NOIP2017提高组初赛试题与答案
noip2017提高组试题
CCF 全国信息学奥林匹克联赛(NOIP2017)复赛提高组 day1(请选手务必仔细阅读本页内容)1、文件名(程序名和输入输出文件名)必须使用英文小写。
2、C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
3、全国统一评测时采用的机器配置为:CPU AMD Athlon(tm) II x2 240 processor,2.8GHz,内存4G,上述时限以此配置为准。
4、只提供Linux 格式附加样例文件。
5、提交的程序代码文件的放置位置请参照各省的具体要求。
6、特别提醒:评测在当前最新公布的NOI Linux 下进行,各语言的编译器版本以其为准。
【问题描述】1.小凯的疑惑(math.cpp/c/pas)小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。
每种金币小凯都有无数个。
在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。
现在小凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在小凯无法准确支付的商品。
【输入格式】输入文件名为math.in。
输入数据仅一行,包含两个正整数a 和b,它们之间用一个空格隔开,表示小凯手中金币的面值。
【输出格式】输出文件名为math.out。
输出文件仅一行,一个正整数N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。
见选手目录下的math/math1.in 和math/math1.ans。
【输入输出样例1 说明】小凯手中有面值为3 和7 的金币无数个,在不找零的前提下无法准确支付价值为1、2、4、5、8、11 的物品,其中最贵的物品价值为11,比11 贵的物品都能买到,比如:12 = 3 * 4 + 7 * 013 = 3 * 2 + 7 * 114 = 3 * 0 + 7 * 215 = 3 * 5 + 7 * 0……【输入输出样例2】见选手目录下的math/math2.in 和math/math2.ans。
noip2017提高组试题(day1+day2)-Word版
全国信息学奥林匹克联赛(2017)复赛提高组 1(请选手务必仔细阅读本页内容)一.题目概况注意事项:1、文件名(程序名和输入输出文件名)必须使用英文小写。
2、中函数 ()的返回值类型必须是,程序正常结束时的返回值必须是 0。
3、全国统一评测时采用的机器配置为: () x2 240 ,2.8,内存 4G,上述时限以此配置为准。
4、只提供格式附加样例文件。
5、提交的程序代码文件的放置位置请参照各省的具体要求。
6、特别提醒:评测在当前最新公布的下进行,各语言的编译器版本以其为准。
【问题描述】1.小凯的疑惑()小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。
每种金币小凯都有无数个。
在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。
现在小凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在小凯无法准确支付的商品。
【输入格式】输入文件名为。
输入数据仅一行,包含两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯手中金币的面值。
【输出格式】输出文件名为。
输出文件仅一行,一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。
【输入输出样例 1】见选手目录下的 1 和 1。
【输入输出样例 1 说明】小凯手中有面值为3 和7 的金币无数个,在不找零的前提下无法准确支付价值为1、2、4、5、8、11 的物品,其中最贵的物品价值为 11,比 11 贵的物品都能买到,比如:12 = 3 * 4 + 7 * 013 = 3 * 2 + 7 * 114 = 3 * 0 + 7 * 215 = 3 * 5 + 7 * 0……【输入输出样例 2】见选手目录下的 2 和 2。
【数据规模与约定】对于 30%的数据: 1 ≤ a,b ≤ 50。
对于 60%的数据: 1 ≤ a,b ≤ 10,000。
对于 100%的数据:1 ≤ a,b ≤ 1,000,000,000。
NOIP提高组初赛历年试题及答案完善题篇
