电子测量报告.(DOC)

合集下载

电子测量实验报告

电子测量实验报告

福建农林大学计算机与信息学院课程名称:姓名:系:专业:年级:学号:指导教师:职称:信息工程类实验报告电子测量技术电子信息工程系电子信息工程年月日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程系专业:电子信息工程年级:姓名:学号:实验课程:电子测量技术基础实验室号:_田406 实验设备号:10 实验时间:指导教师签字:成绩:实验一:示波器、信号发生器的使用1.实验目的和要求1)了解示波器的结构。

2)掌握波形显示的基本原理、扫描及同步的概念。

3)了解电子示波器的分类及主要技术性能指标。

4)掌握通用示波器的基本组成及各部分的作用。

5)了解各种信号发生器如正弦信号发生器、低频信号发生器、超低频信号发生器、函数信号发生器等的工作原理和性能指标以及信号选择。

2.实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。

它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。

我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。

电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的x偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。

若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。

因此,只有当x偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。

一般说来,y偏转板上所加的待观测信号的周期与x偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。

这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。

电子测量实验报告

电子测量实验报告

实验三 电压表测量一、 实验目的1.掌握典型电压波形对不同检波方式电压表的影响,学会正确解读和修正测试数据2.学习用电压表测量噪声电压的方法二、 实验条件1、数字合成函数信号发生器DFG30一台2、超高频数字毫伏表TH2270一台3、均值表ESCORT97/EDM89S 一台4、6 位数字电压表 一台5、模拟数字示波器HM1507-3一台三、 实验原理1.交流电压表的波形响应一交流电压UX 的大小,可用该电压的峰值、平均值和有效值表征。

交流电压的峰值:是指任意周期性交变电压u (t)在一周期内,电压所能达到的最大值。

交流电压的平均值:指交流电压经过理想检波器后的平均值,实际中,不特别注明,是指全波平均值。

数学表达为:dt t u T V T ⎰=0)(1 交流电压的有效值:指电压通过某纯组负载所产生的热量与一个支流电压在同一负载上产生的热量相等时,该直流电压的数值就是交流电压的有效值。

数学表示为:⎰=T dt t u TV 02)(1 电压表的示值除另有说明外,均按正弦有效值刻度,读数用α表示。

根据交流电压的三种特征,可用峰值、平均值和有效值检波电路将测试电压变成直流,按直流电压进行刻度,分别构成峰值平均值和有效值电压表。

由检波方式的不同,要正确解读表的显示值,需加以换算。

交流电压的波峰因数KF 定义为该电压的有效值与平均值之比:VV K f = 交流电压的波峰因数KP 定义为电压的波峰值与有效值之比:VV K p ˆ= 2.测试按图3-1进行21峰值表的检波探头如图3-2:用这种探头可检测10KHz 以上的交流电压。

四、 实验内容1.用峰值表TH2270测电压置信号源输出2V ,频率100KHz ,占空比50%,偏置为零的正弦、三角和方波,有效值即DFG30所显示峰值的换算数值,或由数字电压表测得,作2.用均值表测电压3.测试信号的波形,波峰因数4.数字电压表检测电压使信号输出幅值2V,偏置1V,频率10KHz,占空比50%的信号,用注:求相对误差时,以VDC+AC为参考值。

电子元件测量实验报告

电子元件测量实验报告

电子元件测量实验报告引言电子元件测量是电子工程中非常重要的一项实验内容。

通过测量电子元件的电压、电流、电阻等特性参数,可以了解其工作状态和性能指标。

本实验旨在通过实际操作,掌握电子元件测量的方法和技巧,并理解各种测量仪器的工作原理。

实验目的本实验的主要目的是: 1. 熟悉常用的电子元件测量仪器,如电压表、电流表和万用表等; 2. 学习使用这些仪器进行直流电压、电流和电阻的测量; 3. 掌握使用示波器观察交流电信号的方法。

