新北师大版七年级上册《整式的加减》测试题及答案

合集下载

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章整式及其加减(单元测试)2024-2025学年七年级上册数学北师大版一、单选题1.将化简得( )A .B .C .D .2.下列运算中,正确的是( )A .B .C .D .3.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是( )A .33B .34C .35D .364.下列式子:,,,,,中,整式的个数是( )A .3B .4C .5D .65.如果,那么代数式的值为( )A .B .C .D .6.多项式2x 2﹣x ﹣3的项分别是( )A .x 2,x ,3B .2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D .2x 2,x ,37.下列说法正确的是( )A .单项式的系数是,次数是B .多项式的是二次三项式C .单项式的次数是1,没有系数D .单项式的系数是,次数是8.下列各题正确的是( )A .B .()()2x y x y +-+x y +x y --+x y x y--23325x x x +=235x x +=2222ab b a -=()222a b a b--=-+3x 3a c32d +32y --034a 2a b +=-18762a b a b ⎛⎫+--- ⎪⎝⎭3113-11-25xy π-15-422231x y x -+-a 2-xy z 1-4336x y xy +=0x x --=C .D .9.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第7个五边形数是( )A .62B .70C .84D .10810.多项式按字母的降幂排列正确的是( )A .B .C .D .二、填空题11.有一列数:1,3,2,,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2023个数是12.已知a 是最小的正整数,b 是最大的负整数,c 是立方为的数,则 .13.单项式次数是 ,系数是 .14.已知,则.15.如图,点是线段上的一点,分别以、为边在的同侧作正方形和正方形,连接、、,当时,的面积记为,当,的面积记为,,以此类推,当时,的面积记为,则的值为 .16.已知两个代数式的和是,其中一个代数式是,则另一个为.17.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为 .396y y y -=22990a b ba -=2323573x y xy x y +--x 3232537x y x y xy -+-+2323537x y xy x y --+2323753x y xy x y +--2233735xy x y x y-+-1-27-abc =3213a bc -()2760m n ++-=()20m n +=C AB AC BC AB ACDE CBFG EG BG BE 1BC =BEG 1S 2BC =BEG 2S ⋯BC n =BEG n S 20232022S S -25412a a -+236a -18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为,则 .三、解答题19.先化简,再求值:(1)(6a ﹣3ab )+(ab ﹣2a )﹣2(ab +b ),其中a ﹣b =9,ab =6;(2)x ﹣2(x ﹣)+(﹣),其中|x +2|+(y ﹣1)2=0.20.先化简,再求值:,其中,.21.如图,在数轴上,三个有理数从左到右依次是:,x ,.(1)利用刻度尺或圆规,在数轴上画出原点;(2)直接写出x 的符号为______.(填“正号”或“负号”)22.七年级新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,小英对其高度进行了测量,请根据图中所给出的数据信息,解答下列问题:312a =420a =n ()3n a n ≥10a =2312213y 23123x y +22221322212222a b ab ab a b ab ab ⎡⎤⎛⎫----+++ ⎪⎢⎥⎝⎭⎣⎦3a =-2b =1-1x +(1)每本数学课本的厚度是 cm ;(2)若课本数为(本),整齐叠放在桌面上的数学课本顶部距离地面的高度的整式为 (用含的整式表示);(3)现课桌面上有48本此规格的数学课本,整齐叠放成一摞,若从中取出13本,求余下的数学课本距离地面的高度.23.为了参加校园文化艺术节,书画社计划买一些宣纸和毛笔,现了解情况如下:甲、乙两家文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.甲商店的优惠办法是:买1支毛笔送1张宣纸;乙商店的优惠办法是:全部商品按定价的9折出售.书画社想购买毛笔10支,宣纸x 张.(1)若到甲商店购买,应付_____________元;若到乙商店购买,应付_____________元(用含x 的代数式表示);(2)若时,去哪家商店购买较合算?请计算说明;(3)若时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要______个三角形.(2)照此规律,摆成第n 个图案需要______个三角形.(用含n 的代数式表示)(3)照此规律,摆成第2022个图案需要几个三角形?x x (10)x >30x =30x =参考答案:1.D2.D3.C4.B5.A6.B7.D8.D9.B10.A11.112.13.14.115.16.17.606918.11019.(1)2a ﹣2b ﹣3ab ,0;(2)﹣3x +y 2,7.20.,21.(1)略;(2)正号22.(1);(2);(3)23.(1),(2)到甲商店购买较为合算(3)先到甲商店购买10支毛笔,送10张宣纸,再到乙商店购买张宣纸,费用为272元24.(1)16;(2);(3)6067个3613-4045222418a a -+2ab -18-0.5850.5x +102.5cm()4160x +()3.6180x +20(31)n +。

(最新)北师大版七年级数学上册《整式及其加减》测试卷(附答案)

(最新)北师大版七年级数学上册《整式及其加减》测试卷(附答案)

《整式及其加减》测试卷(测试时间:120分钟 测试总分:150分)一、选择题(每小题3分,共30分)1.用语言叙述1a -2表示的数量关系中,表达不正确的是( )A .比a 的倒数小2的数B .比a 的倒数大2的数C .a 的倒数与2的差D .1除以a 的商与2的差2.下列各式中:m ,-12,x -2,1x ,x 2,-2x 2y 33,2+a 5,单项式的个数为( )A .5B .4C .3D .23.一个两位数是a ,在它左边加上一个数字b 变成三位数,则这个三位数用代数式表示为( )A .10a +100bB .baC .100baD .100b +a4.下列去括号错误的是( )A .3a 2-(2a -b +5c )=3a 2-2a +b -5cB .5x 2+(-2x +y )-(3z -u )=5x 2-2x +y -3z +uC .2m 2-3(m -1)=2m 2-3m -1D .-(2x -y )-(-x 2+y 2)=-2x +y +x 2-y 25.合并同类项2m x +1-3m x -2(-m x -2m x +1)的结果是( )A .4mx x +1-5m xB .6m x +1+m xC .4m x +1+5m xD .6m x +1-m x6.已知-x +2y =6,则3(x -2y )2-5(x -2y )+6的值是( )A .84B .144C .72D .3607.已知A =5a -3b ,B =-6a +4b ,即A -B 等于( )A .-a +bB .11a +bC .11a -7bD .-a -7b8.x 表示一个两位数,y 表示一个三位数,如果把x 放在y 的左边组成一个五位数,那么这个五位数就可以表示为( )A .xyB .x +yC .1 000x +yD .10x +y9.当代数式x 2+4取最小值时,x 的值应是( )A .0B .-1C .1D .410.已知大家以相同的效率做某件工作,a 人做b 天可以完工,若增加c 人,则完成工作提前的天数为( )A .(ab a +c -b )天B .(b a +c -b )天C .(b -ab a +c )天D .(b -b a +c)天 二、填空题(每小题4分,共40分)11.用代数式表示:(1)钢笔每支a 元,m 支钢笔共________元;(2)一本书有a 页,小明已阅读b 页,还剩________页.12.-2x 2y 33+x 3的次数是________.13.当x =-12时,代数式1-3x 2的值是________.14.代数式6a 2-7b 2+2a 2b -3ba 2+6b 2中没有同类项的是________.15.如果|m -3|+(n -2)2=0,那么-5x m y n +7x 3y 2=________.16.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.17.如图①,边长为a 的大正方形中有一个边长为b 的小正方形,若将图①中的阴影部分拼成一个长方形,如图②.比较图①和图②中的阴影部分的面积,你能得到的公式是________________.18.若-3x m y 2与2x 3y n 是同类项,则m =________,n =________.19.当m =-3时,代数式am 5+bm 3+cm -5的值是7,那么当m =3时,它的值是________.20.下面由火柴棒拼出的一列图形中,摆第1个图形要4根火柴棒,摆第二个图形需要7根火柴棒,按照这样的方式继续摆下去,摆第n 个图形时,需要________根火柴棒.三、解答题(共80分)21.(16分)化简下列各式:(1)4x 2-8x +5-3x 2+6x -2;(2)5ax -4a 2x 2-8ax 2+3ax -ax 2-4a 2x 2;(3)(3x 4+2x -3)+(5x 4-7x +2);(4)5(2x -7y )-3(3x -10y ).22.(14分)先化简,再求值:(1)(a 2-ab +2b 2)-2(b 2-a 2),其中a =-13,b =5;(2)3x 2y -[2x 2y -3(2xy -x 2y )-xy ],其中x =-1,y =-2.23.(10分)已知m 是绝对值最小的有理数,且-2a m +2b y +1与3a x b 3是同类项,试求多项式2x2-3xy+6y2-3mnx2+mxy-9my2的值.24.(12分)如图所示,某长方形广场的四角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).25.(14分)有足够多的长方形和正方形的卡片,如图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是____________________.(2)小明想用类似的方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片________张,3号卡片________张.26.(14分)观察下列等式:第1个等式:a 1=11×3=12×(1-13); 第2个等式:a 2=13×5=12×(13-15); 第3个等式:a 3=15×7=12×(15-17); 第4个等式:a 4=17×9=12×(17-19); ……请解答下列问题:(1)按以上规律列出第5个等式:a 5=________=________;(2)用含n 的代数式表示第n 个等式:a n =________=________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.第三章评估测试卷一、选择题1.B 考查倒数的定义.2.B m ,-12,x 2,-2x 2y 33是单项式.3.D 考查代数式的列法.4.C 考查去括号的法则.5.D 合并同类项时把系数相加减,字母和字母的指数不变.6.B 由-x +2y =6可知x -2y =-6,故原式的值是144.7.C A -B =(5a -3b )-(-6a +4b )=5a -3b +6a -4b=11a -7b .8.C 考查代数式的列法.9.A 当x =0时,x 2+4的值最小为4.10.C 考查代数式的列法.二、填空题11.(1)am (2)(a -b )12.5 13.14 14.6a 2 15.2x 3y 2 16. 17.a 2-b 2=(a +b )(a -b ) 18.3 219.-17 ∵当m =-3时,am 5+bm 3+cm -5=7,∴am 5+bm 3+cm =12.当m =-3时,am 5+bm 3+cm =-12,∴am 5+bm 3+cm -5=-12-5=-17.20.(3n +1)三、解答题21.解:(1)x 2-2x +3 原式=(4x 2-3x 2)+(-8x +6x )+(5-2)=x 2-2x +3;(2)-8a 2x 2-9ax 2+8ax原式=(-4a 2x 2-4a 2x 2)+(-8ax 2-ax 2)+(5ax +3ax )=-8a 2x 2-9ax 2+8ax ;(3)8x 4-5x -1 原式=3x 4+2x -3+5x 4-7x +2=(3x 4+5x 4)+(2x -7x )+(-3+2)=8x 4-5x -1;(4)x -5y 原式=10x -35y -9x +30y =(10x -9x )+(-35y +30y )=x -5y .22.解:(1)原式=a 2-ab +2b 2-2b 2+2a 2=(a 2+2a 2)+(2b 2-2b 2)-ab =3a 2-ab .当a =-13,b =5时,原式=3×⎝ ⎛⎭⎪⎫-132-⎝ ⎛⎭⎪⎫-13×5=13+53=2; (2)原式=3x 2y -2x 2y +3(2xy -x 2y )+xy =3x 2y -2x 2y +6xy -3x 2y +xy =(3x 2y -2x 2y -3x 2y )+(6xy +xy )=-2x 2y +7xy当x =-1,y =-2时,原式=-2×(-1)2×(-2)+7×(-1)×(-2)=4+14=18.23.解:由题意有m =0,m +2=x ,y +1=3,即x =2,y =2,则原式=2x 2-3xy -6y 2=2×22-3×2×2-6×22=-28.24.解:(1)(ab -πr 2)平方米;(2)ab -πr 2=300×200-π×102=(60 000-100π)(平方米),所以空地的面积为(60 000-100π)平方米.25.解:(1)如图,a 2+3ab +2b 2=(a +b )(a +2b );(2)3 726.解:根据观察知答案分别为:(1)19×1112×(19-111) (2)1(2n -1)(2n +1) 12×(12n -1-12n +1) (3)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+12×(15-17)+12×(17-19)+…+12×(1199-1201)=12(1-13+13-15+15-17+17-19+…+1199-1201)=12(1-1201)=12×200201=100201.。

