《运筹学》试题样题
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学考试试题
运筹学考试试题一、选择题(每题 5 分,共 25 分)1、线性规划问题的可行域是()A 凸集B 凹集C 无界集合D 空集2、下列哪种情况不能用单纯形法求解线性规划问题()A 存在无界解B 存在唯一最优解C 存在无穷多最优解D 无可行解3、对于运输问题,若总产量等于总销量,则一定存在()A 唯一最优解B 无穷多最优解C 无界解D 最优解4、在动态规划中,以下说法正确的是()A 最优策略的子策略一定是最优的B 状态转移方程是唯一的C 阶段数是固定的D 决策变量的取值是连续的5、排队论中,M/M/1 排队系统的平均队长 Lq 为()A λ/(μ λ)B λ^2/(μ(μ λ))C (λ/μ)^2D (λ/μ)/(1 λ/μ)二、填空题(每题 5 分,共 25 分)1、线性规划问题的标准形式中,约束条件为_____。
2、求解整数规划问题的方法有_____、_____等。
3、运输问题中,若产销平衡,且单位运价表中每行每列都有一个零元素,则最优解中一定有_____个数字格。
4、用分支定界法求解整数规划问题时,若子问题无可行解,则该子问题对应的上界值为_____。
5、在存储论中,不允许缺货,生产时间很短的模型称为_____模型。
三、简答题(每题 10 分,共 20 分)1、简述单纯形法的基本思想和计算步骤。
答:单纯形法的基本思想是从可行域的一个顶点(基本可行解)开始,按照一定的规则转移到另一个顶点,使得目标函数值不断改进,直到找到最优解或判定无最优解。
计算步骤如下:(1)将线性规划问题化为标准形式。
(2)找出一个初始可行基,得到一个初始基本可行解。
(3)检验当前基本可行解是否最优。
如果是,则停止计算;否则,进行换基迭代。
(4)确定换入变量和换出变量。
(5)进行换基运算,得到新的基本可行解,返回步骤3 继续检验。
2、简述动态规划的基本思想和求解步骤。
答:动态规划的基本思想是将多阶段决策问题转化为一系列相互关联的单阶段决策问题,通过求解每个单阶段决策问题的最优解,从而得到整个多阶段决策问题的最优解。
运筹学典型考试试题及答案
二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1) 写出该线性规划的对偶问题。
2) 若C2从4变成5, 最优解是否会发生改变, 为什么? 若b2的量从12上升到15, 最优解是否会发生变化, 为什么?如果增加一种产品X6, 其P6=(2,3,1)T, C6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的, 所以最优解不变。
3)当若b 2的量从12上升到15 X =9/8 29/8 1/4由于基变量的值仍然都是大于0的, 所以最优解的基变量不会发生变化。
4)如果增加一种新的产品, 则 P6’=(11/8,7/8, -1/4)T σ6=3/8>0所以对最优解有影响,该种产品应该生产计算检验数由于存在非基变量的检验数小于0, 所以不是最优解, 需调整 调整为:重新计算检验数所有的检验数都大于等于0, 所以得到最优解3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者, 规定每个承包商只能且必须承包一个项目, 试在总费用最小的条件下确定各个项目的承包者, 总费用为多少?各承包商对工程的报价如表2所示:X= 0 1 0 0 1 0 0 00 0 0 1总费用为504.考虑如下线性规划问题(24分)Max z=-5x1+5x2+13x3s.t..-x1+x2+3x3≤2012x1+4x2+10x3≤90x1, x2, x3≥0回答以下问题:1)求最优解2)求对偶问题的最优解3)当b1由20变为45, 最优解是否发生变化。
4)求新解增加一个变量x6, c6=10, a16=3, a26=5, 对最优解是否有影响5)c2有5变为6, 是否影响最优解。
《运筹学》试题
《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。
A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。
A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。
A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。
2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。
3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。
4、对偶问题的对偶问题是()。
5、若原问题可行,但目标函数无界,则对偶问题()。
6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。
运筹学考试练习题精选全文完整版
可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
5.任何线性规划问题存在并具有唯一的对偶问题。
6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。
7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。
8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。
9.整数割平面法每次只割去问题的部分非整数解。
10.线性规划问题是目标规划问题的一种特殊形式。
11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。
12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。
14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。
二、选择题1.线性规划数学模型的特征是:________都是线性的。
A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。
A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。
运筹学试卷及答案完整版
《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。
)1. 图解法提供了求解线性规划问题的通用方法。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。
( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
( )4. 满足线性规划问题所有约束条件的解称为基本可行解。
( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
( )6. 对偶问题的目标函数总是与原问题目标函数相等。