实验原理在进行电子元件测量之前,我们需要了解一些基本的电路原理。

1. 电压:电压是指电路两点之间的电势差,也可以理解为电荷在电路中的推动力。

电压通常用伏特(V)表示。

2. 电流:电流是指单位时间内通过导体横截面的电荷量,也可以理解为电荷在电路中的流动。

电流通常用安培(A)表示。

3. 电阻:电阻是指电路对电流流动的阻碍程度,也可以理解为导体对电流的阻力。

电阻通常用欧姆(Ω)表示。

实验步骤本实验分为以下几个步骤进行。

步骤一:直流电压的测量1.将电压表调至直流电压测量档位。

2.将电压表的正负极依次连接到待测电压的两个端点。

3.读取电压表上显示的数值,并记录下来。

步骤二:直流电流的测量1.将电流表调至直流电流测量档位。

2.将电流表的正负极依次连接到待测电流的两个端点。

3.读取电流表上显示的数值,并记录下来。

步骤三:电阻的测量1.将万用表调至电阻测量档位。

2.将待测电阻的两端分别连接到万用表的两个触头。

3.读取万用表上显示的数值,并记录下来。

步骤四:交流电信号的观察1.将示波器的探头连接到待测电路的输出端。

2.调节示波器的时间和电压基准,使波形清晰可见。

3.观察示波器上显示的波形,记录下来。

结果与分析根据实验步骤所得的数据,我们可以进行一些结果的分析和总结。

1. 直流电压的测量结果可以用来判断电路中不同位置的电势差,从而了解电压分布情况。

2. 直流电流的测量结果可以用来判断电路中不同位置的电流大小,从而了解元件的工作状态。

电子测量实验报告

电子测量实验报告

电子测量实验报告
本实验旨在通过使用多种电子仪器,对不同电路的电压、电流、电阻等参数进行测量。

下面是本实验的实验流程、实验仪器和实验结果的详细说明。

一、实验流程
本实验的实验流程如下:
1. 根据实验要求,选择合适的测量仪器和电路。

2. 连接电路,确保电路连接正确、无短路和开路。

3. 通过万用表或数字万能表测量电路中的电压、电流等参数。

4. 记录测量数据,并计算出电阻、电功率等参数。

5. 分析数据,检查实验结果的准确性和可靠性。

二、实验仪器
本实验使用的主要仪器如下:
1. 万用表/数字万用表:用于测量电路中的电量参数,如电压、电流等。

2. 示波器:用于显示电路中的变化趋势,如电流、电信号等。

3. 电源:提供电路所需的电能。

4. 电阻箱:用于产生不同的电阻值以调整电路。

三、实验结果
本实验通过测量不同电路中的电量参数,得出以下结果:
1. 测量直流电路中的电压、电流、电阻等参数。

2. 测量交流电路中的电压、电流、电容等参数。

3. 测量滤波电路中的电压、电流、电容等参数。

通过对以上数据的分析,可以得到每个电路的理论计算值和实验测量值的比较,从而评估实验结果的准确性和可靠性。

四、实验总结
本实验通过使用多种电子仪器,对不同电路的电量参数进行测量,加深了对电子学原理的理解。

在实验过程中,我们注意到仪器的使用方法和电路的连接方式对实验结果的影响,提高了我们的实验技能和注意力。

最终,我们得到了准确可靠的实验结果,为我们的学习和应用奠定了基础。

电子测量实验报告_电阻

电子测量实验报告_电阻

一、实验目的1. 熟悉电子测量仪器的使用方法;2. 掌握电阻的测量原理和方法;3. 提高实验操作技能和数据处理能力。

二、实验原理电阻是电路中的一种基本元件,用于限制电流的流动。

电阻的测量可以通过多种方法实现,本实验采用伏安法测量电阻。

伏安法是通过测量电阻两端的电压和通过电阻的电流,根据欧姆定律(U=IR)计算电阻值。

三、实验仪器与设备1. 指针式万用表2. 可调直流电源3. 电阻箱4. 电阻5. 滑动变阻器6. 开关7. 导线若干四、实验步骤1. 将电阻、滑动变阻器、开关和导线按照电路图连接好;2. 将万用表选择到电压挡,调整直流电源的输出电压,使电阻两端的电压在合适的范围内;3. 闭合开关,读取电阻两端的电压值U;4. 将万用表选择到电流挡,调整滑动变阻器,使通过电阻的电流在合适的范围内;5. 读取通过电阻的电流值I;6. 重复步骤3和4,至少测量3次,记录数据;7. 根据欧姆定律,计算电阻的平均值。

五、实验数据及处理1. 电压U(V):1.23、1.25、1.272. 电流I(A):0.25、0.26、0.273. 电阻R(Ω)=U/I- 第一次测量:R1 = 1.23V / 0.25A = 4.92Ω- 第二次测量:R2 = 1.25V / 0.26A = 4.81Ω- 第三次测量:R3 = 1.27V / 0.27A = 4.71Ω4. 电阻平均值:R = (R1 + R2 + R3) / 3 = 4.83Ω六、实验结果与分析通过实验测量,得到电阻的平均值为4.83Ω。

实验结果表明,伏安法可以有效地测量电阻值。

在实验过程中,电压和电流的测量值存在一定的误差,这是由于测量仪器的精度和实验操作的不准确性所导致的。

为了提高测量精度,可以采取以下措施:1. 使用高精度的万用表和直流电源;2. 仔细操作,确保电路连接正确;3. 多次测量取平均值,以减小误差。

七、实验总结本次实验通过伏安法测量电阻,掌握了电阻的测量原理和方法,提高了实验操作技能和数据处理能力。

电子测量课程实验报告参考模板

电子测量课程实验报告参考模板

福建农林大学计算机与信息学院信息工程类实验报告课程名称:电子测量技术姓名:系:电子信息工程系专业:电子信息工程年级:学号:指导教师:职称:年月日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程系专业:电子信息工程年级:姓名:学号:实验课程:电子测量技术基础实验室号:_田406 实验设备号: 10 实验时间:指导教师签字:成绩:实验一:示波器、信号发生器的使用1.实验目的和要求1)了解示波器的结构。

2)掌握波形显示的基本原理、扫描及同步的概念。

3)了解电子示波器的分类及主要技术性能指标。

4)掌握通用示波器的基本组成及各部分的作用。

5)了解各种信号发生器如正弦信号发生器、低频信号发生器、超低频信号发生器、函数信号发生器等的工作原理和性能指标以及信号选择。

2.实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。

它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。

我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。

电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的X偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。

若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。

因此,只有当X偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。

一般说来,Y偏转板上所加的待观测信号的周期与X偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。

这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。

电子测量实验报告

电子测量实验报告

电子测量实验报告电子测量实验报告实验目的:本实验旨在学习和掌握基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。

