流体力学-流体的主要物理性质

合集下载

流体力学 第1章(下) 流体的主要物理性质

流体力学 第1章(下)  流体的主要物理性质

连续介质假设
连续介质假设是将流体区域看成由流体质点连续组成,占满空 间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时均采用“连续介质”这个模型。
和流层问距离dy成反比;
2.与流层的接触面积A的大小成正比;
3.与流体的种类有关;
4.与流体的压力大小无关。
动力粘滞系数μ
表征单位速度梯度作用下的切应力,
Байду номын сангаас
所以它反映了粘滞性的动力性质,因此 也称为动力粘滞系数。
单位是N/m2·s或Pa·s。
运动粘滞系数ν
理解为单位速度梯度作用下的切应力对单位体
2、流体质点和连续介质模型
流体质点的概念 流体质点也称流体微团,是指尺度大小同一 切流动空间相比微不足道又含有大量分子,具有 一定质量的流体微元。 如何理解呢?
宏观上看(流体力学处理问题的集合尺度):流体质 点足够小,只占据一个空间几何点,体积趋于零。
微观上看(分子集合体的尺度):流体质点是一个足 够大的分子团,包含了足够多的流体分子,以至于对 这些分子行为的统计平均值将是稳定的,作为表征流 体物理特性的运动要素的物理量定义在流体质点上。
实例应用:以密度为例来说明物理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
v 0
V
其中,ΔV的含义可以理解为流体微团趋于流体质点。

连续介质假设为建立流场的概念奠定了基础:设 在t时刻,有某个流体质点占据了空间点(x,y,z), 将此流体质点所具有的某种物理量定义在该时刻和空 间点上,根据连续介质假设,就可形成定义在连续时 间和空间域上的数量或矢量场。

《流体力学》教案第一章流体及其主要物理性质

《流体力学》教案第一章流体及其主要物理性质

前言流体力学是力学的一门重要分支。

它是运用力学中的基本规律,研究流体平衡及其运动规律的一门学科。

这门课侧重于流体力学在工程实际中的应用,而对于我们专业来讲,则主要是研究流体力学中的不可压缩流体的平衡及运动规律部分,因为我们经常会遇到的有关水面舰艇、潜艇及鱼雷的运动问题,都是在海水中进行的,而我们一般认为海水的密度为常数,即海水为不可压缩流体。

关于流体的压缩性(可压或不可压),我们在下一节中再详细阐述。

下面就流体力学的发展简史,它的研究方法和内容,这门课程在本专业中的地位与作用等三方面的问题进行说明。

1、流体力学的发展简史流体力学成为一门完整的学科,是经历了一个漫长的历史过程。

人类最早对流体的认识是从供水、灌溉、航行等方面开始的。

例如我国古代传说中的大禹治水的故事及李冰父子在四川修建的都江堰水利工程都是劳动人民利用流体的知识去改造大自然的光辉范例。

在流体力学领域中,最早的一部科学著作是公元前250年由阿基米德所著的《论浮体》,书中精确的给出了著名的“阿基米德原理”,但在这之后的相当长时间里,流体力学几乎没有什么显著进展。

随着欧洲资本主义萌芽的产生,到十七世纪末流体力学又有了许多成就,托里拆利的孔口出流公式、巴斯卡原理、牛顿内摩擦定律等都是当时在流体力学领域内取得的成就,但这些成就都是离散的,孤立的,还不足以使流体力学发展成为独立的学科体系。

流体力学成为独立的一门学科是开始于十八世纪伯诺利(D.Bernonlli)方程和欧拉(L.Euler)方程的建立,十九世纪初期和中期,纳维埃(L.Navier)和斯托克斯(G..G..Stocks)发表了非常著名的粘性流体的运动方程式(即N-S方程)。

十九世纪末,雷诺(O.Regnolols)发现了流体的两种完全不同的流动状态,即层流和紊流。

二十世纪以来,这门科学的发展很快,库塔(W.M.Kutta)和儒可夫斯基(H.E.Joukowski)发表了机翼的升力理论,为航空事业的发展奠定了坚实的理论基础,普朗特(L.Prardtl)提出了边界层理论,这些理论对流体力学开始脱离经典式的理论研究而与工程实际相结合起着很大的作用。