( )7. 原问题与对偶问题是一一对应的。
( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )三、填空题1. 图的组成要素;。
2. 求最小树的方法有、。
3. 线性规划解的情形有、、、。
4. 求解指派问题的方法是。
5. 按决策环境分类,将决策问题分为、、。
6. 树连通,但不存在。
A 111四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。
1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案
运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。
完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。
请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。
具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。
2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。
货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。
请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。
1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。
1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。
答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。
答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。
答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。
答案:网络三、问答题:根据题目要求,回答问题。
1. 什么是线性规划?请简要解释线性规划的基本原理。
答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。
其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。
2. 动态规划在运筹学中的应用有哪些?请举例说明。
答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。
举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。
3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。
大学考试试卷《运筹学》及参考答案3套.doc
2012年9月份考试运筹学第一次作业一、单项选择题(本大题共100分,共40小题,每小题2. 5分)1.•个无()、但允许多重边的图称为多重图。
A.边B.孤C.环D.路2.运筹学是一门()。
A.决策科学B.数学科学C.应用科学D.逻辑科学3.基可行解对应的基,称为()。
A.最优基B.可行基C.最优可行基D.极值基4.运筹学用()来描述问题。
A.拓补语言B.计算机语言C.机器语言D 数学语言5.隐枚墓最是省去若干目标函数不占优势的()的一种检验过程。
A.基本可行解B.最优解C.基本解D.可行解6.对偶问题与原问题研究出自()目的。
A.不同B.相似C.相反D.同一7.资源价格大于影子价格时,应该()该资源。
A.头入B.卖出C.保持现状D 借贷出8.敏房性分析假定()不变,分析参数的波动对最优解有什么影响。
A.可行基B.基本基C.非可行基D.最优基9.从系统工程或管理信息预测决辅助系统的角度来看,管理科学与()就其功能而言是等同或近似的。
A 纬汁学B:计算机辅助科学C,运筹学D.人工智能科学10.闭回路的特点不包括()。
A.每个顶点都是直角B.每行或每列有且仅有两个顶点C.每个顶点的连线都是水平的或是垂直的D.起点终点可以不同11.运输问题分布m*n矩阵表的横向约束为()。
A.供给约束B.需求约束C.以上两者都有可能C.超额约束12.动态规划综合了()和“最优化原理”。
A.一次决策方法B.二次决策方法C.系统决策方法D.分级决策方法13.线性规划问题不包括()。
A.资源优化配置B.复杂系统结构性调整C,混沌系统分析D,宏、微观经济系统优化14.运输问题分布m*n矩阵表的纵向约束为()。
A.供给约束B.需求约束C.以上两者都有可D.超额约束15.路的第一个点和最后一个点相同,称为()oA.通路B,环路C.回路D,连通路16.对偶问题与原问题研究的是()对象。
A.2种B.不同的C.1种D.相似的17.运输问题的求解方法不包括()。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
《运筹学》期末考试试卷A-答案
《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。
答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。
答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。
答案:非线性4. 动态规划适用于解决________决策问题。
答案:多阶段5. 排队论中的基本参数包括________、________和________。
答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。
答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。
线性规划问题通常包括目标函数、约束条件和非负约束。
目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。
2. 请简要阐述整数规划的特点。
答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。
《运筹学》 期末考试 试卷A 答案
《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。
2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。
3. 如果一个线性规划问题有可行解,那么它必有最优解。
4.对偶问题的对偶问题一定是原问题。
5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。
7. 度为0的点称为悬挂点。
8. 表上作业法实质上就是求解运输问题的单纯形法。
9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日;春夏季4000人日。