for (i = m; i>= 1; i--){
used[data[i]] = false;
for (j =data[i]+1; j <= n; j++) if (!used[j]){
used[j] =true;
data[i] = j;
flag = true;
break;
}
if (flag)
{
for (k = i+1;k <= m; k++)
solve(left, j –1, deep + 1);
if(j<right)
solve(j+ 1, right, deep + 1);
}
int main()
{
inti;
cin>>n;
for(i=1;i<=n;i++)
cin>>a[i];
maxDeep=0;
solve(1,n,1);
cout<<maxDeep<<' '<<num<<endl;
}
void push()
for (j = 1; j<=n; j++) if (!used[j]){
data[k] = j;
used[j] =true;
break;
}
break;
}
}
}
}
NOIP2012-2.新壳栈 小 Z 设计了一种新的数据结构“新壳栈”。首先,它和传统的栈一样支持压入、弹 出操作。此外,其栈顶的前 c 个元素是它的壳,支持翻转操作。其中,c> 2 是 一个固定的正整数,表示壳的厚度。小 Z 还希望,每次操作,无论是压入、弹 出还是翻转,都仅用与 c 无关的常数时间完成。聪明的你能帮助她编程实现“新 壳栈”吗? 程序期望的实现效果如以下两表所示。其中,输入的第一行是正整数 c,之后每 行输入都是一条指令。另外,如遇弹出操作时栈为空,或翻转操作时栈中元素不 足 c 个,应当输出相应的错误信息。
NOIP初赛模拟试题(Pascal语言提高组)
NOIP初赛模拟试题(Pascal语言提高组)一、单项选择题(共10题,每题1.5分,共计15分。
每题有且仅有一个正确答案。
)1.建立了计算机最主要的结构原理的人是()。
A.图灵B.比尔·盖茨C.冯·诺伊曼D.克拉拉·丹E.哥德尔2.设a、b、c是三个布尔型(boolean)的变量,则表达式(a∨b)∧(b∨c)∧(c∨a)∧(a∧a)∧(b∧b)的值()。
A.始终为trueB.始终为faleC.当且仅当c为true时为faleD.当且仅当a与b均为true时为trueE.依赖于a、b、c三者的值3.设a、b为两个浮点(float)型变量,下面的表达式中最有可能为真的是()。
A.a=bB.a某a+2某a某b+b某b=(a+b)某(a+b)C.(a+b)某(a-b)+b某b-a某a<0.0001D.a/b=1/(b/a)E.qrt(a)某qrt(b)=qrt(a某b)4.下面的数据中,在编程中用长整型(longint)表示最恰当的是()。
A.宇宙中的原子数目B.一头大象的体重(用吨表示)C.姚明的身高(用厘米表示)D.一个山村的准确人口数E.从现在(2006年)到2022奥运会开幕的倒计时秒数5.一个三叉树(即每个节点最多有三个孩子)中,有k个孩子的结点数目表示为S(k),则下列关系一定成立的是()。
A.S(0)=2某S(3)+S(2)-1B.S(0)>3某S(3)+2某S(2)-1C.S(0)<3某S(3)+2某S(2)+1D.S(0)<2某S(3)+S(2)E.S(0)<=3某S(3)+2某S(2)6.佳佳在网上购买了一个空间,建设了一个网站。
那么,他向网站上上传网页时最有可能采用的网络协议是()。
A.72B.843C.112.5minD.3h48min16E.超过24小时8.假设用双核CPU运行我们平常编写的信息学竞赛程序,相对于同等规格的单核CPU而言,运行时间()。
noip2017提高组试题day1day2Word版
全国信息学奥林匹克联赛(2017)复赛提高组 1(请选手务必仔细阅读本页内容)一.题目概况二.提交源程序文件名三.编译命令(不包含任何优化开关)注意事项:1、文件名(程序名和输入输出文件名)必须使用英文小写。
2、中函数 ()的返回值类型必须是,程序正常结束时的返回值必须是 0。
3、全国统一评测时采用的机器配置为: () x2 240 ,2.8,内存 4G,上述时限以此配置为准。
4、只提供格式附加样例文件。
5、提交的程序代码文件的放置位置请参照各省的具体要求。
6、特别提醒:评测在当前最新公布的下进行,各语言的编译器版本以其为准。
【问题描述】1.小凯的疑惑()小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。
每种金币小凯都有无数个。
在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。