流体力学基本知识

流体力学基本知识

第一章流体力学基本知识▪物质的三种形态:固体、液体和气体▪流体力学-----研究流体平衡和运动的力学规律及其应用的科学。

第一节流体的主要物理性质一. 流体的密度和容重1 . 密度:对于均质流体,单位体积的质量。

kg/m 32 . 容重:对于均质流体,单位体积的重量。

N/m 3VM =ρV G =γ3.密度与容重的关系4.密度和容重与压力、温度的关系 压力升高流体的密度和容重增加;温度升高流体的密度和容重减小。

g Vg M V G ⋅=⋅==ργ二.流体的粘滞性1. 流体粘滞性的概念流体在粘滞力的作用下,具有的抵抗流体相对运动的能力。

2.粘滞性的表示形式❑动力粘滞系数μ kg/m ·s❑运动粘滞系数ν m 2/s ρμν=3.粘滞性与温度、压力的关系❑粘滞性受温度影响大,受压力影响小。

❑液体的粘滞性随温度的升高而降低。

❑气体的粘滞性随温度的升高而增加。

三.流体的压缩性和热胀性1.流体的压缩性2.流体的热胀性3.液体的压缩性与热胀性4.气体的压缩性与热胀性理想气体状态方程:5.可压缩气体与不可压缩气体6.连续介质T RP⋅=ρ第二节流体静压强及其分布规律一.流体的静压强及其特征ⅠⅡP∆ω∆a 1.流体静压强的概念ωω∆∆=→∆P p lim 0( N/m 2 )p 称为a 点的静压强2.静压强的单位从压强的定义出发: 力/面积国际单位: N/m2 (以符号Pa表示)工程单位: kgf/m2或kgf/cm2用大气压的倍数表示:国际单位: 标准大气压1标准大气压=101325Pa=1.01325bar(巴)工程单位: 工程大气压( at )1工程大气压(at) =1kgf/cm2用液柱高度表示:mH2O mmH2O mmHg 1标准大气压=10.33mH2O=10332.3 mmH2O=760 mmHg=101325Pa1工程大气压=10mH2O=10000mmH2O=735.6 mmHg=98070Pa3.流体静压强的特征(1)流体静压强p 的方向必定沿着作用面的内法线方向;(2)任意点的流体静压强只有一个值,它不因作用面的方位改变而改变。

流体力学基本知识

流体力学基本知识
流体在长直管(或明渠)中流动,所受的摩 擦阻力称为沿程阻力。为了克服沿程阻力而消耗 的单位重量流体的机械能量,称为沿程水头损失
hf。
(二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫
使主流脱离边壁而形成漩涡,流体质点间产生剧 烈地碰撞,所形成的阻力称局部阻力。为了克服 局部阻力而消耗的重力密度流体的机械能量称为
5.断面平均流速:流体流动时,断面各点流速一般 不易确定,当工程中又无必要确定时,可采用断
面平均流速(v)简化流动。断面平均流速为断
面上各点流速的平均值。
精品课件
二、恒定流的连续性方程
压缩流体容重不变,即体积流 量相等。流进A1断面的流量等于流 出A2断面的流量;
精品课件
三、恒定总流能量方程
(一)恒定总流实际液体的能量方程
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
精品课件
压缩性:流体压强增大体积缩小的性质。 不可压缩流体:压缩性可以忽略不计的流体。 可压缩流体:压缩性不可以不计的流体。
精品课件
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为:
lim ( Pa)
p=dp/dω
点压强就是静压强
精品课件
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。 (2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
精品课件
二、流体静压强的分布规律

流体的主要物理性质

流体的主要物理性质

规定,液压油产品的牌号用粘度的等级表示,即用该液压油在40℃时的
运动粘度中心值表示。
油液的牌号:40℃时的平均运动粘度,见下表:
温度:40℃,单位:×10-6m2/s
粘度等级 VG10 VG15 VG22 VG32 粘度平均值 10 15 22 32 粘度范围 9.00 ~11.0 13.5 ~16.5 19.8 ~24.2 28.8 ~35.2 机械与材料学院©2013 粘度等级 VG46 VG68 VG100 粘度平均值 46 68 100 粘度范围 41.4~50.6 64.2 ~78.4 90.0 ~110
机械与材料学院©2013
第二章 流体的主要物理性质
三、液体的粘度将随压力和温度的变化发生相应的变化。
1、流体产生粘性的主要原因 ①液体:分子内聚力; ②气体分子作热运动,流层之间分子的热交换频繁。
2、压力的影响
在高压下,液体的粘度随压力升高而增大;常压下,压力对流体的 粘性影响较小,可忽略。 3、温度的影响 ①液体:温度升高,粘度降低; ②气体:温度升高,粘度增大。
第二章 流体的主要物理性质
(3)相对粘度(恩氏粘度) 采用特定的粘度计在规定条件下测出来的液体粘度。
Et t1 / t2
式中:t1 – 油流出的时间 t2-20OC蒸馏水流出时间 φ=2. 8mm 恩氏粘度与运动粘度的换算关系 恩氏粘度计 200ml
6.31 t (7.31 Et )cst Et
机械与材料学院©2013
第二章 流体的主要物理性质
四、 液压油的选用
1、优先考虑粘性 ν=11.5 ~ 41.3 cSt 即 20、30、40号机械油 粘温特性好是指工作介质的粘度随温度变化小,粘温特性通常用粘度 指数表示。 2、按工作压力 p 高,选 µ 大; p 低,选 µ 小 3、按环境温度 T 高,选 µ 大; T 低,选 µ 小 4、按运动速度 v 高,选 µ 小; v 低,选 µ 大 5、其他 环境 (污染、抗燃) 经济(价格、使用寿命) 特殊要求(精密机床、野外工作的工程机械)