实验仪器:数字电压表(DMM)、示波器(OSC)和信号发生器(SG)。

实验原理:1. 数字电压表:用于测量电路中的电压值,采用数码显示,具有较高的精度和稳定性。

在电路中需要将表针式电压表或模拟电压表替换为数字电压表,以便更准确地测量电路中的电压。

2. 示波器:用于显示电压随时间的变化情况,具有测量信号幅度、频率、相位等特性的功能。

示波器内置了扫描信号发生器和偏移电压源,可以在显示屏上显示出电压随时间的波形图。

3. 信号发生器:用于产生各种稳定的信号源,包括正弦波、方波、脉冲等。

可以通过调节信号发生器的频率和幅度来产生所需的信号。

实验步骤:1. 将数字电压表连接到待测电路的电压接线点,将测量量程调整到合适的范围,读取并记录测量结果。

2. 将示波器连接到待测电路的电压接线点,调整示波器的时间和电压量程,观察并记录电压随时间的波形图。

3. 将信号发生器连接到待测电路的输入端,调节信号发生器的频率和幅度,观察并记录输出信号的波形和频率。

实验结果:1. 使用数字电压表测量待测电路的电压,记录并比较了不同量程下的测量结果。

2. 使用示波器观察了待测电路在不同时间段内电压的波形变化,分析并记录了示波器上显示的波形图。

3. 使用信号发生器产生了不同频率和幅度的信号,并观察了待测电路对信号的响应情况,记录并分析了输出信号的波形和频率。

实验结论:通过本实验的操作,我们学习并掌握了基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。

通过实验观察和测量,我们能够准确地测量电路中的电压,并通过示波器显示电压随时间的波形图,以及通过信号发生器产生各种信号源,验证待测电路对信号的响应情况。

电子测量 实验报告

电子测量 实验报告

电子测量实验报告实验报告:电子测量引言:电子测量是电子学中非常重要的一部分,通过电子测量,可以对电流、电压、电阻、电感、电容和功率等参数进行准确的测量和分析。

本实验旨在通过实际操作,了解并掌握一些基本的电子测量方法和仪器的使用。

实验目的:1. 了解常见的电子测量仪器,例如数字万用表、示波器和信号发生器等。

2. 掌握测量直流电流、直流电压、交流电压、交流电流、电阻、电容和电感的方法和技巧。

3. 学习使用示波器测量电压、频率和相位差等信号参数。

实验步骤和结果:1. 实验一:测量直流电流和直流电压a. 将数字万用表的选择旋钮拨到直流电流测量档位,并连接正确的电路。

b. 通过电源控制直流电流的大小,观察数字万用表的读数并记录。

c. 将数字万用表的选择旋钮拨到直流电压测量档位,连接正确的电路并测量直流电压。

2. 实验二:测量交流电压和交流电流a. 使用示波器测量交流电压和交流电流。

b. 设置示波器的时间和幅度尺度,观察波形,并测量其峰值和有效值。

3. 实验三:测量电阻、电容和电感a. 使用数字万用表测量电阻,并计算真值和误差。

b. 使用数字万用表测量电容,并记录相应的读数。

c. 使用示波器和信号发生器测量电感的感抗和品质因数。

讨论与分析:通过以上实验,我们可以得到以下的结论和分析:1. 电子测量仪器的使用:通过实验,我们了解了常见的电子测量仪器的使用方法,例如数字万用表、示波器和信号发生器。

这些仪器能够提供准确的测量结果,为电子工程师的工作提供了很大的帮助。

2. 直流电流和直流电压的测量:通过实验一,我们学会了使用数字万用表来测量直流电流和直流电压。

我们可以通过调节电源的电压和连接正确的电路来测量不同的电流和电压值。

3. 交流电压和交流电流的测量:实验二中,我们使用示波器来测量交流电压和交流电流。

通过观察波形,并测量其峰值和有效值,我们可以了解信号的振幅和频率等特性。

4. 电阻、电容和电感的测量:实验三中,我们使用数字万用表测量电阻和电容,并计算出真值和误差。

电子荷质比的测定(实验报告).doc

电子荷质比的测定(实验报告).doc

大学物理实验报告实验名称磁聚焦法测电子荷质比实验日期2010-04-24实验人员袁淳(200902120406)大学物理实验报告——磁聚焦法测电子荷质比—第 1 页 共 2 页—【实验目的】1. 了解电子在电场和磁场中的运动规律。

2. 学习用磁聚焦法测量电子的荷质比。

3. 通过本实验加深对洛伦兹力的认识。

【实验仪器】FB710电子荷质比测定仪。

【实验原理】当螺线管通有直流电时,螺线管内产生磁场,其磁感应强度B 的方向,沿着螺线管的方向。

电子在磁场中运动,其运动方向如果同磁场方向平行,则电子不受任何影响;如果电子运动力向与磁场方向垂直,则电子要受到洛伦兹力的作用,所受洛伦兹力为:将运动速度分解成与磁感应强度平行的速度//v 和与磁感应强度垂直的速度⊥v 。

//v 不受洛伦兹力的影响,继续沿轴线做匀速直线运动。

⊥v在洛伦兹力的作用下做匀速圆周运动,其方程为:则由阴极发射的电子,在加速电压U 的作用下获得了动能,根据动能定理,则保持加速电压U 不变,通过改变偏转电流I ,产生不同大小磁场,保证电子束与磁场严格垂直,进而测量电子束的圆轨迹半径r,就能测量电子的m e 值。

螺线管中磁感应强度的计算公式以RNI B 023)54(μ⋅=表示,式中0μ=4π×10-7H/m 。

N 是螺线管的总匝数=130匝; R 为螺线管的平均半径=158mm 。

得到最终式:()()kg C rI U NIr UR m e /1065399.3321252212202⋅⨯=⎪⎭⎫ ⎝⎛=μ 测出与U 与I 相应的电子束半径r,即可求得电子的荷质比。

【实验步骤】2)(2rB Um e =eU mv =221evB F =r mv evB F 2==rBe ν=m大学物理实验报告——磁聚焦法测电子荷质比—第 2 页 共 2 页—1. 接通电子荷质比测定仪的电源,使加速电压定于120V ,至能观察到翠绿色的电子束后,降至100V ;2. 改变偏转电流使电子束形成封闭的圆,缓慢调节聚焦电压使电子束明亮,缓慢改变电流观察电子束大小和偏转的变化;3. 调节电压和电流,产生一个明亮的电子圆环;4. 调节仪器后线圈的反光镜的位置以方便观察;5. 移动滑动标尺,使黑白分界的中心刻度线对准电子枪口与反射镜中的像,采用三点一直线的方法分别测出电子圆左右端点S 0和S 1,并记录下对应的电压值U 和电流值I 。

电子测量实验报告

电子测量实验报告

黄淮学院电子科学与工程系 电子测量技术课程基础性实验报告实验名称 秒脉冲信号发生器实验时间 年 月 日学生姓名实验地点 同组人员专业班级电技1101班一、实验目的1. 熟悉用石英晶体和CMOS 反相器构成多谐振荡器的电路。

2. 熟悉用分频器获得秒信号的方法。

二、实验主要仪器设备和材料1. 实验仪器直流稳压电源×1、双踪示波器×1、万用电表×1、IC3 16脚插座×1、IC2 14脚插座×1、BX05模块(含有1C 、2C 、R 和石英晶体)。

2. 实验器件 CD4060、CD4013三、实验内容图4-1 秒脉冲信号发生器电路图4-2图4-1所示为秒脉冲信号发生器电路,石英晶体的固有频率为32.768kHz ,4060为十四级二进制计数/分频/振荡器,其内部有1G 、2G 二个反相器和14级二进制计数器,电阻R 连在1G 两端,用来确定1G 静态为电压传输特性中点Q ,使1G 有较大放大倍数,如图4-2所示。

当接上电源后,石英晶体与电容1C 、2C 组成振荡回路,从噪声中选出32.768kHz 正弦信号,通过2C 输入到1G 门的I u ,经1G 放大后得到O u 获得很大削顶信号。

经2G 反相器整形,从O Φ得到32.768kHz 方波,再经14级二进制分频获得频率为32.768×1432/10=32.768×310/16384=2Hz 信号再由D 触发器组成T '触发器为二分频电路,即在Q 端获得频率为1Hz 的方波信号,这即为周期为1S 的秒信号。

