S、P含量 0.030%-0.035%。
3.按钢的用途分类碳素结构钢:主要用于制造各种工程构件和机器件,这类钢一般属于低碳钢和中碳钢。
碳素工具钢:主要用于制造各种刀具、量具、模具,这类钢含碳量较高,一般属于高碳钢。
(二)碳素钢牌号和用途1.普通碳素结构钢甲类钢:这类钢出厂时按保证机械性能供应,除硫、磷外不保征化学成分。
甲类钢的牌号以“甲”或“A”字加上阿拉伯序数表示,共 1-7级,即甲 l、甲 2、…、甲 7(或 A1、A2、…、A7),数字越大,强度越高,塑性越差,主要用来制造钢板、角钢、圆钢和工字钢等。
乙类钢:这类钢出厂时按化学成分供应,不保证机械性能。
乙类钢的牌号用“乙”或“旷加上阿拉伯数字表示,也分为 1-7级,即乙 1、乙 1、…、乙 7(或 Dl、u2、…、B7),数字越大,含碳量越高,主要用于制造不重要的零件,一般须经热处理。
2.优质碳素结构钢优质碳素结构钢既要保证钢的化学成分,还要保证机械性能其机械性能,用于制造比较重要的零什。
金属学与热处理第三章
二元合金的相结构与结晶组元——组成材料最基本的、独立的物质合金——指由两种或两种以上的金属、或金属与非金属经熔炼或用其他方法制成的具有金属特性的物质。
相--是指合金中结构相同,成分和性能均一并以界面相互分开的组成部分金属化合物,它的晶体结构与固溶体完全不同,成分和性能也不相同组织:所谓合金组织,是指合金中不同相之间相互组合配置的状态固溶体——以合金中某一组元作为溶剂,其它组元为溶质,所形成的与溶剂有相同晶体结构、晶格常数稍有变化的固相。
按溶质原子在溶剂晶格中所占位置:置换固溶体和间隙固溶体。
置换固溶体——溶质原子占据溶剂晶格某些结点位置所形成的固溶体间隙固溶体——溶质原子进人溶剂晶格的间隙中所形成的固溶体按溶质与溶剂原子相对分布分类无序固溶体——溶质原子统计式地或概率地分布在溶剂的晶格中。
有序固溶体——溶质原子在溶剂晶格的结点位或溶剂晶格的间隙中,有规律的排列。
有限固溶体:在一定条件下,溶质组元在固溶体的浓度有一定的限度,超过这个限度就不再溶解,这种限度称为溶解度或固溶度,这种固溶体是有限固溶体无限固溶体;溶质能以任意比例溶入溶剂,固溶度的溶解度可达100%,这种称为固溶体就称为无限固溶体。
无限固溶体只可能是置换固溶体影响置换固溶体溶解度的因素尺寸因素、晶体结构、电负性差及电子浓度是影响固溶体溶解度的四个主要因素(1)尺寸因素组元间的原子半径越相近,则固溶体的固溶度越大。
晶格畸变(溶质原子相邻的溶剂原子偏离其平衡位置)溶质原子溶入溶剂晶格引起晶格的点阵畸变。
溶质点阵的膨胀与收缩导致晶体能量升高,这种升高的能量称为晶格畸变能。
溶质原子引起的点阵畸变能越大,固溶体的溶解度就越小。
组元间的原子半径相差越大,晶格畸变能越高,晶格便不稳定。
当溶质原子溶入很多时,则单位体积的晶格畸变能越高,直至溶质晶格不能再维持时,便达到了固溶体的固溶度极限。
如此时再继续加入溶质原子,溶质原子将不再溶入固溶体中,只能形成其他新相(2) 晶体结构因素组元间晶体结构相同时,固溶度较大,而且有可能形成无限固溶体。
工程材料与热处理 第3章作业题参考答案
1.置换固溶体中,被置换的溶剂原子哪里去了?答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。
2.间隙固溶体和间隙化合物在晶体结构与性能上的区别何在?举例说明之。
答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。
如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。
间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比r X/r M>0.59时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。