如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。
三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。
(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。
《运筹学》试题及参考答案
《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。
运筹学试题及答案4套
运筹学试题及答案4套《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611-2002-111/21/21407三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2 -1 1 0 02 3 11311111610 0 -3 -1 -2 0(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地产地甲乙丙丁产量A41241116B2103910C8511622需求量814121448《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地产地B1B2B3B4供应量A1503 2 7 6A275 2 360A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
运筹学试题及答案(两套)
39.求下图 v1 到 v8 的最短路及最短路长(10 分)
五、应用题(15 分) 40.某厂组装三种产品,有关数据如下表所示。
产品 A B C
单件组装工 时 1.1 1.3 1.5
日销量(件) 产值(元/件) 日装配能力 70 60 80 40 60 80 300
要求确定两种产品的日生产计划,并满足: (1)工厂希望装配线尽量不超负荷生产; (2)每日剩余产品尽可能少; (3)日产值尽可能达到 6000 元。 试建立该问题的目标规划数学模型。
) )
对偶问题的最优解是(
34.已知线性规划求极大值,用对偶单纯形法求解时,初始表中应满足条件( 35.Dijkstra 算法中的点标号 b(j)的含义是( 四、解答下列各题(共 50 分) 36.用对偶单纯形法求解下列线性规划(15 分) )
37.求解下列目标规划(15 分)
38.求解下列指派问题(min)(10 分)
运筹学 A 卷)
一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得 分。每小题 1 分,共 10 分) 1.线性规划具有唯一最优解是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为
26.将目标函数
min Z 10 x1 5 x2 8 x3 转化为求极大值是( )
27.在约束为
1 1 0 A 2 0 1 ,它的全部基是( ) 的线性规划中,设
)
28.运输问题中 m+n-1 个变量构成基变量的充要条件是( 29.对偶变量的最优解就是( )价格
运筹学(A 卷)试题参考答案
运筹学考试试题
运筹学考试试题一、选择题(每题2分,共20分)1、运筹学的创立时间是在()A. 1900年B. 1910年C. 1920年D. 1930年答案:D. 1930年2、下列哪一位学者不属于运筹学的创始人?()A.贝尔曼B.丹捷格C.哈恩D.朱世博答案:D.朱世博3、最优解是()A.使目标函数值最大的解B.使目标函数值最小的解C.使约束条件成立的解D.使目标函数和约束条件同时成立的解答案:A.使目标函数值最大的解4、下列哪一项不是线性规划的应用领域?()A.生产计划B.金融规划C.交通运输D.社会科学研究答案:D.社会科学研究5、对于一个线性规划问题,如果存在可行解,则一定存在()A.最优解B.基可行解C.唯一解D.非可行解答案:B.基可行解二、填空题(每题3分,共30分)6.运筹学的主要研究内容包括_________、_________、_________、_________等五大领域。
答案:数学规划、图论、线性规划、排队论、对策论等五大领域。
7.在运筹学中,我们将_________称为系统的“输入”,将_________称为系统的“输出”。
答案:系统的各种资源、系统的各种活动等称为系统的“输入”,将系统的各种目标、系统的各种效果等称为系统的“输出”。
8.在运筹学中,_________是指对系统进行科学、合理、有效地筹划和安排,以便使系统能够更好地实现其目标。
答案:运筹帷幄运筹学典型考试试题及答案以下是一些运筹学的典型考试试题以及它们的答案:试题一:线性规划问题假设有一个工厂,它有两个生产部门,每个部门都可以生产两种产品。
每种产品的生产量取决于部门的员工数量、设备的可用性以及原材料的供应量。
现在,我们需要确定每个部门应生产多少每种产品以最大化总收入。
答案:这是一个线性规划问题。
我们可以通过构建一个线性规划模型来解决这个问题。
设x1和x2为每个部门生产的两种产品的数量,y 为每个部门的员工数量,z为每个部门的设备可用性,w为每个部门的原材料供应量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》试题样题
第1题(10分)判断下列说法是否正确, 在括号内写明对错。
(1) 增加约束条件时, 线性规划模型的可行域不扩大。
( ) (2) 线性规划问题的对偶问题的对偶问题是原问题。
( ) (3) 动态规划的逆推与顺推解法得到相同的最优解。
( )
(4) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加5时,相应的目标函数值将增大5k 。
( )
(5) 加非负权无向连通图中任两点间必存在最短路径。
( ) 第2题(10分)填空
(1) 若原问题为无界解,则对偶问题的解是 。
(2) 任何图中, 奇次顶点的个数为 。
(3) 无向连通多重图G 有欧拉通路的充分必要条件为 。
(4) 在一个网络中,可行流f *是最大流,当且仅当 。
(5) 对于多阶段决策问题来说,状态不仅要描述过程的具体特征,而且一个根本的要求是必须满足 。
第3题(20分)下表1是某求极大化线性规划问题计算得到的单纯形表。
表中无人工变量,12312,,,,,a a a d c c 为待定常数,0〉d 。
试说明这些常数分别取何值时,以下结论成立。
(1)表中解为惟一最优解;
(2)表中解为最优解,但存在无穷多最优解; (3)该线性规划问题具有无界解;
(4)表中解非最优,为对解改进,换入变量为1x ,换出变量为6x
第4题(10分)用破圈法或避圈法求下图1的最小生成树,并指出其权重和。
第5题(15分)求下图2的网络最大流和最小截集,弧旁数字为容量。
第6题(20分)某项目的相关资料见下表2。
表 2
(1(2)用图上计算法计算时间参数。
(3)用双线标明关键线路,并注明总工期。
第7题(15分)某企业要投产一种新产品,投资方案有三个:
S 1,S 2,S 3,不同经济形势下的利润如表3所示。
请分别用Maxmin 决策准则、Maxmax 决策准则、Laplace 决策准则、最小机会损失准则、折衷主义准则进行决策,其中乐观系数0.6α=。
表 3
图1。