为防止小电容连线受分布电影响,故将1C 、2C 、R 、石英晶体等制作于BX05模块内,使连线缩短。

四、实验步骤1. 在不接电源情况下,按图4-1所示电路进行连接、要求BX05模块与4060器件连线,尽可能短。

或用屏蔽线(如图4-1所示)。

2. 将直流稳压电源调节到+5V ,关闭电源后,将各器件电源端与稳压电源相连。

实验报告电子测量

实验报告电子测量

一、实验目的1. 熟悉电子测量仪器的基本原理和使用方法。

2. 掌握常用电子测量仪器的操作技巧。

3. 提高电子测量实验技能,培养严谨的科学态度。

二、实验原理电子测量是指利用电子技术和电子仪器对各种物理量进行测量。

本实验主要涉及以下测量原理:1. 电压测量:利用电压表直接测量电路中的电压值。

2. 电流测量:利用电流表直接测量电路中的电流值。

3. 电阻测量:利用欧姆定律,通过测量电压和电流,计算出电阻值。

4. 频率测量:利用频率计测量信号源的频率值。

5. 信号发生器:产生各种频率、幅度和波形的标准信号。

三、实验仪器1. 双踪示波器2. 数字万用表3. 欧姆表4. 频率计5. 信号发生器6. 滑动变阻器7. 电容8. 电感9. 电源四、实验内容1. 示波器使用方法(1)观察正弦波(2)观察矩形波(3)观察三角波(4)观察李萨如图形2. 电压测量(1)测量直流电压(2)测量交流电压3. 电流测量(1)测量直流电流(2)测量交流电流4. 电阻测量(1)测量固定电阻(2)测量可变电阻5. 频率测量(1)测量正弦波频率(2)测量矩形波频率6. 信号发生器使用(1)产生正弦波(2)产生矩形波(3)产生三角波五、实验步骤1. 示波器使用方法(1)打开示波器电源,调整亮度、对比度等参数。

(2)将示波器探头连接到待测电路,调整探头衰减倍数。

(3)观察波形,调整示波器参数,使波形清晰可见。

2. 电压测量(1)将电压表的正极探头连接到电路中待测电压点,负极探头接地。

(2)选择合适的量程,读取电压值。

3. 电流测量(1)将电流表串联接入电路中待测电流点。

(2)选择合适的量程,读取电流值。

4. 电阻测量(1)将待测电阻接入电路。

(2)选择合适的量程,读取电阻值。

5. 频率测量(1)将频率计探头连接到待测信号源。

(2)选择合适的量程,读取频率值。

6. 信号发生器使用(1)将信号发生器输出端连接到待测电路。

(2)调整信号发生器参数,产生所需波形。

电子测量实验报告

电子测量实验报告

电子测量实验报告本实验主要涉及到电阻、电位差、电流等电学知识。

通过使用电流表、电压表、万用表等实验仪器,测量不同电路中的电流、电压和电阻等参数,并分析实验结果。

一、实验内容1.测量电路中电流的方法。

二、实验原理1.欧姆定律:电流和电势差成比例,电流与电压之比为电阻。

2.闭合电路中各点电势差和为0。

3.串联电路中电阻之和为总电阻,并联电路中电阻之倒数之和为总电阻的倒数。

三、实验步骤(2)保持电流表的接线不变,改变电路的元件,比较不同元件的电流大小。

(3)测量串、并联电路中各元件的电流大小,并与理论值进行比较。

(1)使用电压表测量电路中的电位差。

四、实验数据电路1(串联电路):R1=100Ω,R2=200Ω,R3=300Ω,U=12V。

| R | 电流 | 理论值 || 100Ω | 0.06A | 0.06A |总电流为0.11A,理论值为0.11A。

电路1(单个电源):U1=1.5V,U2=3.0V,U3=4.5V。

| U1 | 1.47V | 1.5V |电路1(测量单个电阻):R=100Ω。

测量值为99.9Ω。

测量值为600.1Ω,理论值为600Ω。

等效电路的电阻值为599.9Ω,实验值为600.1Ω。

五、实验结果与分析从实验数据可以看出,串联电路中各元件的电流随电阻大小的变化而变化,电路总电流等于各元件电流之和。

而并联电路中各元件的电流与电阻大小呈反比例关系,总电流等于各元件电流之和。

由数据对比可得,实验值与理论值较接近,误差较小,说明实验结果比较准确。

六、实验结论。

电子测量实验报告

电子测量实验报告

电子测量实验报告电子测量实验报告引言:电子测量是电子工程领域中至关重要的一环,它涵盖了各种测量技术和仪器的应用。

在本次实验中,我们将探索电子测量的原理和方法,并通过实际操作来验证这些理论。

一、实验目的本次实验的目的是通过测量电阻、电容和电感等元件的参数,加深对电子测量原理的理解,并掌握相应的测量方法和技巧。

二、实验仪器和材料1. 电源:提供电流和电压源。

2. 万用表:用于测量电阻、电压和电流等参数。

3. 电阻箱:用于调节不同阻值的电阻。

4. 电容箱:用于调节不同容值的电容。

5. 电感箱:用于调节不同感值的电感。

6. 示波器:用于观察电压和电流的波形。

三、实验步骤1. 电阻测量:a. 将电阻箱的阻值调节到一个已知值,例如100欧姆。

b. 将电阻箱与万用表相连,选择电阻测量档位,记录测量结果。

c. 重复以上步骤,测量不同阻值的电阻。

2. 电容测量:a. 将电容箱的容值调节到一个已知值,例如10微法。

b. 将电容箱与万用表相连,选择电容测量档位,记录测量结果。

c. 重复以上步骤,测量不同容值的电容。

3. 电感测量:a. 将电感箱的感值调节到一个已知值,例如100毫亨。

b. 将电感箱与万用表相连,选择电感测量档位,记录测量结果。

c. 重复以上步骤,测量不同感值的电感。

四、实验结果与分析1. 电阻测量:我们测量了不同阻值的电阻,结果如下:- 100欧姆:测量值为99.8欧姆- 200欧姆:测量值为200.1欧姆- 500欧姆:测量值为500.2欧姆通过对比测量值和已知值,我们可以发现测量结果的准确性较高。

2. 电容测量:我们测量了不同容值的电容,结果如下:- 10微法:测量值为10.1微法- 20微法:测量值为19.9微法- 50微法:测量值为50.3微法测量结果与已知值相比,存在一定的误差,这可能是由于电容箱的精度限制或测量方法的不完善导致的。

3. 电感测量:我们测量了不同感值的电感,结果如下:- 100毫亨:测量值为99.9毫亨- 200毫亨:测量值为200.2毫亨- 500毫亨:测量值为500.1毫亨测量结果与已知值相比,误差较小,说明测量方法的准确性较高。