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。

与固体相比,流体具有易变形、易流动的特点。

流体的主要物理性质包括密度、压强和黏性。

密度是指单位体积流体的质量,用ρ表示。

对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。

压强是指流体单位面积上所受的压力,通常用 p 表示。

在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。

黏性是流体内部抵抗相对运动的一种性质。

黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。

二、流体静力学流体静力学主要研究静止流体的力学规律。

(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。

(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。

浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。

三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。

对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。

(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。

其表达式为p +1/2ρv² +ρgh =常量。

即在同一流线上,压强、动能和势能之和保持不变。

伯努利方程有着广泛的应用。

例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。

四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。

(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。

阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。

流体的主要物理性质

流体的主要物理性质

压强(at)
压缩系数 (m2/N)
5 0.538
10 0.536
20 0.531
流体的主要物理性质
40 0.528
80 0.515
1.2 流体的可压缩性和热膨胀性
1.液体的可压缩性和热膨胀性
压缩系数的倒数被称为体积弹性模量或体积弹性系数,即
K的单位是Pa。
K 1 V dp dp
0.72
1.2 流体的可压缩性和热膨胀性
2.气体的可压缩性及热膨胀性
气体与液体不同,气体具有显著的可压缩性和热膨胀性。温度与压强的变化对 气体密度的影响很大。在温度不过低,压强不过高时,气体的压强、体积和温度三 者之间的关系服从理想气体状态方程:
p RT
其意义为:一定量气体,压强与密度的比值与热力学温度(开尔文温度,开氏 度=摄氏度+273.15)成正比。
此外,虽然气体是可以压缩和膨胀的,但对于低速气流,当其速度远小于音速, 且在流动过程中压强和温度变化较小时,气体的密度变化很小。例如,气流速度小 于50m/s时,其密度的变化通常小于1%,此时通常可以忽略压缩性影响,视为不可 压缩流体。
流体的主要物理性质
1.3 不可压缩流体
所谓不可压缩流体,是指流体的每个质点在运动全过程中,密度不变的流体。 而密度为常数的流体,称为不可压缩均质流体。
流体的主要物理性质
1.1 流体的密度
表2-1 不同温度下水的密度
温度(℃)
密度 (kg/m3)
温度(℃)
密度 (kg/m3)
0 999.87
40 992.24
4 1000.00
50 988.07
10 999.73
60 983.24
20 998.23