3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确?为什么?(1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。
(2)K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B 量总是高于原液相中含B量.(3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。
答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。
(2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。
(3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。
4.共析部分的Mg-Cu相图如图所示:(1)填入各区域的组织组成物和相组成物。
在各区域中是否会有纯Mg相存在?为什么?答: Mg-Mg2Cu系的相组成物如下图:(α为Cu在Mg中的固溶体)Mg-Mg2Cu系的组织组成物如下图:(α为Cu在Mg中的固溶体,)在各区域中不会有纯Mg相存在,此时Mg以固溶体形式存在。
金属材料与热处理 第三章
第三单元金属材料的晶体结构与结晶一、名词解释1.晶体晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。
2.晶格抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。
3.晶胞组成晶格的最小几何单元称为晶胞。
4.单晶体如果一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。
5.多晶体由许多晶粒组成的晶体称为多晶体。
6.晶界将任何两个晶体学位向不同的晶粒隔开的那个内界面称为晶界。
7.晶粒多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。
8.结晶通过凝固形成晶体的过程称为结晶。
9.变质处理变质处理就是在浇注前,将少量固体材料加入熔融金属液中,促进金属液形核,以改善其组织和性能的方法。
10.合金合金是指两种或两种以上的金属元素或金属与非金属元素组成的金属材料。
11.组元组成合金最基本的、独立的物质称为组元。
12.相相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开。
13.组织组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。
14.定向结晶定向结晶是通过控制冷却方式,使铸件沿轴向形成一定的温度梯度,从而可使铸件从一端开始凝固,并按一定方向逐步向另一端结晶的过程。
15.滑移单晶体塑性变形时,在切应力作用下,晶体内部上下两部分原子会沿着某一特定的晶面产生相对移动,这种现象称为滑移。
二、填空题1.晶体与非晶体的根本区别在于原子排列是否规则。
2.金属晶格的基本类型有体心立方晶格、面心立方晶格与密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷三类。
4.金属结晶包括:晶核形成和晶核长大两个过程。
5.金属结晶的必要条件是过冷,金属的实际结晶温度不是一个恒定值。
6.金属结晶时冷却速度越大,过冷度越大,金属的实际结晶温度越低。
7.金属的晶粒愈细小,其强度、硬度越高,塑性、韧性也越好。
工程材料及其成型第3章 钢的热处理
•
钢的退火主要用于铸、锻、焊毛坯或半成
品零件的预备热处理,有时也可作为零件的最
终热处理。
•