电子测量技术实验报告

电子测量技术实验报告

电子测量技术实验报告实验名称:电子测量技术实验实验目的:1. 熟悉电子测量仪器的使用方法。

2. 掌握基本的电子测量技术,包括电压、电流、频率等参数的测量。

3. 理解测量误差的来源及其对测量结果的影响。

实验原理:电子测量技术是利用电子仪器对电子电路中的电参数进行定量分析的技术。

常见的电子测量仪器包括示波器、万用表、频率计等。

本实验主要通过这些仪器对电路中的电压、电流、频率等参数进行测量,以验证电路设计的正确性及性能指标。

实验设备:1. 示波器2. 万用表3. 频率计4. 信号发生器5. 待测电路板及相关连接线实验步骤:1. 检查实验设备是否完好,确保所有仪器均处于正常工作状态。

2. 根据实验要求,搭建待测电路,并连接相应的测量仪器。

3. 使用示波器测量电路中的波形,记录波形的幅度和频率。

4. 使用万用表测量电路中的电压和电流,记录测量值。

5. 使用频率计测量信号的频率,记录频率值。

6. 分析测量结果,与理论值进行比较,计算误差。

7. 根据实验结果,调整电路参数,优化电路性能。

实验结果:1. 示波器测量结果显示,波形幅度为X伏特,频率为Y赫兹。

2. 万用表测量结果显示,电路中的电压为Z伏特,电流为A安培。

3. 频率计测量结果显示,信号频率为B赫兹。

误差分析:1. 示波器测量误差可能来源于仪器的校准精度以及操作者读数的准确性。

2. 万用表测量误差可能来源于仪器的内部误差以及接触不良。

3. 频率计测量误差可能来源于信号源的稳定性以及测量环境的干扰。

实验结论:通过本次实验,我们成功地掌握了电子测量技术的基本操作,并对电路中的电压、电流、频率等参数进行了准确的测量。

实验结果与理论值相比,误差在可接受范围内,说明电路设计基本正确,性能指标符合预期。

通过误差分析,我们了解到了测量误差的来源,为今后的实验提供了宝贵的经验。

实验心得:在本次实验中,我深刻体会到了电子测量技术在电子电路分析中的重要性。

通过实际操作,我不仅学会了如何使用各种电子测量仪器,还学会了如何分析测量结果,评估电路性能。

电子测量实验报告脉搏

电子测量实验报告脉搏

电子测量实验报告脉搏实验目的:通过电子测量仪器测量脉搏信号的频率和幅值,并分析脉搏信号的特征。

实验仪器和材料:电子测量仪、电极贴片、导线、计算机。

实验原理:1. 脉搏信号是心脏每搏一次所产生的,脉搏信号在人体各部位都可以测得,但最常见的是手腕上的脉搏。

2. 脉搏信号是由心脏收缩产生的,它经过血管传导到各个部位,使得血液在血管内流动起伏,形成脉搏波形。

3. 脉搏信号的频率和幅值可以反映人体的生理状况,如心率、血压、心肌功能等。

实验步骤:1. 将电极贴片正确地贴在手腕上,保持良好的接触。

2. 将接地线连接到电子测量仪上的接地端口。

3. 将正极线连接到电子测量仪上的正极端口。

4. 打开电子测量仪的电源,并进行相应的设置。

5. 通过电子测量仪测量脉搏信号的频率和幅值。

6. 记录测量结果,并进行分析。

实验结果:通过电子测量仪测量脉搏信号,我们得到了脉搏信号的频率和幅值。

实验结果显示,脉搏信号的频率为X次/分钟,幅值为X伏。

实验分析:根据实验结果,我们可以得出以下结论:1. 脉搏信号的频率可以反映心率。

心率是心脏每分钟搏动的次数,一般以“次/分钟”为单位。

正常成人的心率范围是60-100次/分钟,若心率低于60次/分钟或高于100次/分钟,则可能存在心脏疾病或其他健康问题。

2. 脉搏信号的幅值可以反映血流量和血压。

脉搏信号的幅值越大,说明血流量越大,血压越高;反之,脉搏信号的幅值越小,说明血流量越小,血压越低。

通过测量脉搏信号的幅值,可以初步判断血压水平是否正常。

3. 脉搏信号的形态也具有一定的参考价值。

正常情况下,脉搏信号应该是周期稳定、波形规则、上升较快、下降较慢的波形。

若脉搏信号的波形异常,如存在剧烈的波动、波形不规则等,可能存在心脏病或其他疾病。

实验结论:通过本次实验,我们成功地使用电子测量仪器测量了脉搏信号的频率和幅值,初步了解了脉搏信号的特征。

脉搏信号的频率、幅值和形态可以反映人体的生理状况,如心率、血压、心肌功能等。

《电子测量技术》实验报告

《电子测量技术》实验报告

《电子测量技术》实验报告实验名称:电子测量技术实验实验目的:1. 理解电子测量的基本原理和方法。

2. 掌握常用电子测量仪器的使用方法。

3. 学会利用电子测量技术进行电路参数的测量和分析。

实验设备:1. 多用电表2. 示波器3. 信号发生器4. 电阻、电容、电感等电子元件5. 电路板及相关连接线实验原理:电子测量技术是利用电子仪器对电子电路中的电压、电流、频率、时间等参数进行测量的技术。

本实验通过使用多用电表、示波器等仪器,对电路中的参数进行测量,以验证电路设计的正确性和性能指标。

实验内容及步骤:1. 使用多用电表测量电阻、电容和电感的值。

- 校准多用电表,选择合适的量程。

- 将待测元件接入多用电表,记录测量结果。

2. 使用示波器观察信号波形。

- 连接信号发生器和示波器,设置信号发生器的频率和幅度。

- 观察示波器显示的波形,记录波形参数。

3. 测量电路的频率响应。

- 搭建待测电路,连接信号发生器和示波器。

- 改变信号发生器的频率,观察示波器上波形的变化,记录不同频率下的波形参数。

4. 分析测量结果。

- 对比理论值和测量值,分析误差产生的原因。

- 根据测量结果,评估电路的性能。

实验结果:1. 电阻、电容和电感的测量值与理论值基本一致,误差在可接受范围内。

2. 信号波形清晰,幅度和频率与设置值相符。

3. 电路的频率响应曲线平滑,符合设计预期。

实验结论:通过本次实验,我们掌握了电子测量的基本方法和仪器的使用,能够对电路中的参数进行准确测量。

实验结果表明,所搭建的电路性能良好,与设计预期相符。

通过实验,我们加深了对电子测量技术的理解,提高了实际操作能力。

注意事项:1. 在使用电子测量仪器前,应仔细阅读使用说明书,了解仪器的使用方法和注意事项。

2. 在测量过程中,注意仪器的量程选择,避免超量程测量。

3. 实验结束后,应及时整理实验器材,确保仪器和元件完好无损。

本次实验报告到此结束,感谢指导老师的悉心指导和同学们的协助。

电 子 测 量 实 验 报 告

电 子 测 量 实 验 报 告

电子测量实验报告学院:电气工程学院班级:0910班姓名:于冰学号:09292054 指导教师:秦芳实验一示波器波形参数测量一、实验目的1、学会用示波器测量电压信号峰峰值及其直流分量。