流体力学基础知识

流体力学基础知识

余热发电专业理论知识培训教材流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。

这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。

3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。

4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。

粘度越大,阻力越大,流动性越差。

气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。

二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。

②液体内任一点的各个方向的静压力均相等。

2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。

3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。

用Pj表示。

②表压力(或称相对压力):以大气压力Pa为零算起的。

用Pb表示。

③真空:绝对压力小于大气压力,即表压Pb为负值。

绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。

因此,压力和流速是流体运动的基本要素。

②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。

单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。

流量可分为体积流量Qv和质量流量Qm。

Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。

下面将对流体力学的一些重要知识点进行总结。

一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。

比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。

2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。

膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。

液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。

3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。

粘性的大小用动力粘度μ 或运动粘度ν 来表示。

牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。

4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。

表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。

二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。

2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。

3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。

4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。

真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。

5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。

6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。

第1章(下) 流体的主要物理性质

第1章(下)  流体的主要物理性质

三、流体的连续介质假设及力学模型
流体的分类
流体的连续介质模型 不可压缩流体力学模型 理想流体力学模型
1、流体的分类
1)根据流体受压体积缩小的性质可分为: (1)可压缩流体:流体密度随压强变化不能忽略的流体 (2)不可压缩流体:流体密度随压强变化很小,流体的密 度可视为常数的流体 注意: (a)严格地说,不存在完全不可压缩的流体。
空间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
40 45 50 60 70 80 90 100
0.656 0.599 0.549 0.469 0.406 0.357 0.317 0.284
0.661 0.605 0.556 0.477 0.415 0.367 0.328 0.296
一个大气压下的空气的粘滞系数
t (℃) 0 10 20 30 40 50 60 70 80 μ (10-3pa.s) 0.0172 0.0178 0.0183 0.0187 0.0192 0.0196 0.0201 0.0204 0.0210 ν (10-6m2/s) 13.7 14.7 15.7 16.6 17.6 18.6 19.6 20.5 21.7 t (℃) 90 100 120 140 160 180 200 250 300 μ (10-3pa.s) 0.0216 0.0218 0.0228 0.0236 0.0242 0.0251 0.0259 0.0280 0.0298 ν (10-6m2/s) 22.9 23.6 26.2 28.5 30.6 33.2 35.8 42.8 49.9

流体力学基本知识

流体力学基本知识

二、流动的两种形态——层流和紊流 流体在流动过程中,呈现出两种不同的流 动形态。当液体流速较低时,呈现为成层 成束的流动,各流层见并无质点的掺混现 象,这种流态就是层流。加大流速到一定 程度,质点或液团相互混掺,流速愈大, 混掺程度愈烈,这种流态就成为紊流。 判断流动形态,雷诺氏用无因次量纲——雷 诺数Re来判别。
(二)流速系数C经验公式 (1)曼宁公式 (2)海澄-威廉公式
五、局部水头损失 在实际水力计算中,局部水头损失可以采 用流速水头乘以局部阻力系数后得到,即 v2 hj=ζ 2 g (1-35) 式中ζ——局部阻力系数。ζ值多是根据管配件、 附件不同,由实验测出。 v——过流断面的平均流速;它应与ζ值 相对应。除注明外,一般用阻力后的流速; g——重力加速度。
第二节 流体静压强及其分布规律
流体静止是运动中的一种特殊状态。 由于流体静止时不显示其黏滞性,不存在 切向应力,同时认为流体也不能承受拉力, 不存在由于粘滞性所产生运动的力学性质。 因此,流体静力学的中心问题是研究流体 静压强的分布规律。
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
或者写为
p1
v12
2g
p2
2 v2ห้องสมุดไป่ตู้
2g
h12
实际气体总流的能量方程与液体总流的能量方程比 较,除各项单位以压强来表达气体单位体积平均 能量外,对应项意义基本相近
第四节 流动阻力和水头损失
一、流动阻力和水头损失的两种形式 (一)沿程阻力和沿程水头损失 流体在长直管(或明渠)中流动,所受的摩擦 阻力称为沿程阻力。为了克服沿程阻力而消耗的 单位重量流体的机械能量,称为沿程水头损失hf。 (二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫使 主流脱离边壁而形成漩涡,流体质点间产生剧烈 地碰撞,所形成的阻力称局部阻力。为了克服局 部阻力而消耗的重力密度流体的机械能量称为局 部水头损失hj。

流体的主要物理性质

流体的主要物理性质

强稍高的区域内气泡溃灭、破坏外界材料的结果。
第六节 汽化压强
1、理想流体有无能量损失?为什么?
无。因为理想流体=0 ,没有切应力。
2、流体的切应力与 有关。
剪切变形速率;剪切变形大小
有关,而固体的切应力与
3、流体的粘度与哪些因素有关?它们随温度如何变化?
流体流体的种类、温度、压强。
液体粘度随温度升高而减小,气体粘度随温度升高而增大。
毛细现象。
7、为什么测压管的管径通常不能小于1厘米?
如管的内经过小,就会引起毛细现象,毛细管内液面上升或
下降的高度较大,从而引起过大的误差。
8、若测压管的读数为h1,毛细高度为h2, 则该点的测压管实 际高度为多少?(测压管的工作流体分别为水和水银)
h1-h2 ——水
h1+h2 ——水银
9 、在高原上煮鸡蛋为什么须给锅加盖?
比,这是流体区别于固体(其切应力与剪切变形大小成正比)的一个重要
特性。根据是否遵循牛顿内摩擦 定律,可将流体分为牛顿流体和非牛顿流 体。
5、由于表面张力作用会引起毛细现象,所以用作测压管的管径不小于10mm。
.8 h 29 d (mm) .15 h 10d (mm)
——在管中水上升高度 ——在管中水银下降高度
对于水有: =0°, =0.074N/m
h h
第五节 表面张力
29.8 d
(mm) (mm)
r