现在小凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在小凯无法准确支付的商品。
【输入格式】输入文件名为。
输入数据仅一行,包含两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯手中金币的面值。
【输出格式】输出文件名为。
输出文件仅一行,一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。
【输入输出样例 1】【输入输出样例 1 说明】小凯手中有面值为3 和7 的金币无数个,在不找零的前提下无法准确支付价值为1、2、4、5、8、11 的物品,其中最贵的物品价值为 11,比 11 贵的物品都能买到,比如:noip2017提高组试题day1day2Word版12 = 3 * 4 + 7 * 013 = 3 * 2 + 7 * 114 = 3 * 0 + 7 * 215 = 3 * 5 + 7 * 0……【输入输出样例 2】见选手目录下的 2 和 2。
【数据规模与约定】对于 30%的数据:1 ≤ a,b ≤ 50。
对于 60%的数据:1 ≤ a,b ≤ 10,000。
NOIP-2017全国青少年信息学奥林匹克联赛提高组初赛试题标准答案
NOIP 2017全国青少年信息学奥林匹克联赛提高组初赛试卷答案一、单项选择题(共 15 题,每题 1.5 分,共计 22.5 分;每题有且仅有一个正确选项)1. 从( )年开始,NOIP 竞赛将不再支持 Pascal 语言。
A. 2020B. 2021C. 2022D. 20232.在 8 位二进制补码中,10101011 表示的数是十进制下的( )。
A. 43B. -85C. -43D.-843.分辨率为 1600x900、16 位色的位图,存储图像信息所需的空间为( )。
A. 2812.5KBB. 4218.75KBC. 4320KBD. 2880KB4. 2017年10月1日是星期日,1949年10月1日是( )。
A. 星期三B. 星期日C. 星期六D. 星期二5. 设 G 是有 n 个结点、m 条边(n ≤m)的连通图,必须删去 G 的( )条边,才能使得 G 变成一棵树。
A.m–n+1B. m-nC. m+n+1D.n–m+16. 若某算法的计算时间表示为递推关系式:T(N)=2T(N/2)+NlogNT(1)=1则该算法的时间复杂度为( )。
A.O(N)B.O(NlogN)C.O(N log2N)D.O(N2)7. 表达式a * (b + c) * d的后缀形式是()。
A. abcd*+*B. abc+*d*C. a*bc+*dD. b+c*a*d8. 由四个不同的点构成的简单无向连通图的个数是( )。
A. 32B. 35C. 38D. 419. 将7个名额分给4个不同的班级,允许有的班级没有名额,有( )种不同的分配方案。
A. 60B. 84C. 96D.12010. 若f[0]=0, f[1]=1, f[n+1]=(f[n]+f[n-1])/2,则随着i的增大,f[i]将接近与( )。
A. 1/2B. 2/3D. 111. 设A和B是两个长为n的有序数组,现在需要将A和B合并成一个排好序的数组,请问任何以元素比较作为基本运算的归并算法最坏情况下至少要做( )次比较。
NOIP2017初赛提高组参考答案
(4)
head:=head+1或inc(head)
head=head+1或head++或++head
3பைடு நூலகம்
(5)
ans<len[a]或len[a]>ans
2
degree[b]=degree[b]+1或
3
2
inc(degree[b])
degree[b]++或++degree[b]
.
(2)
degree[i]=0
degree[i]==0或!degree[i]
3
(3)
degree[i]:=degree[i]-1或
degree[i]=degree[i]-1或
3
dec(degree[i])
第二十三届全国青少年信息学奥林匹克联赛初赛
提高组参考答案
一、单项选择题(共15题,每题1.5分,共计22.5分)
1
2
3
4
5
6
7
8
C
B
A
C
A
C
B
C
9
10
11
12
13
14
15
D
B
D
D
A
D
C
二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确选项,没有部分分)
1
2
3
4
5
CD
C
D
BD
BD
三、问题求解(共2题,每题5分,共计10分)
1.
3
2.