2、学会用示波器测量电压信号周期及频率。

3、学会用示波器测量两信号的相位差。

二、实验设备1、信号发生器2、示波器3、电阻、电容等三、实验步骤1、测量1kHz的三角波以及经阻容移相平波后的正旋波信号的峰峰值及其直流分量。

2、测量1kHz的三角波的周期及频率。

3、用单踪方式测量两信号间的相位差。

4、用双踪方式测量两信号间的相位差。

5、信号改为100Hz,重复上述步骤1—4。

四、实验电路五、实验数据1、1kHz时:三角波峰峰值V pp1=4.71V,周期T1=0.978ms,频率f1=1.0215kHz;正弦波峰峰值V pp2=0.621V,直流分量V=17.0mV;单踪方式测相位差△t1=0.222ms,则△Φ1=81.72°双踪方式测相位差△t2=0.225ms,则△Φ2=82.82°2、100Hz时:三角波峰峰值V pp1=4.70V,周期T1=9.86ms,频率f1=101.69Hz;正弦波峰峰值V pp2=3.44V,直流分量V=20.0mV;单踪方式测相位差△t1=0.860ms,则△Φ1=31.40°双踪方式测相位差△t2=0.850ms,则△Φ2=31.03°六、思考题1、调整信号发生器的直流偏移电压,当偏置过大时,为什么产生波形失真?是示波器的原因还是信号发生器的问题?答:信号发生器的直流偏置电压与三角波叠加,使Y偏转过大,波形失真。

产生失真是示波器的原因。

要使示波器正常显示,调节Y偏转因数。

2、测量相位差时,你认为双踪、单踪测量哪种方式更准确?为什么?答:单踪方式测相位差更准确。

选用双踪方式时,使用两个输入通道,这样产生的系统误差会更大;采用单踪方式时信号只需要从一个通道输入,不会产生过大的差异。

电子测距仪测试报告

电子测距仪测试报告

电子测距仪测试报告1. 引言电子测距仪是一种用来测量物体距离的设备。

本测试报告旨在评估该电子测距仪的性能和可靠性,以帮助用户选择合适的测距仪器。

2. 测试目的本次测试的主要目的包括:- 评估电子测距仪的距离测量精度;- 测试设备的稳定性和反应时间;- 评估设备在不同环境条件下的表现。

3. 测试方法为了达到上述目的,我们采取了以下测试方法:1. 使用已知距离的基准物体进行距离测量,比较测距仪所示的距离与实际距离的差异;2. 进行多次测量,以确定设备的稳定性和精度;3. 放置设备在不同环境条件下,如光照强度变化、温度变化等,测试设备的稳定性和表现。

4. 测试结果经过多次测试后,我们得出以下结论:1. 该电子测距仪的距离测量精度在正常条件下可达到±1毫米。

然而,当测量距离较远或存在其他干扰因素时,精度可能会有所下降。

2. 设备显示的距离与实际距离的差异不超过2毫米,显示结果相对准确。

3. 设备的稳定性较好,多次测量结果相对一致,测量误差较小。

4. 设备对光照强度变化的影响较小,但在极暗或极亮环境下可能会有一定的影响。

建议在光照条件较好的环境中使用测距仪。

5. 设备对温度变化的影响相对较小,可以在一定的温度范围内正常使用。

5. 结论本次测试显示,该电子测距仪具有较高的测量精度和稳定性。

在正常条件下,该设备可满足大多数测距需求,但在复杂环境中可能会出现一定的误差。

建议用户在选择使用场景时考虑实际情况。

6. 建议基于本次测试结果,我们提出以下建议:1. 在使用测距仪进行精确测量时,尽量选择适当距离的基准物体,以提高测量精度。

2. 在使用测距仪时,避免极端光照和温度条件,以获取更准确的测量结果。

3. 定期进行校准和维护,以确保设备的稳定性和精确性。

7. 参考[1] 电子测距仪产品说明书[2] 电子测距仪用户手册以上是一份电子测距仪测试报告的示例,你可以根据自己的实际情况进行修改和完善。

记得注意文档的格式和内容清晰易懂。

电子测量实验报告

电子测量实验报告

电子测量实验报告本次实验主要是为了学习电子测量的基本原理和方法,并掌握其在实际应用中的运用。

通过了解电子测量的基本概念和理论,我深刻认识到电子测量在现代科技领域中的重要作用。

在本文中,我将分享我的实验经验以及对电子测量的一些认识。

一、实验目的及原理1. 实验目的:(1)掌握电子测量系统的工作原理;(2)了解电子仪器在实际应用中的优势和不足;(3)学会使用示波器、万用表等基本电子仪器进行测量和分析。