北师大版七年级数学上册《3.2整式的加减》同步测试题带答案

北师大版七年级数学上册《3.2整式的加减》同步测试题带答案

北师大版七年级数学上册《3.2整式的加减》同步测试题带答案【基础达标练】课时训练夯实基础知识点1同类项的概念1.(2024·毕节织金县期中)下列各组单项式中,属于同类项的是( )A.a3与a2B.a2与aC.2xy与2xD.x2y与2x2y2.(2024·遵义绥阳县期中)单项式-5a6b3与2b3是同类项,则常数n的值是( )A.2B.3C.4D.53.已知代数式-x a y b-1与5xy2是同类项,则a+b的值为( )A.4B.3C.2D.14.(2023·六盘水期末)如果单项式5a m+1b n+5与是同类项,则m=,n=.5.若a m+2b3与(n+2)a4b3是同类项,且它们的和为0,则n m=.6.已知单项式3x m y2与-x4y n-1是同类项,|a+2|与(b-1)2互为相反数,求的值.知识点2合并同类项7.(2024·贵州中考)计算2a+3a的结果正确的是( )A.5aB.6aC.5a2D.6a28.若3x3+2x2+6x-mx2-1是关于x的不含二次项的多项式,则有理数m的值是( )A.2B.-2C.0D.2或09.在下列式子中错误的是.(填序号)①5a+2b=7ab;②7ab-7ba=0;③4x2y-5xy2=-x2y;④3x2+5x3=8x5.10.已知关于a,b的单项式na x-1b4与6a2b y+3的和为0,请求出n+x+y的值.11.求代数式的值:6x+2x2-3x+x2+1,其中x=-5.12.化简:3a2+a3-5a-4+5a+a2-a3.【综合能力练】巩固提升迁移运用13.(2024·贵阳南明区期中)若单项式-4a5与3b n+3是同类项,则m,n的值分别是 ( )A.1,-1B.1,2C.1,-2D.1,114.下列各组是同类项的是( )①2x2y3与x3y2;②-x2yz与-x2y;③10mn与0.6nm;④(-a)3与(-3)3;⑤-3x2y与2yx2;⑥-125与2.A.①③⑤B.①③④⑥C.③⑤⑥D.④⑥15.(易错警示题)下列各组式子中的两个单项式是同类项的是 ( )A.2x3与3x2B.x4与a4C.5ax与6ayD.23与-316.若关于x,y的单项式x n y5和x4y m+2是同类项,则m-n的值为 ( )A.1B.-1C.-2D.217.若单项式x2y a与-2x b y3的和仍为单项式,则其和为.18.若式子3mx3-3x+9-(4x3-nx)的值与x无关,则mn的值是.19.(2024·毕节金沙县期中)若a m b3与a6b n+1能合并同类项,则n-m的值为.20.先合并同类项,再求-xyz-4yz-6xz+3xyz+5xz+4yz的值,其中x=-2,y=-10,z=-5.21.如果代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.22.(素养提升题)阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是;(2)已知x2-2y=4,求3x2-6y-21的值为.参考答案第1课时合并同类项【基础达标练】课时训练夯实基础知识点1同类项的概念1.(2024·毕节织金县期中)下列各组单项式中,属于同类项的是(D)A.a3与a2B.a2与aC.2xy与2xD.x2y与2x2y2.(2024·遵义绥阳县期中)单项式-5a6b3与2a2n b3是同类项,则常数n的值是(B)A.2B.3C.4D.5x a y b-1与5xy2是同类项,则a+b的值为(A)3.已知代数式-13A.4B.3C.2D.14.(2023·六盘水期末)如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=0,n=2.5.若a m+2b3与(n+2)a4b3是同类项,且它们的和为0,则n m=9.6.已知单项式3x m y2与-23x4y n-1是同类项,|a+2|与(b-1)2互为相反数,求m-n(a+b)2022的值.【解析】因为单项式3x m y2与-23x4y n-1是同类项,所以m=4,n-1=2所以m=4,n=3因为|a+2|与(b-1)2均为非负数,且互为相反数,所以|a+2|=0,(b-1)2=0 所以a=-2,b=1所以m-n(a+b)2022=4−3(-2+1)2022=1(-1)2022=1.知识点2合并同类项7.(2024·贵州中考)计算2a+3a的结果正确的是(A)A.5aB.6aC.5a2D.6a28.若3x3+2x2+6x-mx2-1是关于x的不含二次项的多项式,则有理数m的值是(A)A.2B.-2C.0D.2或09.在下列式子中错误的是①③④.(填序号)①5a+2b=7ab;②7ab-7ba=0;③4x2y-5xy2=-x2y;④3x2+5x3=8x5.10.已知关于a,b的单项式na x-1b4与6a2b y+3的和为0,请求出n+x+y的值.【解析】因为关于a,b的单项式na x-1b4与6a2b y+3的和为0所以n=-6,x-1=2,y+3=4所以x=3,y=1所以n+x+y=-6+3+1=-2.11.求代数式的值:6x+2x2-3x+x2+1,其中x=-5.【解析】当x=-5时原式=(6x-3x)+(2x2+x2)+1=3x+3x2+1=-15+75+1=61.12.化简:3a2+a3-5a-4+5a+a2-a3.【解析】原式=(1-1)a3+(3+1)a2+(-5+5)a-4=4a2-4.【综合能力练】巩固提升迁移运用13.(2024·贵阳南明区期中)若单项式-4a5b2m与3a2m+3b n+3是同类项,则m,n的值分别是(A)A.1,-1B.1,2C.1,-2D.1,114.下列各组是同类项的是(C)①2x2y3与x3y2;②-x2yz与-x2y;③10mn与0.6nm;④(-a)3与(-3)3;⑤-3x2y与2yx2;⑥-125与2.A.①③⑤B.①③④⑥C.③⑤⑥D.④⑥15.(易错警示题)下列各组式子中的两个单项式是同类项的是 (D)A.2x3与3x2B.x4与a4C.5ax与6ayD.23与-316.若关于x,y的单项式13x n y5和x4y m+2是同类项,则m-n的值为 (B)A.1B.-1C.-2D.217.若单项式12x2y a与-2x b y3的和仍为单项式,则其和为-32x2y3.18.若式子3mx3-3x+9-(4x3-nx)的值与x无关,则mn的值是4.19.(2024·毕节金沙县期中)若a m b3与a6b n+1能合并同类项,则n-m的值为-4.20.先合并同类项,再求-xyz-4yz-6xz+3xyz+5xz+4yz的值,其中x=-2,y=-10,z=-5.【解析】原式=(-1+3)xyz+(4-4)yz+(5-6)xz=2xyz-xz当x=-2,y=-10,z=-5时原式=2×(-2)×(-10)×(-5)-(-2)×(-5)=-200-10=-210.21.如果代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.【解析】x4+ax3+3x2+5x3-7x2-bx2+6x-2=x4+(a+5)x3+(3-7-b)x2+6x-2由x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3和x2项,得a+5=0,3-7-b=0.解得a=-5,b=-4.所以2a+3b=2×(-5)+3×(-4)=-22.22.(素养提升题)阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是-(a-b)2;(2)已知x2-2y=4,求3x2-6y-21的值为-9.【解析】(1)把(a-b)2看成一个整体,则3(a-b)2-6(a-b)2+2(a-b)2=(3-6+2)(a-b)2=-(a-b)2;答案:-(a-b)2(2)因为x2-2y=4所以原式=3(x2-2y)-21=12-21=-9.答案:-9。

北师大版七年级数学上册 第3章 第4节 整式的加减同步练习 (含答案)

北师大版七年级数学上册 第3章 第4节 整式的加减同步练习 (含答案)

北师大版七上 第3章 第4节 第2课时 整式的加减一、选择题(共5小题)1. 下列各式从左到右的变形中,正确的是 ( )A. −(3x +2)=−3x +2B. −(−2x −7)=−2x +7C. −(3x −2)=−3x +2D. −(−2x −7)=2x −72. 下列各式中,去括号正确的是 ( )A. a +(2b −3c +d )=a −2b +3c −dB. a −(2b −3c +d )=a −2b −3c +dC. a −(2b −3c +d )=a −2b +3c −dD. a −(2b −3c +d )=a −2b +3c +d3. 下列去括号的结果正确的是 ( )A. x 2−3(x −y +z )=x 2−3x +3y +zB. 3x −[5x −(2x −1)]=3x −5x −2x +1C. a +(−3x +2y −1)=a −3x +2y −1D. −(2x −y )+(z −1)=−2x −y +z −14. 代数式 −{−[x −(y −z )]} 去括号的结果是 ( ) A. x +y +z B. x −y +z C. −x +y −z D. x −y −z5. 下列各式化简正确的是 ( )A. a −(2a −b +c )=−a −b +cB. (a +b )−(−b +c )=a +2b +cC. 3a −[5b −(2c −a )]=2a −5b +2cD. a −(b +c )−d =a −b +c −d二、填空题(共7小题)6. 去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都 ; (2)括号前是“−”号,把括号和它前面的“−”号去掉后,原括号里各项的符号都要 .7. 去括号:(1)+(a −b )= ;(2)−(a +b )= ;(3)−3(2a −3b )= ;(4)−[−(m −n )]= .8. −6x +7y −3 的相反数是 .9. a −b +c 的相反数是 .10. 化简 (x +14)−(2x −12) 的结果是 .11. 把3+[3a−2(a−1)]化简,得.12. 若x2+ax−2y+7−(bx2−2x+9y−1)的值与x的取值无关,则a+b=.三、解答题(共5小题)13. 化简:m);(1)−4(1−14(2)2(2a−3b)+4(3a+5b);(3)(a−b−1)−3(c−d+2);(4)a−[b−2a−(a+b)].14. 化简下列各式:(1)2(4x−0.5);(2)3a−(a+5b);(3)5xy2−[3xy2−(4xy2−2x2y)]+2x2y−xy2;).(4)−3(x2−2x−4)+2(−x2+5x−1215. 一支钢笔的价格是(2a+3b)元,一本练习本的价格是(4a−b)元,一支钢笔比一本练习本贵多少元?16. 已知某艘游轮在顺水中行驶的速度是(a+b)km/h,逆水中行驶的速度是(2a−b)km/h,游轮顺水行驶3h,逆水行驶2h,共行驶了多少千米?17. 先化简,再求值:3x2+x2−(2x2−2x)+(3x−x2),其中x=−2.答案1. C2. C3. C4. B5. C6. 不改变,改变7. a−b,−a−b,−6a+9b,m−n8. 6x−7y+39. −a+b−c10. −x+3411. a+512. −113. (1)原式=−4+m.(2)原式=4a−6b+12a+20b=16a+14b.(3)原式=a−b−1−3c+3d−6=a−b−3c+3d−7.(4)原式=a−b+2a+a+b=4a.14. (1)原式=8x−1.(2)原式=3a−a−5b=2a−5b.(3)原式=5xy2−3xy2+4xy2−2x2y+2x2y−xy2 =5xy2.(4)原式=−3x 2+6x+12−2x2+10x−1=−5x2+16x+11.15. 根据题意,得(2a+3b)−(4a−b)=2a+3b−4a+b=4b−2a.因此,一支钢笔比一本练习本贵(4b−2a)元.16. 由题意,得3(a+b)+2(2a−b)=3a+3b+4a−2b=7a+b.因此,游轮共行驶了(7a+b)km.17. 原式=3x 2+x 2−2x 2+2x +3x −x 2=(3x 2+x 2−2x 2−x 2)+(2x +3x )=x 2+5x.将 x =−2 代入上式,得 原式=(−2)2+5×(−2)=4−10=−6.。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案(时间:120分钟满分:120分)班级: 姓名: 成绩:一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−15.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m26.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 17.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.12.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.13.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________.15.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2 024个数是____.三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−1.218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值;(2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3.所以2m=37−3,即m=37−32.所以31+32+33+34+35+36=37−32.以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项【答案】B2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商【答案】C3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm 【答案】D4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−1【答案】B5.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m2【答案】D6.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B7.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关【答案】D8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m【答案】C9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元【答案】A10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32【答案】A二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.【答案】5 −2+512.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.【答案】513.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.【答案】(5m−6)14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________. 【答案】−4m2+2m+415.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2024个数是____.【答案】676三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.【答案】(1)解:−3m2m+3mm2−2mm2+2m2m=(−3m2m+2m2m)+(3mm2−2mm2)=−m2m+mm2.(2)解:2m2−5m+m2+6+4m−3m2=(2m2+m2−3m2)+(4m−5m)+6=−m+6..17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−12解:原式=3m2−4mm−4m2−4m2+4mm−8m2=−m2−12m2当m=2,m=−1时2)2=−4−3=−7.原式=−22−12×(−1218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.解:设原来的整式为m,则m−(5mm−3mm+2mm)=2mm−6mm+mm得m=7mm−9mm+3mmm+(5mm−3mm+2mm)=7mm−9mm+3mm+(5mm−3mm+2mm)=12mm−12mm+5mm.∴原题的正确答案为12mm−12mm+5mm.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?【答案】(1)解:轮船共航行的路程为(m+m)×3+(m−m)×2=(5m+m)(千米).(2)把m=80,m=3代入(1)中的式子,得5×80+3=403(千米).答:轮船共航行403千米.20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?【答案】(1)解:小明家9月份应交的水费为2×15+2.5(m−15)=(2.5m−7.5)(元);(2)当m=20时,2.5×20−7.5=42.5(元),所以小明家9月份应交水费42.5元. 21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)【答案】(1)解:由题意可知窗户的面积可表示为m(m+m2+m2)=2mm装饰物的面积可表示为π⋅(m2)2=π4m2所以窗户中能射进阳光的部分的面积是2mm−π4m2.(2)将m=5m,m=2m代入(1)中的代数式可得2mm−π4m2=2×5×2−π4×22=(20−π)(m2)所以窗户中能射进阳光的部分的面积是(20−π)m2.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值; (2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.【答案】(1)解:∵m=3时,多项式mm3−mm+5的值是1∴27m−3m+5=1∴27m−3m=−4∴m=−3时−27m+3m+5=4+5=9.(2)−3m2+mm+mm2−m+3=(−3+m)m2+(m−1)m+3∵关于字母m的二次多项式的值与m的取值无关∴−3+m=0m−1=0解得m=3m=1代入(m+m)(m−m)得(1+3)×(1−3)=4×(−2)=−8.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3. 所以2m=37−3,即m=37−3.2.所以31+32+33+34+35+36=37−32以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.【答案】(1)263(2)解:设m=20+21+⋯+263①则2m=21+22+23+⋯+263+264②②−①得2m−m=21+22+⋯+264−20−21−22−⋯−263=264−20=264−1即m= 264−1.【解析】(1)国际象棋共有64个格子,则在第64格中应放263粒米.故答案为263.。