NOIP2017提高组初赛试题及答案
NOIP2017提高组初赛试题及答案一、单项选择题(共15 题,每题1.5 分,共计22.5 分;每题有且仅有一个正确选项)1. 从( )年开始,NOIP 竞赛将不再支持Pascal 语言。
C A. 2020 B. 2021 C. 2022 D. 20232.在8 位二进制补码中,10101011 表示的数是十进制下的( )。
B A. 43 B. -85 C. -43 D.-843.分辨率为1600x900、16 位色的位图,存储图像信息所需的空间为( )。
AA. 2812.5KBB. 4218.75KBC. 4320KBD. 2880KB4. 2017年10月1日是星期日,1949年10月1日是( )。
C A. 星期三 B. 星期日 C. 星期六 D. 星期二5. 设G 是有n 个结点、m 条边(n ≤m)的连通图,必须删去G 的( )条边,才能使得G 变成一棵树。
AA.m–n+1B. m-nC. m+n+1D.n–m+16. 若某算法的计算时间表示为递推关系式:T(N)=2T(N/2)+NlogN T(1)=1则该算法的时间复杂度为( )。
C A.O(N) B.O(NlogN) C.O(N log2N) D.O(N2)7. 表达式a * (b + c) * d的后缀形式是()。
B A. abcd*+* B. abc+*d* C. a*bc+*d D. b+c*a*d8. 由四个不同的点构成的简单无向连通图的个数是( )。
C A. 32 B. 35 C. 38D. 419. 将7个名额分给4个不同的班级,允许有的班级没有名额,有( )种不同的分配方案。
D A. 60 B. 84 C. 96 D.12010. 若f[0]=0, f[1]=1, f[n+1]=(f[n]+f[n-1])/2,则随着i的增大,f[i]将接近与( )。
BA. 1/2B. 2/3 D. 111. 设A和B是两个长为n的有序数组,现在需要将A和B合并成一个排好序的数组,请问任何以元素比较作为基本运算的归并算法最坏情况下至少要做( )次比较。
NOIP2017提高组C++精彩试题
第二十三届全国青少年信息学奥林匹克联赛初赛提高组 C++语言试题竞赛时间:2017 年 10 月 14 日 14:30~16:30选手注意:试题纸共有 10 页,答题纸共有 2 页,满分 100 分。
请在答题纸上作答,写在试题纸上的一律无效。
不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
一、单项选择题(共 15 题,每题 1.5 分,共计 22.5 分;每题有且仅有一个正确选项)1. 从( )年开始,NOIP 竞赛将不再支持 Pascal 语言。
A. 2020 B. 2021 C. 2022 D. 20232. 在 8 位二进制补码中,10101011 表示的数是十进制下的( )。
A. 43B. -85C. -43D. -843. 分辨率为 1600x900、16 位色的位图,存储图像信息所需的空间为( )。
A. 2812.5KB B. 4218.75KB C. 4320KB D. 2880KB 4. 2017 年 10 月 1 日是星期日,1949 年 10 月 1 日是( )。
A. 星期三B. 星期日C. 星期六D. 星期二5. 设 G 是有 n 个结点、m 条边(n ≤ m )的连通图,必须删去 G 的( )条边, 才能使得 G 变成一棵树。
A. m – n + 1B. m - nC. m + n + 1D. n – m + 16. 若某算法的计算时间表示为递推关系式:T(N) = 2T(N / 2) + N log N T(1) = 1则该算法的时间复杂度为( )。
A. O(N)B. O(N log N)C. O(N log 2 N)D. O(N 2)7. 表达式 a * (b + c) * d 的后缀形式是( )。
A. a b c d * + *B. a b c + * d *C. a * b c + * dD. b + c * a * d 8. 由四个不同的点构成的简单无向连通图的个数是( )。
NOIP2017提高组初赛试题及答案
NOIP2017提高组初赛试题及答案一、单项选择题(共15 题,每题1.5 分,共计22.5 分;每题有且仅有一个正确选项)1. 从( )年开始,NOIP 竞赛将不再支持Pascal 语言。
C A. 2020 B. 2021 C. 2022 D. 20232.在8 位二进制补码中,10101011 表示的数是十进制下的( )。
B A. 43 B. -85 C. -43 D.-843.分辨率为1600x900、16 位色的位图,存储图像信息所需的空间为( )。