2. 原理电子测量是一种使用电子仪器对电路中的电压、电流、频率、电阻、电容等参数进行测量的方法。

电子测量系统由各种电子仪器组成,其中更加常用的是示波器和万用表。

示波器是一种能够显示波形的电子仪器,它可以显示信号的振幅、频率、相位等参数。

示波器的工作原理是将电压信号转换为电流信号,并通过电子管进行放大,最终在显像管上形成图象。

波形的形状可以反映电路中存在的各种问题,如幅值、频率、相位、波形失真等。

万用表是一种通用测量仪器,它能够测量电压、电流、电阻等不同类型的参数。

万用表的原理是通过电阻进行测量,通过电阻计算出被测量的参数。

由于万用表能够自动调整量程,因此它也是一种非常常用的电子仪器。

二、实验操作及结果在实验中,我们首先使用万用表对电路进行初步测试,测量各节点的电压和电阻值。

接下来,我们使用示波器对电路中的信号进行测量,如测量不同频率下的信号波形、测量滤波器的截止频率等。

最终,我们还使用示波器进行信号发生器的调整和测量,以学习如何生成各种信号和测量示波器的性能。

通过实验,我对电子测量的基本原理和方法有了更深入的了解。

同时,我也认识到电子仪器在实际应用中存在的各种问题,如精度、量程、滞后等。

电子测量需要精密的仪器和高超的技能,因此在日常的实践中需要谨慎、细致地进行。

三、实验结论及心得通过本次实验,我对电子测量有了更系统的认识,并掌握了一些基本的技能和方法。

在实际应用中,电子测量起着至关重要的作用,它在各个行业中都有应用,如通讯、电力、航空等。

电子测量技术实验报告

电子测量技术实验报告

电子测量技术实验报告电子测量技术实验报告引言:电子测量技术是电子工程中非常重要的一部分,它涉及到电子设备的测量、测试和校准等方面。

本实验报告将对电子测量技术进行探讨和总结,包括测量仪器的使用、测量误差的分析和校准方法的介绍。

一、测量仪器的使用在电子测量中,常用的测量仪器有示波器、信号发生器和多用表等。

示波器是一种用于观察和测量电压波形的仪器,它能够直观地显示信号的幅度、频率和相位等信息。

信号发生器则是用于产生各种特定频率和幅度的信号,以便进行测试和校准。

多用表则广泛应用于电压、电流、电阻等基本参数的测量。

二、测量误差的分析在电子测量中,由于各种因素的存在,测量结果往往会存在一定的误差。

误差的来源包括测量仪器的精度、环境条件的变化以及人为操作的不准确等。

为了减小误差,我们需要了解误差的类型和产生原因。

常见的误差类型有系统误差和随机误差。

系统误差是由于测量仪器本身的不准确性或者测量环境的变化引起的,而随机误差则是由于测量过程中的偶然因素导致的。

三、校准方法的介绍为了提高测量结果的准确性,我们需要对测量仪器进行校准。

校准是通过与已知准确值进行比较,确定测量仪器的误差并进行修正的过程。

常用的校准方法包括零点校准、量程校准和线性校准等。

零点校准是将测量仪器的零点偏差调整到准确值,以消除系统误差。

量程校准则是通过调整测量仪器的量程范围,使其能够准确测量不同幅度的信号。

线性校准则是通过与已知线性关系的信号进行比较,确定测量仪器的非线性误差并进行修正。

四、实验结果与讨论在本次实验中,我们使用示波器对一个正弦信号进行测量,并对测量结果进行分析和讨论。

通过实验数据的记录和处理,我们可以得到信号的幅度、频率和相位等参数。

同时,我们还可以计算出测量结果的误差,并通过校准方法进行修正。

实验结果表明,经过校准后,测量结果的准确性得到了显著提高。

结论:电子测量技术是电子工程中不可或缺的一部分,它对于电子设备的测试和校准具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子测量技术课程报告班级姓名 XXX 专业学号任课教师郑州科技学院电气工程学院二〇一五年十月1 课程的目的和意义 (1)2 主要研究内容和研究方法 (1)2.1 主要研究内容 (1)2.2 应用领域及研究方法 (2)2.2.1 应用领域 (2)2.2.2 研究方法 (2)3 国内外的发展状况 (3)3.1 国内发展现状 (3)3.2 国外发展现状 (4)4 我国电子测量技术的不足 (4)5 中国的高科技测量设备仪器 (5)5.1 二次元测试仪 (5)5.2 信号分析仪 (6)6 电子测量技术的发展趋势 (7)7 常用电子测量仪器的使用方法 (8)7.1 熟悉掌握的电子测量仪器 (8)7.1.1 示波器 (8)7.1.2 钳型电流表 (8)7.2 最有用的电子测量仪器 (10)7.2.1 万用表 (10)7.2.2 频谱分析仪 (10)总结 (12)参考文献 (13)1课程的目的和意义通过本课程的学习,培养我们具有电子测量技术和仪器方面的基础知识和应用能力;可开拓学生思路,培养综合应用知识能力和实践能力;培养我们严肃认真,求实求真的科学作风,为后续课程的学习和从事研发工作打下基础。

(1)掌握测量误差基本理论,能进行测量误差分析和数据处理;(2)掌握电路参数、波形、电压、频率(时间)、功率(电能)、频域及数域测量的基本原理和方法;(3)了解电测中常用电工仪表、常用电子仪器的基本原理;(4)掌握常用电工仪表、常用电子仪器的使用方法;(5)对国内外电子测量新技术的发展有所了解。

课程的意义:从某种意义上来说,近代科学技术的水平是由电子测量的水平来保证和体现的,电子测量水平是衡量一个国家科学水平的重要标志之一。

(1)日常生活中处处离不开测量;(2)科学的进步和发展离不开测量,离开测量就不会有真正的科学;(3)生产发展离不开测量;(4)在高新技术和国防现代化建设中则更是离不开测量。

2主要研究内容和研究方法2.1主要研究内容随着电子技术的不断发展,测量研究的内容愈来愈多,按照测量仪器的功能,电子测量仪器主要研究内容可分为专用和通用两大类。

专用电子测量仪器是为特定的目的而专门设计制作的,适用于特定对象的测量。

例如:光纤测试仪器专用于测试光纤的特性;通信测试仪器专用于测试通信线路及通信过程中的参数。

通用电子测量仪器是为了测量某一个或某一些基本电参量而设计的,适用于多种电子测量。

按其功能又可细分为以下几类:(1)信号发生器:用来提供各种测量所需的信号,根据用途不同,又有不同波形、不同频率范围和各种功率的信号发生器,如低频信号发生器、高频信号发生器、函数信号发生器、脉冲信号发生器、任意波形信号发生器和射频合成信号发生器。

(2)电压测量仪器:用来测量电信号的电压、电流、电平等参量,如电流表、电压表(包括模拟电压表和数字电压表)、电平表、多用表等。

(3)频率、时间测量仪器:用来测量电信号的频率、时间间隔和相位等参量,如各种频率计、相位计、波长表,以及各种时间、频率标准等。

(4)信号分析仪器:用来观测、分析和记录各种电信号的变化,如各种示波器(包括模拟示波器和数字示波器)、波形分析仪、失真度分析仪、谐波分析仪、频谱分析仪和逻辑分析仪等。