北师大版2024新版七年级数学上册习题练课件:3.2 课时3 整式的加减

北师大版2024新版七年级数学上册习题练课件:3.2 课时3 整式的加减
【解析】 根据题意得,
= −2 2 + 3 − 4 − 5 2 − 3 − 6 = −2 2 + 3 − 4 − 5 2 + 3 + 6
= −7 2 + 6 + 2。
6.[2024信阳期中]某商店在甲批发市场以每包元的价格进了40包茶叶,
又在乙批发市场以每包 > 元的价格进了同样的60包茶叶,若商家
ቤተ መጻሕፍቲ ባይዱ
(元),所以这些茶叶的总利润为
20 − 20 + 30 − 30 = 10 − 10 = 10( − )(元),因为 > ,
所以 − > 0,即10( − ) > 0,则这家商店盈利了。
解法二根据题意,得卖完后这些茶叶的利润为
40 + 60 ⋅
+
2
− 40 − 60 = 50 + − 40 − 60 = 50 + 50 −
(1)请列式表示这个两位数,并化简;
解:由题意,得 + + = + 。
(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新
的两位数,试说明新两位数与原两位数的和能被22整除。
由题意,得新两位数是 + + = + ,
所以两个数的和是 + + + = + ,
40 − 60 = 10 − 10 = 10 − ,
由 > ,可得10 − > 0,则这家商店盈利了。
7.教材P94T9变式有这样一道题:计算
2 3 − 3 2 − 2 2 + 2 3 − ( 3 − 2 2 + 3 ) + − 3 + 3 2 − 3 的

七上数学整式的加减测试题附答案北师大版

七上数学整式的加减测试题附答案北师大版

七上数学整式的加减测试题(附答案北师大版)(30分钟50分)一、选择题(每小题4分,共12分)1.(2012·珠海中考)计算-2a2+a2的结果为( )A.3aB.-aC.-3a2D.-a22.某工厂第一年生产a件产品,第二年比第一年增产了20%,则两年共生产产品的件数为( )A.0.2aB.aC.1.2aD.2.2a3.代数式7a3-6a3b+3a2b+3a2+6a3b-3a2b-10a3的值( )A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关二、填空题(每小题4分,共12分)4.(2012·莆田中考)如果单项式x a+1y3与2x3y b是同类项,那么a b= .5.七年级一班为建立“图书角”,各组同学踊跃捐书.一组捐x本书,二组捐书是一组的2倍还多2本,三组捐书是一组的3倍少1本,则三个小组共捐书本.6.若多项式x2+2kxy-5y2-2x-6xy+8中不含xy项,则k= .三、解答题(共26分)7.(15分)合并同类项:(1)2ax2-3ax2-7ax2.(2)4x2y-8xy2+7-4x2y+12xy2-4.(3)a2-2ab+b2+2a2+2ab-b2.【拓展延伸】8.(11分)对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题是:当k为何值时,代数式中不含xy项,第二个问题是:在第一问的前提下,如果x=2,y=-1,代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面吧.(2)在做第二个问题时,马小虎同学把y=-1,错看成y=1,可是他得到的最后结果却是正确答案解析1.【解析】选D.-2a2+a2=(-2+1)a2=-a2.2.【解析】选 D.因为第一年生产a件产品,第二年比第一年增产了20%,则第二年生产产品件数为a×(1+20%)=1.2a,所以两年共生产产品的件数为a+1.2a=2.2a.3.【解析】选B.原式=(7-10)a3+(-6+6)a3b+(3-3)a2b+3a2=-3a3+3a2,所以代数式的值只与a有关.4.【解析】由题意知a+1=3,b=3,解得a=2,b=3,所以a b=23=8.答案:85.【解析】由题意知,二组捐了(2x+2)本,三组捐了(3x-1)本,所以三个小组共捐书:x+2x+2+3x-1=(6x+1)(本).答案:(6x+1)6.【解析】因为x2+2kxy-5y2-2x-6xy+8=x2+(2k-6)xy-5y2-2x+8,且多项式x2+2kxy-5y2-2x-6xy+8中不含xy项,所以2k-6=0,解得k=3.答案:37.【解析】(1)原式=(2-3-7)ax2=-8ax2.(2)原式=(4-4)x2y+(-8+12)xy2+(7-4)=4xy2+3.(3)原式=(1+2)a2+(-2+2)ab+(1-1)b2=3a2.8.【解析】(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy.所以只要7-k=0,这个代数式就不含xy项,即k=7时,代数式中不含xy项.(2)因为在第一问的前提下原代数式为:3x2+8y2.当x=2,y=-1时,原式=3x2+8y2=3×22+8×(-1)2=12+8=20.当x=2,y=1时,原式=3x2+8y2=3×22+8×12=12+8=20.所以马小虎的最后结果是正确的.。

七年级数学北师大版上册3.4 整式的加减(含答案)

七年级数学北师大版上册3.4  整式的加减(含答案)

3.4 整式的加减专题一 同类项与去括号1.下列各式不是同类项的是( )A .a 2b 与-a 2bB .x 与2xC .a 2b 与﹣3ab 2D .ab 与4ba2.下列运算中结果正确的是( )A .3a+2b=5abB .5y ﹣3y=2C .﹣3x+5x=﹣8xD .3x 2y ﹣2x 2y=x 2y3.下列各式中,去括号正确的是( )A .a+(b ﹣c )=a+b+cB .a ﹣(b ﹣c )=a ﹣b ﹣cC .a ﹣(﹣b ﹣c )=a+b+cD .a ﹣(b+c )=a ﹣b+c4.3ab ﹣4bc+1=3ab ﹣( ),括号中所填入的代数式应是( )A .﹣4bc+1B .4bc+1C .4bc ﹣1D .﹣4bc ﹣15.和3x 3y |n|+3是同类项,则m 2+n 2的值是 . 6.已知a ﹣2b=1,则3﹣2a+4b= .专题二 整式的加减运算7.计算2a ﹣3(a ﹣b )的结果是( )A .﹣a ﹣3bB .a ﹣3bC .a+3bD .﹣a+3b8.长方形的一边长等于3a+2b ,另一边比它大a ﹣b ,那么这个长方形的周长是( )A .14a+6bB .7a+3bC .10a+10bD .12a+8b9.多项式﹣3x 2y ﹣10x 3+3x 3+6x 3y+3x 2y ﹣6x 3y+7x 3的值( )A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x ,y 都有关10.化简:4xy ﹣2(x 2﹣2xy )﹣4(2xy ﹣x 2)= .11.若ab=﹣3,a+b=﹣,则(ab ﹣4a )+a ﹣3b 的值为 .12.先化简,后求值:(1)化简:2(a 2b+ab 2)﹣(2ab 2﹣1+a 2b )﹣2;(2)当(2b ﹣1)2+3|a+2|=0时,求(1)式的值.13.先化简)6()22(34222y xy x y xy x x -+-++-+-,再求该式的值,其中1,2013-==y x ,你会有什么发现?14.若a – b = – 2,b – c = 1,求代数式(a – 2b + c)[(a – b)2 – (b – c)2 + (c – a)2]的值.15.已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值.状元笔记:【知识要点】1.理解同类项的概念、合并同类项的方法和去括号法则.2.能进行简单的整式的加减运算,并能说明其中的算理.【温馨提示】所含字母相同,并且相同字母的指数也相同的项,叫做同类项.注意:(1)判定是同类项具有两个条件,二者缺一不可;(2)同类项与系数无关,与字母的排列也无关;(3)几个常数项也是同类项.整式加减的实质是合并同类项,一般步骤是先去括号,再合并同类项,在去括号时一定要注意括号前是“+”还是“-”,整式加减的结果还是整式.参考答案:1.C2.D3.C4.C5.5 解析:由同类项的定义,得|m|+2=3,|n|+3=5,解得|m|=1,|n|=2,则m 2+n 2=1+4=5.6.1 解析:根据题意可得3﹣2a+4b=3﹣2(a ﹣2b )=3﹣2=1.注意此题要用整体思想.7.D8.A 解析:由题意知,长方形的另一边长等于(3a+2b )+(a ﹣b )=3a+2b+a ﹣b=4a+b ,所以这个长方形的周长是2(3a+2b+4a+b )=2(7a+3b )=14a+6b .9.A 解析:﹣3x 2y ﹣10x 3+3x 3+6x 3y+3x 2y ﹣6x 3y+7x 3=(﹣3+3)x 2y+(﹣10+3+7)x 3+(6﹣6)x 3y=0,故与x ,y 都无关.10.2x 2 解析:原式=4xy ﹣2x 2+4xy ﹣8xy+4x 2=2x 2.11.﹣ 解析:原式=ab ﹣4a+a ﹣3b=ab ﹣3a ﹣3b=ab ﹣3(a+b )=﹣3﹣3×(﹣)=﹣.12.解:(1)原式=2a 2b+2ab 2﹣2ab 2+1﹣a 2b ﹣2=a 2b ﹣1.(2)∵(2b ﹣1)2+3|a+2|=0,又(2b ﹣1)2≥0,3|a+2|≥0,∴(2b ﹣1)2=0,|a+2|=0,∴b=,a=﹣2,将b=,a=﹣2代入a 2b ﹣1,得(﹣2)2×﹣1=1.13.解析:先把多项式化简,再观察化简的结果,即可发现结论。

最新北师大七年级数学上册《整式及其加减》计算题专项练习一(含答案)

最新北师大七年级数学上册《整式及其加减》计算题专项练习一(含答案)