对于水银有: =140°, =0.514N/m
h
10.15 d
水银
第六节 汽化压强
一、汽化、凝结
汽化(Evaporation):是指液体分子逸出液面向空间扩散的过程,即液
态变为气态的现象。 汽化的逆过程称为凝结(Condensation)。

流体力学基础知识

流体力学基础知识

一般来说,拖动泵和风机的电动机或者内燃
机的转速是恒定的,然后根据其特性曲线来选取 合适的泵和风机
*其他类型的泵与风机
轴流式水泵与风机 其流动特点是,流体沿叶轮的轴向流入
流出。其性能特点是,轴流式风机风压较 低,但风量较大。 贯流式风机
其流动特点是气流沿着径向流入又从 径向流出。这种风机的风量较小,但是噪 音很低,多用于室内空调。
三、绝对压力与表压力
由p=p0+γh表示的流体静压力是流体的绝对压力, 它是以绝对真空为压力零点计算的流体静压力,代 表流体内部某一点的实际压力。
工程上使用的测压仪表自身也处于大气压力的作用 下,他们在当地大气压力下示数为零。用仪表测量 流体压力得到的读数只反应流体压力比当地大气压 力高或者低多少,其实是一个压力差,因此叫做表 压力。
一定量的流体所受外界压力增大的时 候,其体积将缩小,密度会增大,该性质 称为流体的压缩性。
一定量的流体受热温度升高的时候, 其体积将增大,密度会减小,该性质称为 流体的热胀性。
气体的压缩性必液体显著的多,一般 将液体视为不可压缩流体。在一些情况下 (如空气沿通风管道前进)也将气体视作 不可压缩流体。于此同时,我们对于液体 的热胀性要给予足够的认识和重视。如高 楼水系统种一般设置膨胀水箱。
六、泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述。需 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水。
水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力。
泵与风机的主要性能参数:流量、扬程和压 头、功率、效率、转速请同学们自行了解。
整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体分子的运动具有较大的自由程和随机性,液体 次之,而固体分子只能绕自身的位置作微小的振动 III 固体、液体和气体宏观的表象差异
固体有一定的体积也有一定的形状; 液体有一定的体积而无一定的形状; 气体既无一定的体积也无一定的形状。 IV 固体、液体和气体力学性能比较: 固体可以承受拉力、压力和切应力; 液体却只能承受压力,几乎不能承受拉力,在 极小的切应力作用下就会出现连续的变形流动,它 只呈现对变形运动的阻力,不能自行消除变形。这 一特性称为流体的易流动性。
三、连续介质假设
• 流体质点:包含有大量流体分子,并能保持其宏 观力学性能的微小单元体。
• 连续介质的概念:在流体力学中,把流体质点作 为最小的研究对象,从而把流体看成是由无数连 续分布、彼此无间隙地占有整个流体空间的流体 质点所组成的介质
• 连续介质模型的意义: (1)、流体质点在微观上是充分大的,而在宏观上 又是充分小的。流体质点在它所在的空间就是一个 空间点。当我们所研究的对象是比粒子结构尺度大 得多的流动现象时,就可以利用连续介质模型。 (2)、流体宏观物理量是空间点及时间的函数,这 样就可以顺利地运用连续函数和场论等数学工具研 究流体平衡和运动的问题,这就是连续介质假设的
为流体的压缩性。压缩性的大小用体积压缩率κ表示,它 的物理意义是单位压强变化所引起的体积的相对变化率,即

1 V
V p
❖ 式中 κ——体积压缩性系数 (Pa-1)
(2-10)

V——流体的体积 (m3)

ΔV——流体体积的变化量 (m3)

Δp——流体压强的变化量 (Pa)
由于压强增大,体积缩小, Δp与ΔV变化趋势相反,
A
lim
V 0
m V
dm dV
A
lim
V 0
G V
dG dV
(2-5) (2-6)