(5)电子元器件测试仪器:用来测量各种电子元器件的电参数,检测其是否符合要求。

根据测试对象的不同,可分为晶体管测试仪(如晶体管特性图示仪)、集成电路(模拟、数字)测试仪和电路元件(如电阻、电感、电容)测试仪(如万用电桥和高频Q表)等。

(6)电波特性测试仪:用来测量电波传播、干扰强度等参量,如测试接收机、场强计、干扰测试仪等。

(7)网络特性测试仪器:用来测量电气网络的频率特性、阻抗特性、功率特性等,如阻抗测试仪、频率特性测试仪(又称扫描仪)、网络分析仪和噪声系数分析仪等。

(8)辅助仪器:与上述各种仪器配合使用的仪器,如各类放大器、衰减器、滤波器、记录器,以及各种交直流稳压电源。

2.2 应用领域及研究方法2.2.1应用领域随着通信技术的迅速发展,电子测量技术在通信领域中的应用显得更为重要。

电子测量与仪器在电子技术领域也成为一门独立的学科。

目前,电子测量与仪器随着电子技术和电子工业的发展而迅速的发展。

通信测量仪表是通信设备修理人员的得力助手,在检修通信设备的过程中,借助于测量仪表,不仅可加快检修速度,而且可提高检修质量,有的通信设备的某些故障,离了测量仪表甚至无法修复。

可以说,没有了测量技术,我们就不能自由的通信,通信的质量就得不到保证。

电子测量技术的一系列特点,使它广泛应用于自然科学的一切领域.大到天文观测、宇宙航天,小到物质结构、基本粒子,从复杂深奥的生命、细胞、遗传间题到日常的工农业生产、医学、商业各部门,都越来越多地采用了电子测量技术和设备。

2.2.2研究方法(1)观察法:观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

科学的观察具有目的性和计划性、系统性和可重复性。

(2)调查法:调查法是科学研究中最常用的方法之一。

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。

调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。

(3)实验法:实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。

其主要特点是:第一、主动变革性。

观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。

而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。

第二、控制性。

科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。

第三,因果性。

实验以发现、确认事物之间的因果联系的有效工具和必要途径。

3国内外的发展状况3.1 国内发展状况中国电子测量技术经过40多年的发展,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。

随着世界高科技发展的潮流,中国电子测量仪器也步入了高科技发展的道路,特别是经过“九五”期间的发展,我国电子测量技术在若干重大科技领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。

进入21世纪以来,科学技术的发展已难以用日新月异来描述。

新工艺、新材料、新的制造技术催生了新的一代电子元器件,同时也促进电子测量技术和电子测量仪器的发展。

(1)国产矢量网络分析仪研制成功国产矢量网络分析仪的研制成功,使我国矢量网络分析仪的设计和制造水跨入了世界先进行列,成为继美国之后世界上第二个掌握此项技术的国家,掌握了多种以矢量网络分析仪为核心的自动测量技术和自动测试系统。

(2)掌握了调制域测试技术研制成功调制域分析仪调制域测试技术是一门新兴的非常重要的而技术难度又非常大的测试技术,南京新联电子设备有限公司已经研制成10Hz~2.5GHz的调制域分析仪,达到国外同类产品的水平,填补了国内空白,为我国跳频领域的电子设备和军事装备提供了低于国外价格1/3~1/2的测试手段。

为了更好地满足测试需要,下一步将继续研制更高频率的调制域分析仪。

(3)VXI总线技术取得重大进展VXI总线技术是二十世纪末出现的一个新的母线技术。

它首先出现于美国,应用于美国空军电子测量仪器。

这个新的总线标准,在美国应用之后,我国各界都非常欣赏,研究者众多。

我国经过几年的探索,已经取得了较大的进展,在若干方面实现了具体的应用。

该研究成果已应用于“XXX型号远程雷达综合测试系统”、“火控雷达综合测试系统”和各种装备的VXI总线自动测试系统中。

(4)电子测试仪器向毫米推进众多民用和军用电子装备都在向毫米波发展,特别是在军事方面,其发展更为迅速。

例如南京新联电子设备有限公司研制完成的EE3395型毫米波频率计数器,其频率测量范围达10Hz~110GHz,该产品可广泛用于毫米波电子对抗系统、卫星通信设备、高精度雷达及射电天文等领域。

3.2 国外发展状况最近,美国确定了在2020年前发展的几项高新电子技术,这几项技术既可用于国防,又可应用于民。

(1)虚拟现实技术。

这种技术可描述为一种使人进入完全由计算机创造科学世界的手段。

采用这种技术,参与者使用硬件,例如数据手套、操纵杆、头盔式显示器、护目镜、耳机及衣服以获得必要的感知反应,来体验计算机世界。

它可应用于训练、设计、通信等领域。

(2)高清晰度电视和显示器。

它是一种民用的清晰度更高的电视,是将视频信号压缩后通过卫星或光纤传输,所提供的图像质量可与电影媲美,音质接近数字激光唱片。

高清晰度电视的核心是高清晰度显示器,美国已投资进行了显示技术的研究。

预计到2020年,高清晰度电视市场销售额大约为770亿美元。

(3)光子学与光电子学。

为了同高速集成电路发展相适应,电子处理正向着光子技术和光电子技术方向发展。

未来,计算机处理器之间将利用光子技术互连和通信。

同时,有关专家在许多应用项目中研究将光束和电子脉冲结合起来。

美国电报电话公司贝尔实验室正在研制一个可用于卫星、高速光学数字计算机网络,其中就应用了大量纤维光学技术。

4 我国电子测量技术的不足现在人们通过实践已越来越认识到测试技术的重要性,国内测试技术也已有了很大的发展,现在已基本上采用了标准化、模块化设计体制。

已从CAMAC、PC总线、STD总线向VXI、PXI总线发展,从堆叠式测试系统向标准化、模块化测试系统发展,并先后研制出国产化VXI模件、VXI测试系统及PXI系统,使我国测试系统技术水平逐步进入国际先进行列。

虽然我国电子测量仪器行业在近几年取得了很大进步,但与国外相比差距仍然很大,不足的地方主要体现在以下几方面:(1)数字化电子测量仪器的普及率尚待提升。

“数字化时代”已经到来,“数字化时代”是社会与经济现代化的最新标志,关系着一个国家在科技领域“核心竞争力”的高低,如果对此重视不够,一个国家将失去在技术上的领先地位。

(2)模块化。

这是国际电子测量仪器发展的方向,实际上模块化与总线技术、软件技术是三位一体的,并不是“机械式”的模块化,其难度不亚于总线技术和软件技术,在我们的电子测量仪器企业中还没有很好地启动。

(3)总线技术差距很大。

VXI、PXI、LXI、USB接口、总线技术在电子测量仪器中已经发展到很高水平。

目前,有三个趋势推动测试测量行业的发展:第一,要有系统就绪的硬件,即模块化的产品,可以很快构建一个系统。

第二,要有基于标准的与PC兼容的输入输出接口,以及输入、输出驱动程序,可以基于局域网,也可以基于互联网。

相关文档
最新文档