学习-----好资料2014年北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共12小题)1计算题2 3 1① 12-(- 8) + (- 7)- 15; ②-1 +2 X (- 5)-(- 3) 「;32 2③(2x - 3y) + (5x+4y); ④ (5a +2a- 1) - 4 (3 - 8a+2a ).22. (1)计算:4+ (- 2) X -(- 36)韶;(2) 化简:3 (3a- 2b)- 2 (a- 3b).3. 计算:2 2(1)7x+4 (x - 2)- 2 ( 2x - x+3);2 2 2 2 2(2)4ab- 3b - [ (a +b )-( a - b )];4. 化简2 9(1) 2 (2a +9b) +3 (- 5a - 4b)(2) 3 (x3+2x4- 1)-( 3x3+4x2- 2)(3) (3mn —5m ) -( 3m - 5mn);4 9(4) 2a+2 (a+1)- 3 (a- 1).学习-----好资料5. (2009?柳州)先化简,再求值: 3 (x- 1)-( x- 5),其中x=2 .6 .已知x=5, y=3,求代数式3 (x+y) +4 (x+y) - 6 (x+y)的值.学习-----好资料2 2 2 27 •已知A=x - 3y , B=x - y ,求解2A - B .2 28 若已知M=x +3x - 5, N=3x +5,并且6M=2N - 4,求x •2 29.已知A=5a - 2ab, B= - 4a+4ab,求:3( A+B)- 2(2A - B),其中A= - 2,B=1 .(1)A+B ; (2) 2A - B ; ( 3)先化简,再求值:10 .设a=14x - 6, b= - 7x+3 , c=21x - 1.(1)求a-( b - c)的值;(2)当x=:时,求a-( b- c)的值.4211.化简求值:已知a、b满足:|a-2|+ (b+1) =0,求代数式2 (2a- 3b)-( a- 4b) +2 (- 3a+2b)的值.2 2 212.已知(x+1 ) +|y- 1|=0,求2 (xy - 5xy ) -( 3xy - xy)的值.+ , - +得-,++2014年北师大七年级数学上册《整式及其加减》 计算题专项练习一参考答案与试题解析一.解答题(共12小题)1计算题① 12-(- 8) + (- 7)- 15;③(2x - 3y ) + (5x+4y ); 整式的加减;有理数的混合运算.计算题.(1) 直接进行有理数的加减即可得出答案.(2) 先进行幕的运算,然后根据先乘除后加减的法则进行计算.(3) 先去括号,然后合并同类项即可得出结果.(4) 先去括号,然后合并同类项即可得出结果.原式=-1 - 10+27 - = - 11+8仁70 3③ 原式=2x - 3y+5x+4y=7x+y ;2 2 2④ 原式=5a +2a - 1 - 12+32a - 8a = - 3a +34a - 13.本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.22. (1)计算:4+ (- 2) X 2 -(- 36)韶;(2) 化简:3 (3a - 2b )- 2 (a- 3b ).考点:整式的加减;有理数的混合运算.分析:(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;(2) 运用整式的加减运算顺序计算:先去括号,再合并同类项.解答: 解:(1)原式=4+4 >2-( - 9)=4+8+9=17 ;(2)原式=9a - 6b - 2a+6b=(9 - 2) a+ (- 6+6) b=7a . 2 3 1 ②-1 +2 X (- 5)-(- 3)-; 3 2 2 ④ (5a +2a - 1) - 4 (3 - 8a+2a )-解答:解:①原式=12+8 - 7- 15= - 2; 点评:点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:--得得+ , + -得-;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3. 计算:2 2(1)7x+4 (x - 2)- 2 ( 2x - x+3);2 2 2 2 2(2)4ab- 3b - [ (a +b )-( a - b )];2 9(3)(3mn - 5m ) -( 3m - 5mn);(4)2a+2 (a+1)- 3 (a- 1).+ , - +得-,++考点:整式的加减.分析:(1)先去括号,再合并同类项即可;(2) 先去括号,再合并同类项即可;(3) 先去括号,再合并同类项即可;(4) 先去括号,再合并同类项即可.解答: 解:(1) 7x+4 ( X 2- 2)- 2 (2x 2- x+3 )=7x+4x - 8 - 4x +2x - 6=9x - 14;2 2 2 2 2(2) 4ab - 3b 2- [ (a 2+b 2)-( a 2 - b 2)]2 r 2 2 2 2=4ab - 3b - [a +b - a +b ]2 2 =4ab - 3b - 2b2 =4ab - 5b ;2 2 (3) (3mn - 5m ) -( 3m - 5mn )2 c 2=3mn — 5m - 3m +5mn2 =8mn — 8m ;(4) 2a+2 (a+1)- 3 (a - 1)=2a+2a+2 - 3a+3=a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地 中考的常考点. 4.化简 2 2 (1) 2 (2a +9b ) +3 (- 5a - 4b ) 3 2 3 2(2) 3 (x 3+2x 2- 1)-( 3x 3+4x 2- 2) (1) 原式利用去括号法则去括号后,合并同类项即可得到结果;(2) 原式利用去括号法则去括号后,合并同类项即可得到结果. 解答: 解:(1)原式=4a 2+18b - 15a 2- 12b2=-11a +6b ; (2)原式=3X '+6X 2- 3 - 3x 3- 4x 2+2=2x 2- 1.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.考点:整式的加减. 专题:计算题. 分析:学习-----好资料解:原式=3x - 3 - x+5=2x+2 , 当x=2 时,原式=2 >2+2=6 .点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并冋类项,这是各地中考的常考点.6 .已知x=5, y=3,求代数式3 (x+y) +4 (x+y) - 6 (x+y)的值.考点:整式的加减一化简求值.分析::先把x+y当作一个整体来合并同类项,再代入求出即可.解答:解:T x=5, y=3,••• 3 (x+y) +4 ( x+y) - 6 (x+y) =x+y=5+3=8.点评:本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.2 2 2 27.已知A=x2- 3y2, B=x2- y2,求解2A - B .考点:整式的加减.分析:直接把A、B代入式子,进一步去括号,合并得出答案即可.解答: 2 2 2 2解:2A - B=2 (x - 3y )-( x - y )2^2 2 2=2x - 6y - x +y2 2点评:. 此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.2 28 若已知M=x +3x - 5, N=3x +5,并且6M=2N - 4,求x.考点:整式的加减;解一兀一次方程.专题:计算题.分析:■把M与N代入计算即可求出x的值.解答:2 2 解:••• M=x +3x - 5, N=3x +5, •••代入得:6x2+l8x - 30=6x2+10- 4,解得:x=2.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2 29.已知A=5a - 2ab, B= - 4a +4ab,求:(1)A+B ;(2)2A - B;(3)先化简,再求值:3 (A+B )- 2 (2A - B),其中A= - 2, B=1 .考点:整式的加减;整式的加减一化简求值.专题:计算题.分析:(1)把A与B代入A+B中计算即可得到结果;(2)把A与B代入2A - B中计算即可得到结果;(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值.解答:2 2解: (1 )T A=5a - 2ab, B= - 4a+4ab,=10.2 2 2••• A+B=5a - 2ab - 4a +4ab=a +2ab ;2 2(2) v A=5a - 2ab, B= - 4a +4ab ,• 2A - B=10a 3 4 - 4ab+4a 2 - 4ab=14a 2- 8ab ;(3) 原式=3A+3B - 4A+2B= - A+5B ,把A= - 2, B=1代入得:原式=2+5=7 .点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 10 .设 a=14x - 6, b= - 7x+3 , c=21x - 1.(1) 求 a -( b - c )的值;(2) 当x=时,求a -( b - c )的值.4 考点:整式的加减;代数式求值. 专题:计算题. 分析: (1) 把a, b , c 代入a -( b - c )中计算即可得到结果;(2) 把x 的值代入(1)的结果计算即可得到结果.解答:: 解:(1 )把 a=14x - 6, b= - 7x+3 , c=21x - 1 代入得:a - (b - c ) =a - b+c=14x - 6+7x - 3+21x - 1=42x - 10;(2)把 x=_代入得:原式=42 X - 10=10.5 - 10=0.5. 4 4点评:. 此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.211. 化简求值:已知 a 、b 满足:|a -2|+ (b+1) =0,求代数式 2 (2a- 3b )-( a - 4b ) +2 (- 3a+2b )的值.考点:整式的加减一化简求值;非负数的性质:绝对值;非负数的性质:偶次方. 专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值. 解:原式=4a - 6b - a+4b - 6a+4b= - 3a+2b ,2 T |a- 2|+ (b+1) =0 ,• a=2, b= - 1,则原式=-6 - 2= - 8.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.2 2 212. 已知(x+1 ) +|y - 1|=0,求 2 (xy - 5xy ) -( 3xy - xy )的值.2因为平方与绝对值都是非负数,且(x+1 ) +|y - 1|=0,所以X+仁0, y -仁0,解得x , y 的值.再运用整式 的加减运算,去括号、合并同类项,然后代入求值即可.2 2 解:2 (xy - 5xy ) -( 3xy - xy )2 2 =(2xy - 10xy )-( 3xy - xy )2 c 2 =2xy - 10xy - 3xy +xy2 2 =(2xy+xy ) + (- 3xy - 10xy )4 =3xy - 13xy ,八2■( x+1 ) +|y — 1|=0• ( x+1) =0, y - 1=0• x= - 1, y=1 .•••当 x= - 1, y=1 时,2 23xy - 13xy =3 x( - 1) XI - 13X( - 1) XI=-3+13解答: 点评:整式的加减一化简求值;非负数的性质:绝对值;非负数的性质:偶次方.2 2答:2 (xy - 5xy ) -( 3xy - xy )的值为 10.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简. 考点: 分析: 解答:。

北师大版数学七年级上3.4《整式的加减》测试(含答案)

北师大版数学七年级上3.4《整式的加减》测试(含答案)

北师大版数学七年级上3.4《整式的加减》测试(含答案)整式的加减测试时间:60分钟总分:100分题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为( )A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的计算结果是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的结果是( )A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+ 2bD. 10a+6bA. 少24B. 多24C. 少4D. 多45.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)6.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .7.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.8.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.9.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.10.计算2(4a−5b)−(3a−2b)的结果为______.11.化简:a−(a−3b)=______.12.已知a,b,c为有理数,且满足−a>b> |c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(结果用含a,b的代数式表示)13.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.14.计算:2(x−y)+3y=________.15.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、计算题(本大题共4小题,共24.0分)16.已知x+y=1,求代数式3x−2y+1+ 3y−2x−5的值.17.已知a2−1=b,求3(a2−b)+a2−b)的值.2(a2−1218.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当x=−1时A−2B的值.19.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,其中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)20.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,并且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b< 0,求(1)中多项式C的值.21.第一车间有x人,第二车间比第一车间人少20人,如果从第二车间调出10人数的34到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?答案和解析【答案】1. C2. C3. C4. C5. C6. D7. A8. C9. A10. C11. b−a12. −1013. 2114. 6a+8b15. 5a−8b16. 3b17. −3a−b18. a+2b19. 2x+y20. −10121. 解:∵x+y=1,∴原式=x+y−4=1−4=−3.22. 解:原式=3a2−3b+a2−2a2+b=2a2−2b,∵a2−1=b,∴a2−b=1,则原式=2(a2−b)=2.23. 解:(1)∵A=2x2−3x+1,B=−3x2+ 5x−7,∴A−2B=2x2−3x+1−2(−3x2+5x−7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当x =−1时,原式=8−7−13=−12.24.解:∵(2b −1)2+|a +2|=0,∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25.解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b+4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a=−2,b=−3时,C=−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:调动后,第一车间的人数比第二车间多(14x+40)人.【解析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b =(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+ b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长等于(长+宽)×2可以解答本题.本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6. 解:根据题意得:12⋅6m −(m +n)=3m −m −n =2m −n ,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7. 解:|a +b +c|−|a −b −c|−|a −b +c|−|a +b −c|=(a +b +c)−(b +c −a)−(a −b +c)−(a +b −c)=a +b +c −b −c +a −a +b −c −a −b +c=0故选:A .首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的方法可以对原式进行化简,从而本题得以解决.本题考查整式的加减,解题的关键是对原式的化简要化到最简.9. 解:正确结果为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则结果比原来少24,故选A求出正确的结果,比较即可.此题考查了整式的加减,熟练掌握去括号法则是解本题的关键.10. 解:若A和B都是4次多项式,则A+B的结果的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11. 解:根据数轴上点的位置得:a<b<0< c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.12. 解:原式=2a+2b−4+4b+8a+2= 10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式进行计算即可.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发现系数间的关系,把两个等式相加,便可求出a+b+c的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长等于两邻边之和的2倍,表示出周长,去括号合并即可得到结果.此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+ 2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义计算即可得到结果.本题考查了整式的加减求值,绝对值的性质,解答本题的关键是掌握绝对值的性质,进行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考查的是整式的加减,根据题意列出关于a、b的式子是解答此题的关键.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+ y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21. 原式合并同类项得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22. 原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23. (1)把A与B代入A−2B中,去括号合并即可得到结果;(2)把x=−1代入结果中计算即可得到结果.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入计算即可.本题考查了整式的加减−化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+2a2b+4代入计算即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,计算即可求解.本题考查了整式的加减、去括号法则、绝对值的定义以及代数式求值.解题的关键是熟记去括号法则,熟练运用合并同类项的法则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出调动后两车间的人数,再作差即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。

最新北师大版七年级数学上学期《整式及其加减》单元测试题及答案.docx

最新北师大版七年级数学上学期《整式及其加减》单元测试题及答案.docx

北师大版七年级数学上册 第三章 整式及其加减 单元测试题一、选择题1.一个长方形一边长是2a +3b ,另一边长是a +b ,则这个长方形的周长是( ) A .12a +16b B .6a +8b C .3a +8b D .6a +4b2.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x 3.在下列代数式中,次数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy4.如果13x a +2y 3与-3x 3y 2b -a 是同类项,那么a ,b 的值分别是( )A .1,2B .0,2C .2,1D .1,1 5.下列合并同类项正确的是( )A .4a 2+3a 3=7a 6B .4a 3-3a 3=1C .-4a 3+3a 3=-a 3D .4a 3-3a 3=a 6.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( ) A .3,-3 B .2,-3 C .5,-3 D .2,37.有理数a ,b 在数轴上的位置如图所示,则|a +b|-2|a -b|化简后为( )A .b -3aB .-2a -bC .2a +bD .-a -b8.不改变多项式3b3-2ab2+4a2b-a3的值,给后面的三项添上括号,结果正确的是( ) A.3b3-(2ab2+4a2b-a3) B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3) D.3b3-(2ab2-4a2b+a3)9.根据流程图中的程序,当输入数值x为-2时,输出数值y为( )A.4 B.6 C.8 D.1010.小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数3,6,9,12,…称为三角形数.类似地,图②中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )A.2010 B.2012 C.2014 D.2016二、填空题11.根据图中数字的规律在最后一个空格中填上适当的数字.12.一个两位数,个位数字与十位数字的和为6,设十位数字为x,则这个两位数可表示为___________.13.如下图是一组有规律的图案,第1个图案由4个菱形组成,第2个图案由7个菱形组成,…,第n(n是正整数)个图案由____________个菱形组成.14.毕达哥拉斯学派对“数”与“形”的巧妙结合作了如下研究:第六层几何点数……………第n层几何点数请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.15.先化简,再求值:(1)14(-4x 2+2x -8y)-(-x -2y),其中x =12,y =2016;(2)13(9ab 2-3)+(7a 2b -2)+2(ab 2-1)-2a 2b ,其中a =-2,b =3.16.已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1. (1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值;(3)如果A +2B +C =0,则C 的表达式是多少?三、解答题17.一位同学做一道题:“已知两个多项式A ,B ,计算2A +B ”.他误将“2A +B ”看成“A +2B ”,求得的结果为9x 2-2x +7.已知B =x 2+3x -2,请求出2A +B 的正确答案.18.小慧和小华玩猜数游戏,小慧对小华说:“你想好一个数,这个数乘以6,加上3;得到的数除以3,再减去你想的数.只要你告诉我正确的结果,我就知道你想的数是几.”小华很好奇,就想了一个数,并按小慧说的方法计算出结果,告诉小慧说:“我计算结果是-2.”请你解决以下问题:(1)小慧可以猜出小华想的数是____;(2)请你用代数方法说明,小慧为什么总能猜出别人(不一定是小华)想的数.答案1---5 BCAAC 6---10 AADBD 11. 738 12. 9x +6 13. (3n +1) 14.第六层几何点数6 11 16 21 …… … … … 第n 层几何点数 n2n -13n -24n -315. (1)解:原式=-x 2+32x ,当x =12时,原式=12 (2) 解:原式=5ab 2+5a 2b -5,把a =-2,b =3代入上式,得原式=-3516. 解:(1)3A +6B =15ab -6a -9 (2)3A +6B =15ab -6a -9=a(15b -6)-9,因为3A +6B 的值与a 无关,所以15b -6=0,得b =25(3)C =-5ab +2a +317. 解:由A +2(x 2+3x -2)=9x 2-2x +7得:A =7x 2-8x +11,2A +B =2(7x 2-8x +11)+(x 2+3x -2)=15x 2-13x +20 18. (1) -3(2) 解:设小华想的数是a ,则运算结果是(6a +3)÷3-a =a +1,这说明结果总比想的数大1,即想的数是结果减去1。