根据钢的成分和退火目的不同,钢 的退火有完全退火、等温退火、球化退 火、扩散退火、去应力退火和再结晶退 火等几种。 • 完全退火是把钢加热到Ac3以上30~ 50℃,保温一定时间,随炉冷却至600℃ 以下,出炉空冷。 • 等温退火以较快速度冷却至Ar1以下 某一温度,等温一定时间使奥氏体组织 转变成珠光体组织后空冷
按加热温度不同,回火可分为低温、中温、高 温回火三类。 低温回火温度定在 150 ~ 250℃,保温时间为 2 小时左右。 中温回火温度定在 350 ~ 500℃,保温时间 2 小 时左右。 高温回火温度定在 500 ~ 650℃,保温时间 2 小 时左右。
• 2.回火脆性 • 淬 火 后 的 钢 在 250 ~ 400℃ 回 火 和 500 ~ 600℃回火出现冲击韧度显著的下 降现象,称之为回火脆性。 • 其中在 250 ~ 400℃之间出现的回火 脆性称之为低温回火脆性(又称第一回 火脆性)。在 500 ~ 600℃之间出现的回 火脆性称之为高温回火脆性 。
•
扩散退火目的是消除或减轻枝晶偏析, 使钢的成分均匀化。
等温退火与完全退火在加热温度和保温时间上完 全相同,唯有冷却方式不同。 球化退火目的是使渗碳体球化,使钢的硬度降低, 利于切削加工,为后续热处理做好组织准备。 球化退火主要适用于处理过共析钢,如工具钢、 模具钢、轴承钢等。 对于亚共析钢,当需要改善切削加工性能或需要 改善冷变形性能时,可采用球化退火。
第 3 章 钢的热处理
1.1
钢的热处理基本概念 钢的普通热处理
1.2
1.3
钢的表面热处理
1.4
第三章__食品的热处理和杀菌技术分析
6D
7D 8D
10-2
10-3 10-4
食品保藏原理
从表可以看出,从5D以后,为负指数,也就是说有 1/10~1/10000活菌残存下来的可能。 细菌和芽孢按分数出现并不显示实际个数,这只是表明 理论上很难将活菌完全消灭掉。 实际上,这应该从概率的角度来考虑,如果100支试管 中各有1ml悬浮液,每ml悬浮液中仅含有1个芽孢,经过5D 处理后,残存菌数为10-1,即1/10活,也就是100支试管中可 能有90支不再有活菌存在,而10支尚有活菌的可能。
不同温度时炭疽菌芽孢的活菌残存数曲线
食品保藏原理
热处理温度对玉米汁中平酸菌死亡时间的影响
平酸菌 芽孢全 部死亡 所需时 间/min 1200 600 平酸菌 芽孢全 部死亡 所需时 间/min 70 19 平酸菌 芽孢全 部死亡 所需时 间/min 3 1
温度/ ℃
温度 /℃
温度/℃
100 105
二、热烫的目的 首要目标:钝化酶、稳定产品性质;其次 是减少M。
食品保藏原理
二、影响热烫效果的因素包括:
热烫时间 热烫温度、介质 及时冷却 Ph值
第三节 食品的罐藏
食品保藏原理
何为食品罐藏?特点? 两个要素:容器的密封性和商业无菌 发展历史: 1806-1810年诞生了世界上第一批罐头食品 1810年发明了镀锡薄板罐 1849创办第一个罐头工厂 1847年发明高压杀菌锅 我国的罐头工业创建于1906年
1000
Ó ) Ö Ö ä (· ±¼ Ó È Ê ú ¼ ±¾ É
100
10
Z
1 95 100 105 110 115 120 125 ±¾ É ú Î Â ¶ È (¡ æ )
热力致死时间曲线
金属学与热处理--第三章
位错的滑移特点总结
2、 位错的攀移
指刃位错的位错线沿着其半原子面的上下运动。
(1)位错的攀移存在正攀移(原子离 开半原子面)和负攀移两种情况。 (2)位错的攀移受应力和温度的影响。 (3)只有刃型位错才能进行攀移,螺 型位错不能攀移。 (4)位错的攀移比滑移困难得多,因 此位错的主要运动形式为滑移。 (5)位错攀移时常常形成许多割阶。
二、 位错的线张力
1、位错线上的张力在数值上等于其位错能,即 T = aGb2 2、线张力使位错自动缩短或 保持直线状态,平衡时,单 根位错保持直线和最短;三 根位错相交时,节点处位错 的线张力相互平衡。其空间 呈网络状分布。 3、当位错两端被固定,受 外力而弯曲时,有下列关 系存在: τ=Gb/2R