AA. 2812.5KBB. 4218.75KBC. 4320KBD. 2880KB4. 2017年10月1日是星期日,1949年10月1日是( )。
C A. 星期三 B. 星期日 C. 星期六 D. 星期二5. 设G 是有n 个结点、m 条边(n ≤m)的连通图,必须删去G 的( )条边,才能使得G 变成一棵树。
AA.m–n+1B. m-nC. m+n+1D.n–m+16. 若某算法的计算时间表示为递推关系式:T(N)=2T(N/2)+NlogN T(1)=1则该算法的时间复杂度为( )。
C A.O(N) B.O(NlogN) C.O(N log2N) D.O(N2)7. 表达式a * (b + c) * d的后缀形式是()。
B A. abcd*+* B. abc+*d* C. a*bc+*d D. b+c*a*d8. 由四个不同的点构成的简单无向连通图的个数是( )。
C A. 32 B. 35 C. 38D. 419. 将7个名额分给4个不同的班级,允许有的班级没有名额,有( )种不同的分配方案。
D A. 60 B. 84 C. 96 D.12010. 若f[0]=0, f[1]=1, f[n+1]=(f[n]+f[n-1])/2,则随着i的增大,f[i]将接近与( )。
BA. 1/2B. 2/3 D. 111. 设A和B是两个长为n的有序数组,现在需要将A和B合并成一个排好序的数组,请问任何以元素比较作为基本运算的归并算法最坏情况下至少要做( )次比较。
NOIP2017提高组初赛模拟题
第二十三届全国青少年信息学奥林匹克联赛初赛提高组 PASCAL语言模拟试题竞赛时间:2017年10月 14 日14:30~16:30选手注意:●试题纸共有13页,答题纸共有2页,满分100分。
请在答题纸上作答,写在试题纸上的一律无效。
●不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
一、单项选择题(共15题,每题 1.5分,共计22.5分;每题有且仅有一个正确选项)1.1956年()授予肖克利(William Shockley)、巴丁(John Bardeen)和布拉顿(Walter Brattain),以表彰他们对半导体的研究和晶体管效应的发现。
A. 诺贝尔物理学奖B. 约翰·冯·诺依曼奖C. 图灵奖D. 高德纳奖(DonaldE. Knuth Prize)2.如果开始时计算机处于小写输入状态,现在有一只小老鼠反复按照CapsLock、字母键A、字母键S和字母键D的顺序来回按键,即CapsLock、A、S、D、S、A、CapsLock、A、S、D、S、A、CapsLock、A、S、D、S、A、……,屏幕上输出的第81个字符是字母()。
A. A B. S C. D D. A3.二进制数00101100和01010101异或的结果是()。
A. 00101000 B. 01111001 C. 01000100 D. 001110004.与二进制小数0.1相等的八进进制数是()。
A. 0.8 B. 0.4 C. 0.2 D. 0.15.以比较作为基本运算,在N个数中找最小数的最少运算次数为()。
A. N B. N-1 C. N2 D. log N6.表达式a*(b+c)-d的后缀表达形式为()。
A. abcd*+- B. abc+*d- C. abc*+d- D. -+*abcd7.一棵二叉树如右图所示,若采用二叉树链表存储该二叉树(各个结点包括结点的数据、左孩子指针、右孩子指针)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NOIP2017提高组初赛试题及答案一、单项选择题(共15 题,每题1.5 分,共计22.5 分;每题有且仅有一个正确选项)1. 从( )年开始,NOIP 竞赛将不再支持Pascal 语言。
C A. 2020 B. 2021 C. 2022 D. 20232.在8 位二进制补码中,10101011 表示的数是十进制下的( )。
B A. 43 B. -85 C. -43 D.-843.分辨率为1600x900、16 位色的位图,存储图像信息所需的空间为( )。
AA. 2812.5KBB. 4218.75KBC. 4320KBD. 2880KB4. 2017年10月1日是星期日,1949年10月1日是( )。
C A. 星期三 B. 星期日 C. 星期六 D. 星期二5. 设G 是有n 个结点、m 条边(n ≤m)的连通图,必须删去G 的( )条边,才能使得G 变成一棵树。