2024-2025学年北师大版七年级数学上册第三章+整式的加减+单元测试题+

2024-2025学年北师大版七年级数学上册第三章+整式的加减+单元测试题+

第三章 整式的加减 单元测试题 2024-2025学年北师大版七年级数学上册A 卷( 共 100 分)第Ⅰ卷(选择题,共 32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案写在答题表格内)1 . 下列代数式书写规范的是( )A . x12B . x ÷ yC . a(x + y )D . 121xy 2 . 用代数式表示“x 与y 的2倍的和”,正确的是( )A . x + 2yB . 2x + yC . 2x + 2yD . x 2 + y 23 . 在代数式:- π ,0 ,a , 65,1,3ab x y x -- 中,单项式有( ) A . 2 个 B . 3 个 C .4 个 D .5 个4 . 多项式a 3 - 4 a 2 b 2+ 3 ab - 1的项数和次数分别是( )A . 3 和4B . 4 和4C . 3 和3D . 4 和35 . 一个三位数,百位上的数字为x,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含x 的代数式表示为( )A . 112x - 30B . 100x - 30C . 112x + 30D . 102x + 306 . 某产品原价为a 元,提价10% 后又降价了10% ,则现在的价格是( )A . 0 . 9 a 元B . 1 . 1 a 元C . a 元D . 0 . 99 a 元7 . 已知a 2 + 2a - 3 = 0 ,则代数式2a 2+ 4 a - 3 的值是( )A . - 3B . 0C . 3D . 68. 按如图所示的方式摆放圆和三角形,观察图形,则第10 个图形中圆有( )A . 36 个B . 38 个C . 40 个D . 42 个第Ⅱ 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20 分)9 . 去括号:+ ( a - b ) = _______ , - ( a + b) = ________.10 . 单项式-2 πab 2 的系数是________,次数是_________.11 . 若单项式3x m y 与-2x 6 y 是同类项,则m =________.12 . 已知一个多项式与多项式3x 2 + x 的和等于3x 2 + 4x - 1,则这个多项式是________.13 . 已知a 1 = 23-,a 2=55,a 3=107-,a 4 =179,a 5=2611- ,则a 8=_______. . 三、解答题(本大题共5个小题,共48分)14 .(本小题满分12 分,每题3分)计算:( 1 )5 m 2 - 5 m + 7 - 6 m 2- 5 m - 10 ; (2 ) ( 8a - 7 b ) - (4 a - 5 b ) ;(3 )5 (a 2 b - 3 ab 2 ) - 2 (a 2 b - 7 ab 2 ) ; (4 )5 abc - { 2a 2 b - [ 3 abc - (4 ab 2- ab 2 ) ] } .15 .(本小题满分9分)列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2, 用 含m 的代数式表示这个三位数;(2)东方红电影院第一排有15 个座位,后面每排比前一排多2 个座位,用含n 的代数式表示 第n 排的座位数;(3 ) 如图,将长为4m 的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,用含m 的代数式表示每个小长方形的周长.16 .(本小题满分8分)先化简,再求值:(7x + 4y + xy) - 6 (xy x y -+65),其中x-y = 5 , - xy = 3 .17 .(本小题满分9分) 先化简,再求值:a 2 - 10ab -5a 2 + 12ac - c 2+ 3 ab - 8ac + 4a 2 , 其中a 是平方等于它本身倒数的数,且|b + 2|+ (3a + c +21 )2 = 0 .18 .(本小题满分10 分)某商家销售一款定价1200 元的空调和300 元的电扇.“五一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台空调送一台电扇;方案二:空调和电扇都按定价的90%付款.现某客户要到该商场购买空调6 台,电扇x 台(x > 6).(1)若该客户按方案一购买,则需付款_____元;若该客户按方案二购买,则需付款_________元;(用含x 的代数式表示)(2)当x= 10 时,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案并计算需付款多少元.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19 . 一辆公交车原有a 名乘客,到某站后,下去一半乘客,又上来b 名乘客,此时公交车上乘客的人数为_________.20 . 一组按规律排列的式子:,......,,,41138252ab a b a b a b -- 第n 个式子是________(n 为正整数).21 . 若b a b a +-2 = 5,则代数式 b a b a +-)2(2+ ba b a -+2)(3的值为_______ . 22 . 有理数a 、b 、c 在数轴上对应的点的位置如图所示,试化简:|a + c|-|a - b - c| -|b - a| +|b + c|=__________. .23 . 观察下列等式:第一个等式:a 1=22213⨯⨯=211⨯-2221⨯; 第二个等式:a 2=32324⨯⨯=2221⨯-3231⨯; 第三个等式:a 3=22435⨯⨯=3231⨯-4241⨯; 第四个等式:a 4=52546⨯⨯=4221⨯-5251⨯……, 按上述规律,回答以下问题:(1 )用含n 的代数式表示第n 个等式:a n =___________.(2)计算:a 1+ a 2+ a 3+ …+a 20=_________.二、解答题(本大题共3个小题,共30 分)24 .(本小题满分8分)已知代数式2x 2 + ax - y + 6 - bx 2 + 3 x - 5 y - 1 的值与x 的取值无关,且A = 4a 2 - ab + 4b 2,B = 3a 2 - ab + 3b 2,求3A -2(3A - 2B )- 3(4A - 3 B )的值.25 .(本小题满分10 分)(1)探索规律并填空:1 + 2 =2)21(2+⨯;1 + 2 + 3 =2)31(3+⨯;1 + 2 + 3 + 4 =2)41(4+⨯; 则1 + 2 + 3 + …+20 =_________,1 + 2 + 3 + …+ n =__________.(2)将火柴棒按如图所示的方式搭图形.① 填表:②照这样的规律搭下去:(i)第n 个图形的大三角形周长的火柴棒是几根?(ii)第n 个图形的小三角形有几个?第100 个图形的小三角形有几个?(iii)第n 个图形需要多少根火柴棒?26 .(本小题满分12 分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费标准如表:(注:水费按月份结算,m3表示立方米)例:若某户居民1月份用水8m3,应交水费2 × 6 + 4 ×(8 - 6)= 20元. 请根据表中信息解答下列问题:(1)若该户居民2月份用水4m3,则应交水费多少元?(2)若该户居民3 月份用水am 3(其中6 < a < 10),则应交水费多少元?(用含a 的代数式表示)(3)若该户居民4、5 两个月共用水15 m3(5 月份用水量超过了4月份),设4月份用水xm 3,求该户居民4、5 两个月共交水费多少元?(用含x的代数式表示)。

新北师大版七年级上册《整式的加减》测试题及答案

新北师大版七年级上册《整式的加减》测试题及答案

2016年暑假补课资料22第1页 共8页 ◎ 第2页 共8页……○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………装…………○…………订…………○…………线…………○…………新北师大版七年级上册《整式的加减》测试题 时间90分钟 满分100分 2016.7.18一、选择题(每小题3分共30分) 1.下列代数式中符合书写要求的是( ) A.B.n2C.a ÷bD.2.下列各式中是代数式的是( )A.a 2﹣b 2=0 B.4>3 C.a D.5x ﹣2≠0 3.下列各组的两个代数式中,是同类项的是( ) A .m 与m1 B .0与21 C .a 2与b 3 D .x 与2x4.多项式232-+x x 中,下列说法错误..的是( ) A .这是一个二次三项式 B .二次项系数是1 C .一次项系数是3 D .常数项是25.下列运算正确的是( )A .23a a a +=B .23a a a ⋅=C .22a a ÷=D .2(2)4a a =6.如果2|5|(3)0a b -++=,那么代数式)21(1b a-的值为( ). A .75 B .85 C .57D .587.如果单项式13a x y +-与212b x y 是同类项,那么a 、b 的值分别为( )A .1a =,3b =B .1a =,2b =C .2a =,3b =D .2a =,2b =8.整式y x 23.0-,0 ,21+x ,222abc -,231x ,y 41-,21312--ab 中单项式的个数有 ( ) A 、3个 B 、4个 C 、5个 D 、6个9.如果773x y a b +和2427y xab --是同类项,则x 、y 的值是( ) A .3x =-,2y = B .2x =,3y =- C .2x =-,3y = D .3x =,2y =-10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .二、填空题(每小题3分共24分)11.某商品标价是a 元,现按标价打9折出售,则售价是 元.12.单项式3222xy π-的系数是 ,次数是 .13.若23a b -=,则92a b -+=______________.14.若4m b a 2-与7n 2b a 5+是同类项,则m+n= .15.观察下面单项式:a ,-2 ,8,4,432a a a -,根据你发现的规律,第6个式子是 .16.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;第3页 共8页 ◎ 第4页 共8页(3)62-32=3×9;………则第n (n 是正整数)个等式为_____________________________. 17.如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第n 个图形需 根火柴棒。

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)一、选择题1.如果一个两位数是十位数字是a ,个位数字是b ,则这个两位数用代数式表示为( )A .abB .10abC .a b +D .10a b +2.已知12a b -=,则代数式662a b --的值是( ). A .0B .1C .-1D .53.下列代数式中,属于单项式的是( )A .a b +B .a b -C .abD .a b4.下列各选项中的两个项是同类项的是( ).A .32a b 和23a bB .35a b -和33baC .23abc 和23a bcD .2a 和2a5.“居家嗨购,网上过年”,为做好疫情防控并促进春节消费,山西省组织开展了2022年“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工,该企业选购了甲种物品()3a +件,单价是100元;乙种物品a 件,单价是240元.则该企业共花费在( )A .()140300a +元B .()200300a +元C .()300300a +元D .()340300a +元6.已知21a b -=-,则代数式124a b -+的值是( )A .-3B .-1C .2D .37.式子 2282259b x y a x m-++--,,,, 中, 单项式有( ) A .1个B .2个C .3个D .4个8.若关于 x 、 y 的多项式 2226431x ax y ax x +-+-- 中没有二次项,则 a = ( )A .3B .2C .12-D .3-9.下列运算中,正确的是( )A .325a b ab +=B .325235a a a +=C .22541a a -=D .22330a b ba -=10.图1是由3个相同小长方形拼成的图形其周长为24cm ,图2中的长方形ABCD 内放置10个相同的小长方形,则长方形ABCD 的周长为( )A .32cmB .36cmC .48cmD .60cm二、填空题11.“x 的2倍与5的和”用式子表示为 . 12.已知221a a -=-,则2362a a -+= .13.把多项式322245x y y x -+按x 的升幂排列 .14.若代数式39m a b 与22n a b -是同类项,那么m = ,n = .三、解答题15.如图是某居民小区的一块长为b 米,宽为2a 米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处各修建一个半径为a 米的扇形花台,然后在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?16.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.17.已知式 23372m km m +-+ 是关于m 的多项式,且不含一次项,求k 的值. 18.先化简,再求值:()222233()a ab a b ab b ⎡⎤+--++⎣⎦其中6a =和13b =-.四、综合题19.列代数式。

数学北师大版七年级上册整式的加减练习题

数学北师大版七年级上册整式的加减练习题

数学北师大版七年级上册整式的加减练习题整式的加减练题(含答案)一、选择题(每小题3分,共24分)1、下列各组中,不是同类项的是()A。

5ab与3abB、2xy与2xyC、5与D、2x与3x2、若七个连续整数中间的一个数为n,则这七个数的和为()A、B、7nC、-7nD、无法确定3、若3a与2a5互为相反数,则a等于()A、5B、-1C、1D、-54、下列去括号错误的共有()①a(b c)ab c;②a(b c d)a b c d;③a2(b c)a2b c;④a[(a b)]a a b a a bA、1个B、2个C、3个D、4个5、计算:m[n2m(m n)]等于()A、2nB、2mC、4m2nD、2n2m6、式子3a2b2与a2b2的差是()A、2a2B、2a22b2C、4a2D、4a22b27、a b c的相反数是()A、a b cB、a b cC、a b cD、a b c8、减去3m等于5m23m5的式子是()A、5(m1)B、5m26m5C、5(m1)D、(5m6m5)2二、填空题(每小题3分,共24分)1、若3ab与4ab是同类项,则m=7,n=2.2、在7x24x1x226x中,7x2与x2同类项,6x与4x是同类项,-2与1是同类项。

3、单项式3ab,2ab,3ab,4ab,3ab的和为1ab。

4、把多项式5xy3xy5xy按字母x的指数从大到小排列是:5xy xy3xy 5.5、若(a3a1)A a a4,则A=6a 3.6、化简:7x5x2x,a22/3=3a/3-22/3=3a-22/3,7a=36,a=36/7,7a2b7ba27ab(a b)。

7、去括号:x2(y2)x2y4,2a3(b c d)2a3b3c3d。

8、已知:a c2,b c3,则a b2c a c b c 5.三、解答题(52分)1、去括号并合并同类项①a(2a2)=a-2a+2=-a+2②(5x y)3(2x3y)=-5x-y-6x+9y=-11x+8y③2a(a b)2(a b)=2a+a+b-2a-2b=a-b④1(3xy x)[2(2x3yz)]=1-3xy+x+2(2x+3yz)=5x-3xy+6yz2、计算①3xy2xy3xy2xy=02(a+2a)+3(2a-3b)-4(3a-2b) = 2a+4a+6a-9b-12a+8b = -2a-b3a-(5a-ab+b)-(7ab-7b-3a) = 3a-5a+ab-b-7ab+7b+3a = -4a-6ab+6b4x-x+5)+(5x-x-4) = 8xxy-3223y)-(x-xy+1) = xy-3223y-x+xy-1 = -x-3223y-1阴影面积可以分成一个正方形和两个直角梯形,正方形面积为x^2,两个直角梯形面积分别为2x和x,所以阴影部分的面积为3x^2.A+B+C=2a+3b+2c,所以C=-(A+B)+2a+3b+2c=-a-b+c。