晶体结构中间隙处因某种原因存在的同种原子
一、点缺陷的类型 --- 空位和间隙原子
一般晶体(如金属晶体)中,肖脱基空位比弗兰克空位多得多。
肖 脱 基 空 位
弗兰克 空位
间隙原子
一般晶体中的肖脱基和弗兰克空位
一、点缺陷的类型 --- 空位和间隙原子
弗兰克 空位
对于离子晶体,当正负离子 尺寸差异较大、结构配位数 较低时,小离子易于移入相 邻的间隙而产生弗兰克空位; 而若离子尺寸相差较大、配 位数较高、排列较密集时, 则易于形成肖脱基空位。
第二节 位错的基本概念
一、位错概念的引入
1、理想晶体的刚性滑移模型
人们最初认为晶体是通过刚性滑移 而产生塑性变形的。 晶体的这种滑动方式需同时破坏滑 移面上所有原子键。 理论计算所需临界切应力:
τ
m
= G / 30
一、位错概念的引入 2、实际晶体中存在位错的假设
实际上使晶体产生滑移所需的临界切应力只为理论值 的百分之一到万分之一。 实际晶体的内部一定存在着某中缺陷 ---- 位错,晶体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章钢的淬火及回火
第一节淬火的定义、目的、淬火的必要条件
1、淬火定义:
把钢加热到临界点Ac3或Ac1以上,保温并随之以大于临界冷却速度Vk冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理工艺。
2、淬火的目的:
⏹提高零件的硬度,强度,耐磨性。
⏹结构钢通过淬火,回火获得良好的综合机械性能。
⏹少数工件可以改善钢的物理和化学性能。
例如:提高高磁钢的磁性;
淬火介质
的汽化热,汽化热越大,从工件带走的热量越多,冷却速度也越快。
(3)对流阶段:当工件表面的温度降至介质的沸点或分解温度以下时,工件的冷却主要靠介质的对流进行,随工件和介质间的温差减小,冷速也逐渐降低,此时对流传热起主导作用
3、无物态变化的淬火介质:
●淬火冷却主要靠对流散热。
●温度较高时辐射散热占有很大比例,也有传导传热。
二、淬火介质冷却特性的测定
淬火介质冷却能力最常用的表示方法是所谓的淬火烈度H。
1、概念:
规定静止水的淬火烈度H=1,其它淬火介质的淬火烈度由与静止水的冷却能力比较而得。
2、实质:
●反映钢内部的热传导系数以及钢与介质间的给热系数的关系,即淬火介质的冷却能
力。
●注意:不同淬火介质,在工件淬火过程中其冷却能力是变化的。
几种常见淬火介质
的淬火烈度H,如下表所示。
三、常用淬火介质及其冷却特性
1.水:
具有良好的物理化学性能,而且来源丰富,价格便宜。
水的冷却性能。
●常用的有聚乙二醇水溶液,并加入一定的防蚀剂。
●工业生产中常用乳化液,是矿物油与水经强烈搅拌及振动而成。
冷却能力可通过调
配浓度来调节。
常用于表面淬火。
第三节钢的淬透性
一.淬透性的概念及影响因素
1.概念:
钢材被淬透的能力,或者说淬火时获得马氏体
的能力。
⏹不同的钢种,淬透性是不同的,因此工件表面到内部的截面上淬成马氏体组织的厚
度也不同;
⏹淬成马氏体组织的厚度越大,表示该钢中的淬透性愈高。
⏹这种马氏体组织厚度通常称为硬化层厚度或淬透深度、淬硬层深度等。
2.淬透性与淬硬性的区别
(1)淬透性
⏹概念:系指淬火时获得马氏体的难易程度;
⏹影响因素:主要和钢的过冷奥氏体的稳定性有关或者说与钢的临界淬火冷却速度有
关,
⏹淬透性是钢材本身固有的一个属性。
时,将会影响到奥氏体的均匀性,从而影响到钢的淬透性。
⏹碳化物愈细小,溶入奥氏体愈迅速,从而有利于提高钢的淬透性。
第五节确定淬火工艺规范的原则淬火工艺方法及应用
淬火工艺规范包括淬火加热方式、加热温度、加热时间、冷却介质及冷却方式等。
确定规范的依据
⏹工件图纸及技术要求;
⏹所用材料牌号;
⏹相变点;
⏹过冷奥氏体等温或连续冷却曲线;
⏹端淬曲线;
⏹原始组织;
⏹加工工艺路线。
一、淬火加热方式及加热温度的确定原则