AA.m–n+1B. m-nC. m+n+1D.n–m+16. 若某算法的计算时间表示为递推关系式:T(N)=2T(N/2)+NlogN T(1)=1则该算法的时间复杂度为( )。
C A.O(N) B.O(NlogN) C.O(N log2N) D.O(N2)7. 表达式a * (b + c) * d的后缀形式是()。
B A. abcd*+* B. abc+*d* C. a*bc+*d D. b+c*a*d8. 由四个不同的点构成的简单无向连通图的个数是( )。
C A. 32 B. 35 C. 38D. 419. 将7个名额分给4个不同的班级,允许有的班级没有名额,有( )种不同的分配方案。
D A. 60 B. 84 C. 96 D.12010. 若f[0]=0, f[1]=1, f[n+1]=(f[n]+f[n-1])/2,则随着i的增大,f[i]将接近与( )。
BA. 1/2B. 2/3 D. 111. 设A和B是两个长为n的有序数组,现在需要将A和B合并成一个排好序的数组,请问任何以元素比较作为基本运算的归并算法最坏情况下至少要做( )次比较。
D A. n2 B. Nlogn C. 2n D.2n-112. 在n(n>=3)枚硬币中有一枚质量不合格的硬币(质量过轻或质量过重),如果只有一架天平可以用来称重且称重的硬币数没有限制,下面是找出这枚不合格的硬币的算法。
请把a-c三行代码补全到算法中。
2. 将A中硬币分成X,Y,Z三个集合,使得|X|=|Y|=k, |Z|=n-2k3. if W(X)≠W(Y) //W(X), W(Y)分别为X或Y的重量4. then_______5. else_______6. __________7. if n>2 then goto 18. if n=2 then 任取A中1枚硬币与拿走硬币比较,若不等,则它不合格;若相等,则A中剩下的硬币不合格9. if n=1 then A中硬币不合格正确的填空顺序是( )。
D A. b,c,a B. c,b,a C. c,a,b D.a,b,c13. 在正实数构成的数字三角形排列形式如图所示,第一行的数为a11;第二行的数从左到右依次为a21,a22;…第n行的数为an1,an2,…,ann。
从a11开始,每一行的数aij只有两条边可以分别通向下一行的两个数a(i+1)j和a(i+1)(j+1)。
用动态规划算法找出一条从a11向下通到an1,an2,…,ann中某个数的路径,使得该路径上的数之和达到最大。
令C[i,j]是从a11到aij的路径上的数的最大和,并且C[i,0]=C[0,j]=0,则C[i,j]=( )。
AA. max{C[i-1,j-1],C[i-1,j]}+aijB. C[i-1,j-1]+c[i-1,j]C. max{C[i-1,j-1],C[i-1,j]}+1D. max{C[i,j-1],C[i-1,j]}+aij14. 小明要去南美洲旅游,一共乘坐三趟航班才能到达目的地,其中第1个航班准点的概率是0.9,第2个航班准点的概率为0.8,第3个航班准点的概率为0.9。
如果存在第i个(i=1,2)航班晚点,第i+1个航班准点,则小明将赶不上第i+1个航班,旅行失败;除了这种情况,其他情况下旅行都能成功。
请问小明此次旅行成功的概率是( )。
DA. 0.5B. 0.648C. 0.72D.0.7415. 欢乐喷球:儿童游乐场有个游戏叫“欢乐喷球”,正方形场地中心能不断喷出彩色乒乓球,以场地中心为圆心还有一个圆轨道,轨道上有一列小火车在匀速运动,火车有六节车厢。
假设乒乓球等概率落到正方形场地的每个地点,包括火车车厢。
小朋友玩这个游戏时,只能坐在同一个火车车厢里,可以在自己的车厢里捡落在该车厢内的所有乒乓球,每个人每次游戏有三分钟时间,则一个小朋友独自玩一次游戏期望可以得到( )个乒乓球。
假设乒乓球喷出的速度为2个/秒,每节车厢的面积是整个场地面积的1/20。
CA. 60B. 108C. 18D. 20二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确选项,多选或少选均不得分)1. 以下排序算法在最坏情况下时间复杂度最优的有( )。
CDA. 冒泡排序B. 快速排序C. 归并排序D. 堆排序2. 对于入栈顺序为a, b, c, d, e, f, g 的序列,下列()不可能是合法的出栈序列。
CA. a,b,c,d,e,f,gB. a,d,c,b,e,g,fC. a,d,b,c,g,f,eD.g,f,e,d,c,b,a3. 下列算法中,( )是稳定的排序算法。
D A. 快速排序 B.堆排序 C.希尔排序D. 插入排序4. 以下是面向对象的高级语言的是( )。
BD A. 汇编语言B. C++ C. Fortan D. Java5. 以下和计算机领域密切相关的奖项是( )。