北师大版七年级数学上册《3.2整式的加减》同步测试题带答案

北师大版七年级数学上册《3.2整式的加减》同步测试题带答案

北师大版七年级数学上册《3.2整式的加减》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.下列运算正确的是()A.a+a2=a3B.4a2-2a2=2a2C.3a-a=2D.-2(a-2)=-2a-42.-a+b-c的相反数是()A.a-b-cB.a-b+cC.a+b-cD.a+b+c3.2a+5b与a-b的4倍的和是()A.8a-bB.3a+4bC.6a+bD.a+6b4.减去-3x得x2-3x+6的多项式为()A.x2+6B.x2+3x+6C.x2-6xD.x2-6x+65.去掉下列各式中的括号.(1)(a+b)+(c+d)=;(2)(a-b)-(c-d)=;(3)-(a+b)+(c-d)=;(4)-(a-b)-(c-d)=;(5)(a+b)-3(c-d)=.x-2的结果是.6.化简-4x+3137.若A=3x2-4y2,B=-y2-2x2+1,则A-B为.8.先去括号,再合并同类项.(1)8x+2y+2(5x-2y);(2)3a-(4b-2a+1);(3)(x2-y2)-4(2x2-3y2).9.先化简,再求值:4(y+1)+4(1-x)-4(x+y),其中x=17,y=143.【能力巩固】10.下列各式去括号正确的是()A.a2-(2a-b2+b)=a2-2a-b2+bB.-(2x+y)-(-x2+y2)=-2x+y+x2-y2C.2x2-3(x-5)=2x2-3x+5D.-a3-[-4a2+(1-3a)]=-a3+4a2-1+3a11.长方形的一边长等于3a+2b,另一边比它小a-b,那么这个长方形的周长是()A.12a+6bB.7a+3bC.10a+10bD.12a+8b12.已知多项式4x2-2kxy-3(x2-5xy+x)不含xy项,则k的值为.13.已知A=-x2+x+1,B=2x2-x.(1)当x=-1时,求A+2B的值.(2)若2A与B互为相反数,求x的值.14.若已知A=4x2-5x-3,B=4x2-5x-2,你能比较出A和B的大小吗?【素养拓展】15.老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a,b为常数,且表示系数),然后让同学给a,b赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2x2-3x-1,则甲同学给出a、b的值分别是a=,b=.(2)乙同学给出了a=5,b=-1,请按照乙同学给出的数值化简整式.(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果.参考答案【基础达标】1.B2.B3.C4.D5.(1)a+b+c+d(2)a-b-c+d(3)-a-b+c-d(4)-a+b-c+d(5)a+b-3c+3d6.-3x-67.5x 2-3y 2-18.解:(1)18x-2y.(2)5a-4b-1.(3)-7x 2+11y 2.9.解:原式=8-8x.当x=17,y=143时,原式=8-8×17=667.【能力巩固】10.D 11.C 12.7.513.解:(1)因为A=-x 2+x+1,B=2x 2-x所以A+2B=(-x 2+x+1)+2(2x 2-x )=-x 2+x+1+4x 2-2x=3x 2-x+1当x=-1时,原式=3×(-1)2-(-1)+1=5.(2)2A+B=0,即2(-x 2+x+1)+(2x 2-x )=0解得x=-2.14.解:因为A-B=(4x 2-5x-3)-(4x 2-5x-2)=-1<0所以A<B.【素养拓展】15.解:(1)(ax 2+bx-1)-(4x 2+3x )=ax 2+bx-1-4x 2-3x=(a-4)x 2+(b-3)x-1因为甲同学给出了一组数据,最后计算的结果为2x2-3x-1所以a-4=2,b-3=-3,解得a=6,b=0.故答案为6,0.(2)由(1)(ax2+bx-1)-(4x2+3x)化简的结果是(a-4)x2+(b-3)x-1,所以当a=5,b=-1时原式=(5-4)x2+(-1-3)x-1=x2-4x-1即按照乙同学给出的数值化简整式结果是x2-4x-1.(3)由(1)(ax2+bx-1)-(4x2+3x)化简的结果是(a-4)x2+(b-3)x-1因为丙同学给出一组数,计算的最后结果与x的取值无关所以原式=-1即丙同学的计算结果是-1.。

北师大版数学初一上《整式的加减》测试(含答案)

北师大版数学初一上《整式的加减》测试(含答案)

北师大版数学初一上《整式的加减》测试(含答案)时间:60分钟总分:100分题号一二三四总分得分1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为()A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的谋略终于是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的终于是()A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+2bD. 10a+6b5.如图,在两个形状、巨细完全相同的大长方形内,分别互不重叠地插进四个如图③的小长方形后得图①、图②,已知大长方形的长为a,两个大长方形未被笼盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)()A. −aB. −12a C. 12a D. a6.若长方形的周长为6m,一边长为m+n,则另一边长为()A. 3m+nB. 2m+2nC. m+3nD. 2m−n7.a,b,c为△ABC的三边,化简|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|,终于是()A. 0B. 2a+2b+2cC. 4aD. 2b−2c8.化简4(2x−1)−2(−1+10x),终于为()A. −12x+1B. 18x−6C. −12x−2D. 18x−29.若将代数式4(x+8)写成了4x+8,则终于比原来()A. 少24B. 多24C. 少4D. 多410.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)11.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .12.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.13.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.14.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.第 1 页15.谋略2(4a−5b)−(3a−2b)的终于为______.16.化简:a−(a−3b)=______.17.已知a,b,c为有理数,且满足−a>b>|c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(终于用含a,b的代数式表示)18.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.19.谋略:2(x−y)+3y=________.20.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、谋略题(本大题共4小题,共24.0分)21.已知x+y=1,求代数式3x−2y+1+3y−2x−5的值.b)的值.22.已知a2−1=b,求3(a2−b)+a2−2(a2−1223.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当时x=−1A−2B的值.24.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,此中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)25.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,而且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b<0,求(1)中多项式C的值.26.第一车间有x人,第二车间比第一车间人数的3少20人,要是从第二车间调出104人到第一车间,那么:(1)两个车间共有几多人?(2)变动后,第一车间的人数比第二车间多几多人?第 3 页答案和剖析【答案】 1. C 2. C 3. C 4. C 5. C 6. D 7. A8. C 9. A 10. C11. b −a 12. −10 13. 2114. 6a +8b 15. 5a −8b 16. 3b17. −3a −b 18. a +2b 19. 2x +y 20. −10121. 解:∵x +y =1,∴原式=x +y −4=1−4=−3.22. 解:原式=3a 2−3b +a 2−2a 2+b =2a 2−2b , ∵a 2−1=b ,∴a 2−b =1, 则原式=2(a 2−b)=2.23. 解:(1)∵A =2x 2−3x +1,B =−3x 2+5x −7,∴A −2B =2x 2−3x +1−2(−3x 2+5x −7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当时x =−1,原式=8−7−13=−12. 24. 解:∵(2b −1)2+|a +2|=0, ∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25. 解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b +4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a =−2,b =−3时,C =−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:变动后,第一车间的人数比第二车间多(14x+40)人.【剖析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b=(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考察了整式的加减,掌握去括号与合并同类项是解题的要害.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置鉴别出x、y的标记及绝对值的巨细,再去括号,合并同类项即可.本题考察的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的要害.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长即是(长+宽)×2可以解答本题.本题考察整式的加减,解答本题的要害是明确整式的加减的谋略要领.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−第 5 页6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考察了整式的加减,以及列代数式,熟练掌握运算准则是解本题的要害.6. 解:根据题意得:12⋅6m−(m+n)=3m−m−n=2m−n,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考察了整式的加减,熟练掌握运算准则是解本题的要害.7. 解:|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|=(a+b+c)−(b+c−a)−(a−b+c)−(a+b−c)=a+b+c−b−c+a−a+b−c−a−b+c=0故选:A.首先根据:三角形双方之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算要领,求出终于是几多即可.此题主要考察了三角形的三边的干系,以及整式加减法的运算要领,要熟练掌握,解答此题的要害是要明确:三角形双方之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的要领可以对原式举行化简,从而本题得以办理.本题考察整式的加减,解题的要害是对原式的化扼要化到最简.9. 解:正确终于为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则终于比原来少24,故选A求出正确的终于,比较即可.此题考察了整式的加减,熟练掌握去括号准则是解本题的要害.10. 解:若A和B都是4次多项式,则A+B的终于的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,议决合并同类项求和时,终于的次数定小于或即是原多项式的最高次数.本题考察的是整式的加减,熟知整式的加减实质上便是合并同类项是解答此题的要害.11. 解:根据数轴上点的位置得:a<b<0<c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置鉴别出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到终于.此题考察了整式的加减,数轴,以及绝对值,熟练掌握去括号准则与合并同类项准则是解本题的要害.12. 解:原式=2a+2b−4+4b+8a+2=10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式举行谋略即可.此题考察了整式的加减−化简求值,熟练掌握去括号准则与合并同类项准则是解本题的要害.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发觉系数间的干系,把两个等式相加,便可求出a+b+c的值,代入原式谋略即可求出值.此题考察了整式的加减,熟练掌握运算准则是解本题的要害.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长即是两邻边之和的2倍,表示出周长,去括号合并即可得到终于.此题考察了整式的加减运算,涉及的知识有:去括号准则,以及合并同类项准则,熟练掌握准则是解本题的要害.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到终于.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算准则即可求出答案.本题考察整式的运算准则,解题的要害是熟练运用整式的运算准则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意鉴别出绝对值里边式子的正负,利用绝对值的代数意义谋略即可得到终于.本题考察了整式的加减求值,绝对值的性质,解答本题的要害是掌握绝对值的性质,举行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考察的是整式的加减,根据题意列出关于a、b的式子是解答此题的要害.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到终于.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入谋略即可求出值.此题考察了整式的加减,熟练掌握去括号准则与合并同类项准则是解本题的要害.21. 原式合并同类项得到最简终于,把已知等式代入谋略即可求出值.此题考察了整式的加减−化简求值,熟练掌握运算准则是解本题的要害.第 7 页22. 原式去括号合并得到最简终于,把已知等式变形后代入谋略即可求出值.此题考察了整式的加减−化简求值,熟练掌握运算准则是解本题的要害.23. (1)把A与B代入A−2B中,去括号合并即可得到终于;(2)把x=−1代入终于中谋略即可得到终于.此题考察了整式的加减−化简求值,熟练掌握运算准则是解本题的要害.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入谋略即可.本题考察了整式的加减−化简求值:给出整式中字母的值,求整式的值的标题,一般要先化简,再把给定字母的值代入谋略,得出整式的值,不能把数值直接代入整式中谋略.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+ 2a2b+4代入谋略即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,谋略即可求解.本题考察了整式的加减、去括号准则、绝对值的定义以及代数式求值.解题的要害是熟记去括号准则,熟练运用合并同类项的准则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出变动后两车间的人数,再作差即可.本题考察的是整式的加减,熟知整式的加减实质上便是合并同类项是解答此题的要害.。

七年级数学上册 3.4《整式的加减》测试(含解析)(新版)北师大版

七年级数学上册 3.4《整式的加减》测试(含解析)(新版)北师大版

整式的加减测试题号一二三四总分得分1.已知某三角形的第一条边的长为,第二条边的长比第一条边的长多,第三条边的长比第一条边的长的2倍少,则这个三角形的周长为A. B. C. D.2.的计算结果是A. B. C. D.3.数x、y在数轴上对应点如图所示,则化简的结果是A. 0B. 2xC. 2yD.4.一根铁丝正好围成一个长方形,一边长为,另一边比它长,则长方形的周长为A. 6aB.C.D.5.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图的小长方形后得图、图,已知大长方形的长为a,两个大长方形未被覆盖部分分别用阴影表示,则图阴影部分周长与图阴影部分周长的差是用a的代数式表示A. B. C. D. a6.若长方形的周长为6m,一边长为,则另一边长为A. B. C. D.7.a,b,c为的三边,化简,结果是A. 0B.C. 4aD.8.化简,结果为A. B. C. D.9.若将代数式写成了,则结果比原来A. 少24B. 多24C. 少4D. 多410.若A和B都是4次多项式,则一定是A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)11.若a、b、c在数轴上的位置如图,则______ .12.已知,则代数式的值为______.13.若,,则______.14.一个长方形的一边长是,另一边长是,则这个长方形的周长是______.15.计算的结果为______.16.化简:______.17.已知a,b,c为有理数,且满足,,则______结果用含a,b的代数式表示18.七年级一班有个男生和个女生,则男生比女生少______ 人19.计算:________.20.已知,,则代数式的值是______ .三、计算题(本大题共4小题,共24.0分)21.已知,求代数式的值.22.已知,求的值.23.已知,,求;求当时的值.24.先化简,后求值.,其中.四、解答题(本大题共2小题,共16.0分)25.已知,,并且.求多项式C;若a,b满足,,且,求中多项式C的值.26.第一车间有x人,第二车间比第一车间人数的少20人,如果从第二车间调出10人到第一车间,那么:两个车间共有多少人?调动后,第一车间的人数比第二车间多多少人?答案和解析【答案】1. C2. C3. C4. C5. C6. D7. A8. C9. A10. C11.12.13. 2114.15.16. 3b17.18.19.20.21. 解:,原式.22. 解:原式,,,则原式.23. 解:,,;当时,原式.24. 解:,,,原式,当,,原式.25. 解:,,,,;,,,,,,或,.当,时,;当,时,.26. 解:第一车间有x人,第二车间比第一车间人数的少20人,第二车间的人数是人,人.答:两个车间共有人;从第二车间调出10人到第一车间,第一车间有人,第二车间的人数是人,人.答:调动后,第一车间的人数比第二车间多人.【解析】1. 解:根据题意得:,则这个三角形的周长为.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2. 解:原式,故选C.先去括号再合并同类项即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.3. 解:由图可知,,,原式.故选C.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.4. 解:一根铁丝正好围成一个长方形,一边长为,另一边比它长,此长方形的周长是:,选C.根据长方形的周长等于长宽可以解答本题.本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.5. 解:设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:,,即,图中阴影部分的周长为,图中阴影部分的周长,则图阴影部分周长与图阴影部分周长之差为故选C.设图中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6. 解:根据题意得:,故选D由长方形周长长宽,求出另一边长即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7. 解:故选:A.首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.8. 解:,故选C.由,根据去括号和合并同类项的方法可以对原式进行化简,从而本题得以解决.本题考查整式的加减,解题的关键是对原式的化简要化到最简.9. 解:正确结果为,则将代数式写成了,则结果比原来少24,故选A求出正确的结果,比较即可.此题考查了整式的加减,熟练掌握去括号法则是解本题的关键.10. 解:若A和B都是4次多项式,则的结果的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11. 解:根据数轴上点的位置得:,,则原式,故答案为:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.12. 解:原式,故答案为:.把,代入代数式进行计算即可.此题考查了整式的加减化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.13. 解:由题意得:,得:,即,则,故答案为:21发现系数间的关系,把两个等式相加,便可求出的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14. 解:根据题意列得:,则这个长方形的周长为.故答案为:.长方形的周长等于两邻边之和的2倍,表示出周长,去括号合并即可得到结果.此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.15. 解:原式,故答案为:原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.16. 解:原式故答案为:3b根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17. 解:,,,,,,,,,故答案为:.根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义计算即可得到结果.本题考查了整式的加减求值,绝对值的性质,解答本题的关键是掌握绝对值的性质,进行绝对值的化简.18. 解:年级一班有个男生和个女生,人.故答案为:,用女生的人数减去男生的人数即可得出结论.本题考查的是整式的加减,根据题意列出关于a、b的式子是解答此题的关键.19. 解:原式,故答案为:原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20. 解:,,原式,故答案为:原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21. 原式合并同类项得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.22. 原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.23. 把A与B代入中,去括号合并即可得到结果;把代入结果中计算即可得到结果.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式,然后把a和b的值代入计算即可.本题考查了整式的加减化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. 先由可得,再将,代入计算即可;先由,,且确定a,b的值,再代入中多项式C,计算即可求解.本题考查了整式的加减、去括号法则、绝对值的定义以及代数式求值解题的关键是熟记去括号法则,熟练运用合并同类项的法则.26. 用x表示出第二车间的人数,再把两式相加即可;用x表示出调动后两车间的人数,再作差即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。