A
lim
V 0
V m
dV dm
(2-7)
❖ 流体的相对密度是指流体的重度与标准大气压下 4℃纯水的重度的比值,用d表示。
d = γ流 /γ水 = ρ流 /ρ水 (2-8) ❖ 很明显,比重是一个无量纲的纯数。
❖ 几种常见物质在标准大气压下的物理性质见表21。
❖ 密度的倒数称为比体积,以υ表示
υ = 1/ ρ = V/m
(2-4)
❖ 它表示单位质量流体所占有的体积。
❖ 对于非均质流体,因质量非均匀分布,各点密 度不同。取包围空间某点A在内的微元体积ΔV, 设其所包含的流体质量为Δm, 重量为ΔG, 则当 ΔV →0时,A点的密度、重度和比体积分别为
❖ ❖ ❖

V——流体的体积(m3)
❖ ΔV ——流体体积的增加量(m3)
❖ ΔT——温度的增加量(K)
❖ 液体的热膨胀性很小,一般可忽略不计。气体的热
膨胀性相对很大,一般不可忽略,当气体压强不变时, 温度每升高1K,体积便增大到273K时体积的1/273。 因此,气体的热膨胀系数=1/273(1/K)
二、压缩性 在一定温度下,流体体积随压强升高而减少的性质称
2.34

7000 8

2.3 流体的热膨胀性和可压缩性
❖ 一、热膨胀性
❖ 在一定压强下,流体体积随温度升高而增大的性质
称为流体的热膨胀性。热膨胀性的大小用体积膨胀系数
α表示,它的物理意义是单位温度变化所引起的体积的
相对变化率,即

1 V V T
(2-9)
❖ 式中 α——体积膨胀系数(1/K)
• 单位体积的流体所受的重力称为重度,以γ表示。 对于均质流体,各点所受到的重力相同,即有

γ = G /V
(2-2)
•式中 G——流体的所受的重力(N)

V——重力为G的流体所占有的体积(m3)
❖ 流体的密度和重度有以下的关系:
γ = ρ g 或 ρ = γ/ g
(Hale Waihona Puke -3)❖ 式中 g——重力加速度,通常取g = 9.81m/s2。
55

甘油
20 1258 1.26 14900 0.00001 4350
空气
20 1.205 — 0.18
4

二氧化碳 20 1.84 — 0.148


一氧化碳 20 1.16 — 0.182


水银
20 1355 13.5 15.6

26200

20
0 6 10.1 0.00017 2070
熔化生铁 20 998 0.99 —
2.2 流体的密度、重度、比体积与相对密度
• 流体具有质量和重量,流体的密度、重度、比体积 与相对密度是流体最基本的物理量。
• 单位体积的流体所具有的质量称为密度,以ρ表 示。对于均质流体,各点密度相同,即

ρ = m /V
(2-1)
•式中 m——流体的质量(kg)

V——质量为m的流体所占有的体积(m3)
体。 二、物质的物理属性比较
在常温常压下,物质可以分为固体、液体和气体 三种聚集状态。它们都具有下列物质的三个基本属 性:(1)由大量分子组成,
(2)分子不断地作随机热运动, (3)分子与分子之间有相互作用力。 I 从宏观上看同体积内所包含的分子数目:
气体<液体<固体
II 同样分子间距上的分子相互作用力: 气体<液体<固体
这是流体区别于固体的根本标志。 气体与液体性能相近,主要差别是
可压缩性的大小。气体在外力作用下表 现出很大的可压缩性,而液体则不然。 在通常的温度下水所承受的压强由 0.1MPa增加到10MPa时,其体积仅减少 原来的0.5%,而气体的体积与压强按波 义尔马略特定律成反比关系。可见气体 的可压缩性比液体的大很多。
为保证κ为正值,上式右边加一负号。并且从κ的表达式
可以看出,当压强变化相同时,体积变化率越大, κ也
欢迎使用
《工程流体力学》
多媒体授课系统
第二章 流体的主要物理性质
• 2.1 流体的概念及 连续介质假设
• 2.2 流体的密度、重度、 比体积与相对密度
• 2.3 流体的热膨胀性 和可压缩性
• 2.4 流体的粘性
2.1 流体的概念及连续介质假设
一、流体的概念 凡是没有固定的形状,易于流动的物质就叫流
液体 种类
温度 t 0C
密度
/(kg/ m3)
相对 密度
d
粘度
104
/(Pas)
饱和蒸 气压
pv /(kPa)
体积弹性 系数 K10-6 /(Pa)
水蒸气 20 0.747 — 0.101


四氯化碳 20 1588 1.59 9.7
12.1
1100
原油
20 856 0.86 72


汽油
20 678 0.68 2.9
相关文档
最新文档