BD A. 奥斯卡奖B. 图灵奖C. 诺贝尔奖D. 王选奖三、问题求解(共2 题,每题5 分,共计10 分)1. 如图所示,共有13 个格子。
对任何一个格子进行一次操作,会使得它自己以及与它上下左右相邻的格子中的数字改变(由1 变0,或由0 变1)。
现在要使得所有的格子中的数字都变为0,至少需要3 次操作。
答案 32. 如图所示,A到B是连通的。
假设删除一条细的边的代价是1,删除一条粗的边的代价是2,要让A、B不连通,最小代价是4 (2分),最小代价的不同方案数是9(3分)。
(只要有一条删除的边不同,就是不同的方案)答案4, 9四、阅读程序写结果(共4 题,每题8 分,共计32 分)1.#include<iostream>using namespacestd;int g(int m, intn, int x){int ans = 0;int i;if( n == 1)return 1;for (i=x; i <=m/n; i++)ans += g(m –i, n-1, i); return ans; }int main() {int t, m, n;cin >> m >> n;cout << g(m, n, 0) << endl; return 0; } 输入: 8 4输出:152.#include<iostream> using namespacestd; int main() {int n, i, j, x, y, nx, ny; int a[40][40];for (i = 0; i< 40; i++)for (j = 0;j< 40; j++)a[i][j]= 0;cin >> n;y = 0; x = n-1;n = 2*n-1;for (i = 1; i <= n*n; i++){ a[y][x] =i;ny = (y-1+n)%n;nx = (x+1)%n;if ((y == 0 && x == n-1) || a[ny][nx] !=0) y= y+1;else {y = ny; x = nx;} }for (j = 0; j < n; j++) cout << a[0][j]<< “”; cout << endl; return 0; }输入: 3输出:17 24 1 8 153.#include<iostream>using namespacestd;int n, s,a[100005], t[100005], i; void mergesort(intl, int r){if (l== r)return;int mid = (l+ r) / 2;int p = l;int i = l;int j = mid + 1;mergesort (l, mid); mergesort (mid + 1, r);while (i <= mid && j<= r){if (a[j] < a[i]){s += mid – i+1;t[p] = a[j];p++;j++; }else {t[p] = a[i];p++;i++; } }while (i <= mid){t[p] = a[i];p++;i++; }while (j <= r){t[p] = a[j];p++;j++; }for (i = l; i <= r; i++ )a[i] = t[i]; }int main() {cin >> n;for (i = 1; i <= n; i++)cin>> a[i];mergesort (1, n); cout << s << endl;return 0;}输入:62 6345 1输出:84.#include<iostream>using namespacestd;int main() {int n, m;cin >> n >> m;int x = 1;int y = 1;int dx = 1;int dy = 1;int cnt = 0;while (cnt != 2) {cnt = 0;x = x + dx;y = y + dy;if (x == 1 || x == n) {++cnt;dx = -dx; }if (y == 1 || y == m) {++cnt;dy = -dy; } }cout << x << " " << y<< endl; return 0;}输入1: 4 3输出1: 1 3(2 分)输入2: 2017 1014输出2: 2017 1(3 分)输入3: 987 321输出3: 1 321(3分)五、完善程序(共2 题,每题14 分,共计28 分)1.大整数除法:给定两个正整数p和q,其中p不超过10100,q不超过100000,求p除以q的商和余数。