北师大版七年级数学上册《3.2整式的加减》同步测试题及答案

北师大版七年级数学上册《3.2整式的加减》同步测试题及答案

北师大版七年级数学上册《3.2整式的加减》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.与12x2y是同类项的是()A.12x2z B.12xyC.-yx2D.xy22.下列各组式子中,两个单项式是同类项的是()A.2a与a2B.5a2b与a2bC.xy与x2yD.0.3mn2与0.3xy23.下列计算正确的是()A.2a+b=2abB.3x2-x2=2C.7mn-7nm=0D.a+a=a24.在代数式4x2+4xy-8y2-3x+1-5x2+6-7x2中,4x2的同类项是,6的同类项是.5.计算:2a2-3a2-5a2.6.合并同类项:(1)3x2-1-2x-5+3x-x2;(2)-0.8a2b-6ab-1.2a2b+5ab+a2b;(3)23a2-12ab+34a2+ab-b2;(4)6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y.7.先合并同类项再求值:3c2-8c-13c2+2c+3,其中c=-4.【能力巩固】8.小华同学在一次数学课外作业中完成的四道计算题如下:①x 2+x 2=x 4;②2ab-ab=2;③3xy 2-2y 2x=xy 2;④a 2-2a=-a.其中正确的有( )A.1个B.2个C.3个D.4个9.若-3x m -1y 4与13x 2y n +2是同类项,则m= ,n= .10.如果关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 的取值无关,求2m-3n 的值.11.若多项式mx 3-2x 2+3x-2x 3+5x 2-nx+1不含三次项及一次项,请你确定m ,n 的值,并求出mn+(m-n )2025的值.【素养拓展】12.我们知道,4x-2x+x=(4-2+1)x=3x.类似地,我们把(a+b )看成一个整体,则4(a+b )-2(a+b )+(a+b )=(4-2+1)(a+b )=3(a+b ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把(a-2b )2看成一个整体,合并5(a-2b )2-8(a-2b )2+6(a-2b )2.(2)已知x-2y+1=4,求3-4y+2x 的值.13.已知a ,b 为常数,且三个单项式4xy 2,axy 3-b ,3xy 相加得到的和仍然是单项式,那么a+b 的值可能是多少?请你说明理由.参考答案【基础达标】1.C2.B3.C4.-5x 2,-7x 2 15.解:2a 2-3a 2-5a 2=(2-3-5)a 2=-6a 2.6.解:(1)2x 2+x-6.(2)-a 2b-ab.(3)1712a 2+12ab-b 2.(4)-7x2y2-3xy-7x.7.解:原式=(3-13)c2+(-8+2)c+3=-10c2-6c+3.当c=-4时,原式=-10×(-4)2-6×(-4)+3=-133.【能力巩固】8.A9.3 210.解:-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3因为这个多项式的值与x的取值无关所以-3+n=0,m-1=0,即n=3,m=1所以2m-3n=2×1-3×3=-7.11.解:mx3-2x2+3x-2x3+5x2-nx+1=(m-2)x3+3x2+(3-n)x+1,因为不含三次项及一次项,所以有m-2=0,3-n=0,解得m=2,n=3,代入mn+(m-n)2025,原式=2×3+(-1)2025=5.【素养拓展】12.解:(1)5(a-2b)2-8(a-2b)2+6(a-2b)2=(5-8+6)(a-2b)2=3(a-2b)2.(2)因为x-2y+1=4所以x-2y=3所以3-4y+2x=3+2x-4y=3+2(x-2y)=3+2×3=9.13.解:因为4xy2,axy3-b,3xy的和仍是一个单项式,分以下2种情况:①a=-4,3-b=2,解得b=1,则a+b=-4+1=-3;②a=-3,3-b=1,解得b=2,则a+b=-3+2=-1.综上所述,a+b的值可能是-3或-1.。

2022-2023学年北师大版七年级数学上册《整式的加减》期末复习计算能力达标测评(附答案)

2022-2023学年北师大版七年级数学上册《整式的加减》期末复习计算能力达标测评(附答案)