1、加热方式
⏹保护气氛或盐浴加热。
⏹装炉方式:
●一般是热炉装料。
●对尺寸较大,形状复杂高合金钢件采用预热(预热炉)或分段式加热炉加热。
2、淬火加热温度
●考虑原始组织时,
●如果先共析铁素体比较大或珠光体片间距较大,为加速奥氏体的均匀化过程,淬火
温度取高一些。
●对合金含量较高的钢,为加速合金碳化物的溶解,合金元素(均匀化),采用较高的
淬火加热温度。
二、淬火加热时间的确定原则
τ=αD k
式中,τ为加热时间,单位min;α为加热系数,单
位min/mm;K:装炉修正系数;D:零件有效厚度,单位
mm。
⏹α可查表得到,根据工件直径以及加热温度确定。
⏹K: 依装炉量而定。
通常为1.5~2.0 min/mm。
⏹工件有效厚度计算如下:
●圆柱体取直径;正方形截面取边长;板件取板厚;
●长方形截面取短边;套筒类工件取壁厚;
●圆锥体取离小头2/3长度处直经;
●球体取球径的0.6倍。
保温时间的确定
三、淬火介质及冷却方式的选择与确定
●分级淬火的停留时间难把握。
⏹说明:
一般用水做快冷淬火介质,用油或空气做慢冷淬火介质,但较少采用空气,在水中停留时间为每5~6mm有效厚度约1秒。
⏹适用条件:
尺寸较大的碳素钢工件。
3.喷射淬火法
⏹概念:向工件喷射水流的淬火方法。
⏹说明:
●水流可大可小,视所要求的淬火深度而定;
●用此法,不会在工件表面形成蒸汽膜,能保证比普通水中淬火更深的淬硬层;
●水流应细密,工件上下运动或旋转。
⏹适用条件:
●主要用于局部淬火。
4.分级淬火法
⏹概念:把工件由奥氏体化温度淬入高于该钢种的马氏体开始转变温度的淬火介质
(盐浴或碱浴炉)中,在其中冷却直至工件各部分温度达到淬火介质的温度,然后缓冷至室温,发生马氏体转变。
如曲线C所示。
⏹特点:
将淬火零件重新加热到低于临界点某一温度,保温后空冷到室温的热处理工艺称为回火。
回火时的转变称为回火转变。
2、回火原因
淬火后得到的是马氏体或马氏体与残余奥氏体,在室温下为亚稳定状态,都趋于向铁素体加渗碳体(碳化物)的稳定状态变化。
3、回火目的:
●减少或消除内应力,放止变形和开裂;
●获得稳定组织;
●提高塑性、韧性,获得硬度、强度、塑性与韧性的适当配合。
一、淬火钢在回火时的组织转变
(一)、马氏体中碳原子的偏聚
●马氏体是碳在α-Fe中的过饱和固溶体,存在于体心立方扁八面体中的碳原子将使
晶体点阵产生严重畸变,使马氏体处于不稳定状态。
●为了降低能量,在100℃左右,碳原子就偏聚于位错或孪晶界面,或板条界,形成
微小的碳的富集区。
例如:含碳0.21%的Fe-C合金,奥氏体化后淬火,150℃回火10分钟,用原子探针测得α基底含碳0.03 %,而板条马氏体的条界碳含量为0.42 %,说明淬火或回火过程中,碳偏聚于板条。
(二)、马氏体的分解
渗碳体迅速聚集并粗化。
●在碳化物聚集长大的同时,α相状
态在不断变化。
●当回火温度为400~600℃时,由
于马氏体分解、碳化物转变以及聚
集长大,使α相的晶格畸变大大减
少,因此残余应力基本消除。
碳
含量为0.3%钢回火时第一类内应力的变化
●在回火过程中,α相也会发生回复与再结晶。
⏹在400℃以上时,开始回复,即板条界的位错通过攀移、滑移而消失。
位错密度下
降,板条合并、变宽。
⏹当亚结构为孪晶时,经400℃回火后也消失,但片状特征仍存在。
⏹在600℃以上时,开始再结晶,位错密度低的板条块长大,形成多边形(等轴)铁
素体晶粒和粗粒状碳化物的机械混合物,称为回火索氏体。
⏹孪晶马氏体在600℃以上回火时,片状特征也消除,得到回火索氏体。
总结:
淬火碳钢在不同温度回火,可得到不同的组织:
●350℃以下回火,得到针状α相+ ε碳化物,即回火马氏体(碳化物存在于板条或片
硬度为25--35HRC.
●组织:回火索氏体。
●应用:各种重要结构零件如螺栓、齿轮及轴承。
淬火加随后的高温回火也称为调质处理。
中碳钢(0.4%~0.6%C)亦称为调质钢。