2022-2023学年北师大版七年级数学上册《整式的加减》期末复习计算能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.化简:(1)﹣2xy2+4x2y﹣5xy2;(2)(5a2+a)﹣(3a2﹣2a).2.化简.(1)2(2a﹣b)﹣(2b﹣3a);(2)5xy+y2﹣2(4xy﹣y2+1);(3)(a2﹣b)+(a﹣b2)+(a2+b2).3.小明在计算多项式M减去多项式2x2y﹣3xy+1时,误计算成加上这个多项式,结果得到答案2x2y﹣xy.(1)请你帮小明求出多项式M;(2)对于(1)中的多项式M,当x=﹣1,y=2时,求多项式M的值.4.已知:A=ax2﹣x﹣1,B=3x2﹣2x+2(a为常数)(1)当a=时,化简:B﹣2A;(2)在(1)的条件下,若B﹣2A﹣2C=0,求C;(3)若A与B的和中不含x2项,求a的值.5.已知A=3a2b﹣2ab2+abc,2A+B=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的表达式;(3)小强同学说:“当c=2021时和c=﹣2021时,(2)中的结果都是一样的”,你认为你对吗?若a=,b=,求(2)中式子的值.6.先化简,再求值:(1)4xy2+6xy﹣2(4xy﹣2)﹣[﹣2(xy2+xy)],其中x3=﹣,|y+1|=2;(2)已知x2+3x+4=1,求﹣4x2﹣y2﹣2(﹣x2+3x﹣y2)的值.7.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶.(1)用含m的代数式表示共付款多少元?(2)若m=110,学校预算购买垃圾桶资金为1200元是否够用?为什么?8.某小区要在一块长方形的空地上修建三条人行道(阴影部分),其余空地铺设草坪进行美化,设计规划如图所示,长方形空地长为m米,宽为n米,且三条人行道宽均为2米.(1)请直接写出草坪面积是多少平方米?(用m,n表示)(2)若n=18,且人行道所占面积为整个长方形空地面积的,则该长方形空地的长为多少米?9.有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.10.初一某班小明同学做一道数学题,“已知两个多项式A=x2﹣4x,B=2x2+3x﹣4,试求A+2B.”其中多项式A的二次项系数印刷不清楚.(1)小明看答案以后知道A+2B=x2+2x﹣8,请你替小明求出系数“”;(2)在(1)的基础上,小明已经将多项式A正确求出,老师又给出了一个多项式C,要求小明求出A﹣C的结果,小明在求解时,误把“A﹣C”看成“A+C”,结果求出的答案为x2﹣6x﹣2,请你替小明求出“A﹣C”的正确答案.11.如图,在长方形中挖去两个三角形.(1)用含a、b的式子表示图中阴影部分的面积S.(2)当a=8,b=10时求图中阴影部分的面积.12.某市有两家出租车公司,收费标准不同,甲公司收费标准为:起步价9元,超过3千米后,超过的部分按照每千米1.6元收费.乙公司收费标准为:起步价20元,超过8千米后,超过的部分按照每千米1.3元收费.车辆行驶x千米.本题中x取整数,不足1km 的路程按1km计费.根据上述内容,完成以下问题:(1)当0<x<3,甲公司收费元,乙公司收费元;(2)当x>8,且x为整数时,甲、乙两公司的收费分别是多少?(结果用化简后的含x 的式子表示)(3)当行驶路程为6千米时,哪家公司的费用更便宜?便宜多少钱?说明理由.13.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是;(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值.14.已知A=5x2﹣mx+n,B=﹣3y2+2x﹣1,若A+B中不含一次项和常数项,求2(m2n﹣1)﹣5m2n+4的值.15.一辆客车从甲地开往乙地,车上原有(4a﹣2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(8a ﹣4b)少3人.(1)用代数式表示中途下车、上车之后,车上现在共有多少人?(2)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?16.现要从A,B两地运送苹果到C,D两地,A、B两地果园分别有苹果60吨和40吨,C、D两地分别需要苹果70吨和30吨;已知从A、B到C、D的运价如下表:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为吨,从A果园将苹果运往D地的运输费用为元;到C地到D地A果园每吨12元每吨15元B果园每吨8元每吨10元(2)用含x的式子表示出总运输费.17.一种笔记本售价2.3元/本,如果一次购买100本以上(不含100本),售价2.2元/本,请回答下列问题:(1)购买10本笔记本需要付元,购买105本笔记本需要付元;(2)购买n本笔记本需要付多少钱?(用含n的式子表示)(3)刘老师分两次购买这种笔记本,第一次购买了100本,第二次购买的数量比第一次多,但是花的钱更少,你觉得可能吗?如果可能,请直接列举出所有可能情况,如果不可能,请说明理由.18.为报名参加泉州台商投资区运动会首届羽毛球比赛项目,某校羽毛球队需要购买6支羽毛球拍和x盒羽毛球(x>6),羽毛球拍市场价为150元/支,羽毛球为30元/盒,以下是泉州台商投资区本地的两家商场提供竞标方案:甲商场竞标方案为:所有商品九折.乙商场竞标方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售.请你根据两家商场提供的竞标方案完成下列问题:(1)分别用含x的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当x=20时,请通过计算说明选择哪个商场购买比较省钱.(3)当x=20时,请根据两家商场所提供的竞标方案,拟出一种折中的新方案,通过计算说明你设计的新方案所需的费用最少,并求出新方案的费用.19.某超市在双十一期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元八折优惠500元或超过500元其中500元部分给予八折优惠,超过500元部分给予七折优惠(1)若王老师一次性购物600元,他实际付款元.若王老师实际付款160元,那么王老师一次性购物可能是元;(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元(用含x的代数式表示并化简);(3)如果王老师有两天去超市购物原价合计850元,第一天购物的原价为a元(200<a <300),用含a的代数式表示这两天购物王老师实际一共付款多少元?当a=250元时,王老师两天一共节省了多少元?20.“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩,两江育才中学初一的鑫鑫从学校了解到,上周五这一天,七年级全体同学共使用口罩1000只,喜欢统计的鑫鑫本周统计了七年级全体同学每天的口罩使用情况,制作了如下的一个统计表,以1000只为标准,其中每天超过1000只的记为“+”,每天不足1000只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级全体同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多1020只,求本周七年级所有同学们购买口罩的总金额?参考答案1.解:(1)原式=﹣7xy2+4x2y;(2)原式=5a2+a﹣3a2+2a=2a2+3a.2.解:(1)2(2a﹣b)﹣(2b﹣3a)=4a﹣2b﹣2b+3a=7a﹣4b;(2)5xy+y2﹣2(4xy﹣y2+1)=5xy+y2﹣8xy+2y2﹣2=﹣3xy+3y2﹣2;(3)(a2﹣b)+(a﹣b2)+(a2+b2)==.3.解:(1)由题意,得M+(2x2y﹣3xy+1)=2x2y﹣xy,∴M=2x2y﹣xy﹣(2x2y﹣3xy+1)=2x2y﹣xy﹣2x2y+3xy﹣1=2xy﹣1.(2)当x=﹣1,y=2时,M=2×(﹣1)×2﹣1=﹣4﹣1=﹣5.4.解:(1)B﹣2A=3x2﹣2x+2﹣2(ax2﹣x﹣1)=(3﹣2a)x2+4当a=时,原式=2x2+4.答:B﹣2A=2x2+4.(2)∵B﹣2A﹣2C=0,∵B﹣2A=2x2+4.∴2x2+4﹣2C=0.答:C=x2+2.(3)∵A+B=ax2﹣x﹣1+3x2﹣2x+2=(a+3)x2﹣3x+1,∵不含x2项,∴a+3=0,∴a=﹣3.答:a的值为﹣3.5.解:(1)∵A=3a2b﹣2ab2+abc,2A+B=4a2b﹣3ab2+4abc,∴B=(4a2b﹣3ab2+4abc)﹣2A=(4a2b﹣3ab2+4abc)﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc.(2)2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2.(3)由(2)可知,当c=2021时和c=﹣2021时,(2)中的结果都是一样的,∴小强同学说的对;当a=,b=时,原式=﹣=0.6.解:(1)原式=4xy2+6xy﹣8xy+4﹣(﹣2xy2﹣2xy)=4xy2﹣2xy+4+2xy2+2xy=6xy2+4,由题意可知:x=﹣,y+1=±2,∴x=﹣,y=1或﹣3,当x=﹣,y=1时,原式=6×(﹣)×1+4=﹣3+4=1,当x=﹣,y=﹣3时,原式=6×(﹣)×9+4=﹣27+4=﹣23.(2)原式=﹣4x2﹣y2+2x2﹣6x+y2=﹣2x2﹣6x,∵x2+3x+4=1,∴x2+3x=﹣3,∴原式=﹣2(x2+3x)=﹣2×(﹣3)=6.7.解:(1)购进7个大垃圾桶和10个小垃圾桶,共付款7m+10×50=(7m+500)(元);(2)当m=110时,7m+500=7×110+500=1270(元),∵1200<1270,∴1200元不够用.8.解:(1)(m﹣4)(n﹣2)平方米;(2)由题意可知,,∵n=18,∴16(m﹣4)=14m,解得m=32.答:长方形空地的长为32米.9.解:根据数轴得:﹣3<﹣b<﹣2,1<a<2,∴1﹣3b<0,2+b>0,3b﹣2>0,则原式=3b﹣1+4+2b﹣3b+2=2b+5.10.解:(1)因为A+2B=x2+2x﹣8,B=2x2+3x﹣4,所以A=x2+2x﹣8﹣2B=x2+2x﹣8﹣4x2﹣6x+8=﹣3x2﹣4x故答案为﹣3.(2)因为A+C=x2﹣6x﹣2,A=﹣3x2﹣4x,所以C=x2﹣6x﹣2+3x2+4x,=4x2﹣2x﹣2所以A﹣C=(﹣3x2﹣4x)﹣(4x2﹣2x﹣2)=﹣3x2﹣4x﹣4x2+2x+2=﹣7x2﹣2x+2.答:A﹣C的结果为﹣7x2﹣2x+2.11.(1)阴影部分面积:S=2ab﹣2×ab=ab;(2)当a=8,b=10时,原式=8×10=80.12.解:(1)根据规定可得:当0<x<3,甲公司收:9元,乙公司收费20元;故答案为:9,20;(2)x>8时,甲公司收费:9+1.6×(x﹣3)=(1.6x+4.2)元,乙公司收费:20+1.3×(x﹣8)=(1.3x+9.6)元;答:甲、乙两公司的收费分别是(1.6x+4.2)元、(1.3x+9.6)元;(3)当x=6时,甲公司收费:9+3×1.6=13.8(元),∵6<8,∴乙公司收费:20元,∵13.8<20,∴甲公司费用更便宜,20﹣13.8=6.2(元);答:甲公司费用更便宜,便宜6.2元.13.解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9.故答案为:﹣(a﹣b)2;﹣9.14.解:∵A=5x2﹣mx+n,B=﹣3y2+2x﹣1,∴A+B=(5x2﹣mx+n)+(﹣3y2+2x﹣1)=5x2﹣mx+n﹣3y2+2x﹣1=5x2﹣3y2+(2﹣m)x+(n﹣1),∵A+B中不含一次项和常数项,∴2﹣m=0,n﹣1=0,∴m=2,n=1,∴2(m2n﹣1)﹣5m2n+4=2m2n﹣2﹣5m2n+4=﹣3m2n+2,当m=2,n=1时,﹣3m2n+2=﹣3×22×1+2=﹣12+2=﹣10.15.解:由题意,中途下车[(4a﹣2b)+2]人,中途上车[(8a﹣4b)﹣3]人,(4a﹣2b)﹣[(4a﹣2b)+2]+[(8a﹣4b)﹣3]=4a﹣2b﹣2a+b﹣2+4a﹣2b﹣3=(6a﹣3b﹣5)人,答:中途下车、上车之后,车上现在共有(6a﹣3b﹣5)人;(2)当a=10,b=9时,6a﹣3b﹣5=6×10﹣3×9﹣5=60﹣27﹣5=28(人),答:当a=10,b=9时,中途下车、上车之后,车上现有28人.16.解:(1)∵从A果园运到C地的苹果为x吨,∴从A果园运到D地的苹果为(60﹣x)吨,从B果园运到C地的苹果为(70﹣x)吨,运到D地的苹果为(x﹣30)吨,故答案为:(60﹣x),(x﹣30);(2)总运输费为12x+15(60﹣x)+8(70﹣x)+10(x﹣30)=12x+900﹣15x+560﹣8x+10x﹣300=﹣x+1160(元).17.解:(1)购买10本笔记本需要付23元,购买105本笔记本需要付231元.故答案为:23,231;(2)当n≤100时,购买n本笔记本所需要的钱为2.3n元;当n>100时,购买n本笔记本所需要的钱为2.2n元;(3)如果需要100本笔记本,购买101本最省钱.购买100本笔记本所需钱数为:2.3×100=230(元),购买101本笔记本所需钱数为:2.2×101=222.2(元),购买102本笔记本所需钱数为:2.2×102=224.4(元),购买103本笔记本所需钱数为:2.2×103=226.6(元),购买104本笔记本所需钱数为:2.2×104=228.8(元),购买101本笔记本所需钱数为:2.2×105=231(元),故购买101本、102本、103本、104本比购买100本花的钱更少.18.解:(1)在甲商场购买所有物品的费用为:0.9(6×150+30x)=(27x+810)(元),在乙商场购买所有物品的费用为:6×150+30(x﹣6)=(30x+720)(元);(2)当x=20时,27x+810=1350(元);30x+720=1320(元);1350>1320,答:选择乙商场购买比较省钱.(3)当x=20时,在乙商场购买6支羽毛球拍和6盒羽毛球的费用为:6×150=900(元);在甲商场购买14盒羽毛球的费用为:30×14×0.9=378(元);合计的费用为:900+378=1278(元).所以在甲商场购买14盒羽毛球、在乙商场购买6支羽毛球拍和6盒羽毛球费用最少,只要1278元.19.解:(1)500×0.8+(600﹣500)×0.7=470(元),设王老师一次性购物可能是x元,①200<x<500,根据题意得,0.8x=160,解得x=200,②0<x<200,x=160;综上所述:王老师一次性购物可能是:160元或200元.故答案为:470,160或200;(2)当x小于500元但不小于200时,他实际付款0.8x元,当x大于或等于500元时,他实际付款:500×0.8+0.7(x﹣500)=(0.7x+50)(元),故答案为:0.8x,0.7x+50;(3)第一天购物实际付款:0.8a元,第二天购物实际付款:500×0.8+0.7(850﹣a﹣500)=(645﹣0.7a)(元),两天共付款:0.8a+645﹣0.7a=(0.1a+645)元,当a=250元时,0.1a+645=670元,所以共节省:850﹣670=180元.答:两天购物王老师实际一共付款(0.1a+645)元,一共节省了180元.20.解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+1000=1048(只),答:本周周四这天七年级同学使用口罩最多,数量是1048只;(2)本周共使用口罩数量为:1000×5+(﹣14+11﹣20+48﹣5)=5000+20=5020(只),设本周使用N95型口罩x只,得x+x+1020=5020,解得x=2000,∴x+1020=2000+1020=3020(只),∴1×3020+3×2000=3020+6000=9020(元),答:本周七年级所有同学们购买口罩的总金额为9020元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年暑假补课资料22
第1页 共8页 ◎ 第2页 共8页
……○…………装…………○…………订…………○…………线…………○…………
学校:___________姓名:___________班级:___________考号:___________
……○…………装…………○…………订…………○…………线…………○…………
新北师大版七年级上册《整式的加减》测试题 时间90分钟 满分100分 2016.7.18
一、选择题(每小题3分共30分) 1.下列代数式中符合书写要求的是( ) A.
B.n2
C.a ÷b
D.
2.下列各式中是代数式的是( )
A.a 2
﹣b 2
=0 B.4>3 C.a D.5x ﹣2≠0 3.下列各组的两个代数式中,是同类项的是( ) A .m 与
m
1 B .0与21 C .a 2与b 3 D .x 与2
x
4.多项式232
-+x x 中,下列说法错误..的是( ) A .这是一个二次三项式 B .二次项系数是1 C .一次项系数是3 D .常数项是2
5.下列运算正确的是( )
A .23a a a +=
B .23a a a ⋅=
C .22a a ÷=
D .2(2)4a a =
6.如果2
|5|(3)0a b -++=,那么代数式
)21(1
b a
-的值为( )
. A .75 B .85 C .5
7
D .58
7.如果单项式13
a x y +-与212
b x y 是同类项,那么a 、b 的值分别为
( )
A .1a =,3b =
B .1a =,2b =
C .2a =,3b =
D .2a =,2b =
8.整式y x 2
3.0-,0 ,
21+x ,2
22abc -,231x ,y 41-,2
1312--ab 中单项式的个数有 ( ) A 、3个 B 、4个 C 、5个 D 、6个
9.如果773x y a b +和2427y x
a
b --是同类项,则x 、y 的值是( ) A .3x =-,2y = B .2x =,3y =- C .2x =-,3y = D .3x =,2y =-
10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
二、填空题(每小题3分共24分)
11.某商品标价是a 元,现按标价打9折出售,则售价是 元.
12.单项式3
22
2xy π-的系数是 ,次数是 .
13.若23a b -=,则92a b -+=______________.
14.若4m b a 2-与7
n 2b a 5+是同类项,则m+n= .
15.观察下面单项式:a ,-2 ,8,4,4
32a a a -,根据你发现的规律,
第6个式子是 .
16.观察下列各式:(1)42
-12
=3×5;(2)52
-22
=3×7;
第3页 共8页 ◎ 第4页 共8页
(3)62-32
=3×9;………
则第n (n 是正整数)个等式为_____________________________. 17.如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第n 个图形需 根火柴棒。

18.一多项式为8
762
53
a
a b a b
a b
…,按照此规律写下去,这个
多项的的第八项是____。

三、解答题(19、20题每小题6分;21、22、23题每小题8分;24题10分)
19.化简(6分)
(1)()()32212ab ab --+-
(2)2(a 2b +ab 2)-2(a 2b -1)+2ab 2
-2
20.先化简,再求值:41(-4x 2
+2x -8)-(21x -1),其中x=2
1.
21.若2x
| 2a +1 |
y 与
2
1xy | b |
是同类项,其中a 、b 互为倒数, 求2(a -2b 2
)-2
1(3b 2
-a )的值.
2016年暑假补课资料22
第5页 共8页 ◎ 第6页 共8页
……○…………装…………○…………订…………○…………线…………○…………
学校:___________姓名:___________班级:___________考号:___________
……○…………装…………○…………订…………○…………线…………○…………
22. (6分) 观察下列算式:①1×3-2
2=3-4=-1;②2×4-23=8-9=-1;
③3×5-2
4=15-16=-1;④ ;…… (1)请你按以上规律写出第4个算式;
(2)请你把这个规律用含n 的式子表示出来: = ;
(3)你认为(2)中所写的式子一定成立吗?说明理由。

23.如图,四边形ABCD 与四边形CEFG 是两个边长分别为a 、b 的正方形.(8分)
(1)用a 、b 的代数式表示三角形BGF 的面积; (2)当a =4cm ,b =6cm 时,求阴影部分的面积.
24.(本题满分10分)
用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:
(1)观察图形,填写下表:
图形(1)(2)(3)
黑色瓷砖的块数47
黑白两种瓷砖的总块数1525
(2)依上推测,第n个图形中黑色瓷砖的块数为;
黑白两种瓷砖的总块数为(都用含n的代数式表
示)
(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出
是第几个图形;若不能,请说明理由.
第7页共8页◎第8页共8页
答案第1页,总1页
参考答案
1.D 2.C 3.B 4.D 5.B 6.C .7.A 8.C 9.B .
10.n (n+2) 11.0.9a 12.系数是2
23
π-,次数是3.13.6.
14.-1. 15.-32a
6
16. (n+3)2
=3(2n+3) 17.9,2n+1 18.-a 7
b
19.(1)78ab -+;(2)4ab
2
20.4
5
-
. 21.-8. 22.(1)4×6-25=24-25=-11;(2)、n (n+2)-2
(1)n =-1;(3)见解析.
23.(1)
12
(a+b )•b;(2)14cm 2
. 解:(1)根据题意得: △BGF 的面积是:
12BG•FG=1
2
(a+b )•b; (2)阴影部分的面积=正方形ABCD 的面积+正方形CGFE 的面积-△ADB 的面积-△BFG 的面积
=a 2
+b 2
-12a 2-1
2(a+b )•b =12a 2+12b 2-12
ab 当a =4cm ,b =6cm 时,上式=
12×16+12×36-12
×4×6=14cm 2
. 24.(1)10, 35 2分(2)3n+1, 10n+5 6分 (3)(105)(31)(31)2015n n n +-+-+= 8分
解得:n=503
答:第503个图形. 10分 解:(1)第一个图形有黑色瓷砖3+1=4块,黑白两种瓷砖的总块数为3×5=15块; 第二个图形有黑色瓷砖3×2+1=7块,黑白两种瓷砖的总块数为5×5=25块; 第三个图形有黑色瓷砖3×3+1=10块,黑白两种瓷砖的总块数为7×5=35块;
(2)第n 个图形中需要黑色瓷砖3n+1块,黑白两种瓷砖的总块数为(2n+1)×5=10n+5块; (3)根据题意可得:(105)(31)(31)2015n n n +-+-+= ,解得:n=503 答:第503个图形.。

相关文档
最新文档