射频电路设计基础PPT课件

合集下载

射频电路原理ppt课件

射频电路原理ppt课件
射频振荡器(或本地振荡器,RFVCO): 中频滤波器:在电路中只允许中频信号通过,主要用来
防止邻近信道的干扰,提高邻近信道的选择性。
射频收发信机(U602)
2)、发射机(Transmitter):提供射频信号的上行链路, 将IQ基带信号调制成发射射频信号。
包含2个发射压控振荡器(TXVCO)、缓冲放大器、下变 频混频器、正交调制器、带Charge Pump和环路滤波器的 鉴相器(PD),另一路分频器和环路滤波器用于正交调制 器与下变频混频器完成产生合适的TX调制中频。
双工滤波器(U601)
器件引脚排列及名称:
表1:器件引脚排列及名称
双工滤波器(U601)
表2:双工滤波器的开关控制模式
双工滤波器(U601)
图3:双工滤波器相关电路
声表面滤波器
3、声表面滤波器(Z600、Z602、Z603): 是一个带通滤波器,只允许接收频段的射频信号进入接收
机电路,其它频段的信号将会得到抑制。
射频收发信机(U602)
MT6129系列采用非常低中频结构(与零中频相比,能够改 善阻塞抑制、AM抑制、邻道选择性,不需DC偏移校正,对 SAW FILTER共模平衡的要求降低),采用镜像抑制(35dB 抑制比)混频滤波下变频到IF,第1中频频率为:GSM 200KHZ,DCS/PCS 100KHZ。第1IF信号通过镜像抑制滤 波器和PGA(每步2dB共78dB动态范围)进行滤波放大,经 第2混频器下变频到基带IQ信号,频率为67.708KHz。
射频收发信机(U602)
在GSM 系统中,有一个公共的广播控制信道(BCCH), 它包含频率校正信息与同步信息等。手机一开机,就会在 逻辑电路的控制下扫描这个信道,从中获取同步与频率校 正信息,如手机系统检测到手机的时钟与系统不同步,手 机逻辑电路就会输出AFC 信号。AFC 信号改变 13MHz/26MHz 电路中VCO 两端的反偏压,从而使该 VCO 电路的输出频率发生变化,进而保证手机与系统同 步。

射频电路理论与设计第2版ppt第8章课件

射频电路理论与设计第2版ppt第8章课件

《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
8.1.4 放大器稳定措施
当放大器不是绝对稳定,则有时信源和负载选择 的ΓS和ΓL会造成|Γin|>1或|Γout|>1,使放大器处于非稳定 状态,此时应当采取措施使放大器进入稳定状态。 |Γin|>1和|Γout|>1用输入阻抗表达,为
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
本书有配套的仿真教材 《ADS射频电路设计基础与 典型应用(第2版)》。
2本书在多个章节都有 互动。《射频电路理论与设 计(第2版)》注重理论设计, 而《ADS射频电路设计基础 与典型应用(第2版)》注重 仿真设计。
《射频电路理论与设计(第2版)》
② 若输出稳定判别圆不包含史密斯圆图中心点 (如图8.2(d)所示),ΓL的稳定区域在输出稳定判 别圆内。ΓL的稳定区域是史密斯圆图单位圆内输出 稳定判别圆内的区域,是图8.2(d)中的阴影区。
《射频电路理论与设计(第2版)》
2. 输入稳定判别圆
《射频电路理论与设计(第2版)》
(1)若|S22|<1,则史密斯圆图中心 点在稳定区域内。分两种情况。 (2)若(|S22|>1,则史密斯圆图中心 点在稳定区域外。分两种情况。
由于晶体管输入端加电阻会增加输入损耗,进而 转化为输出端较大的噪声指数,因此一般不在输入端加 电阻,而采用在输出端加电阻来达到晶体管稳定的目的。
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
8.2 放大器的增益
对输入信号进行放大是放大器最重要的任务,因 此在放大器的设计中,增益的概念很重要。

射频微波电路导论课件

射频微波电路导论课件

滤波器设计
滤波器的作用
滤波器用于选择特定频率范围的 信号,抑制不需要的频率成分,
从而提高信号的纯度。
滤波器的设计方法
可以采用LC电路、微带线等方法进 行滤波器的设计,通过调整元件的 值和连接方式来实现不同的滤波特 性。
滤波器的应用场景
在射频微波电路中,滤波器广泛应 用于信号处理、通信系统等领域。
天线设计
THANKS
感谢观看
物联网技术将促进射频微波电路与其他技术的 结合,如传感器技术、云计算技术等,为射频 微波电路的创新发展提供更多可能性。
新材料的应用前景
新材料的出现将为射频微波电 路的设计和制造提供更多的选 择和可能性。
新材料具有优异的物理性能和 化学性能,可以提高射频微波 电路的性能和稳定性。
新材料的应用将推动射频微波 电路向绿色环保、可持续发展 方向迈进,降低对环境的负面 影响。
04
射频微波电路的设计与实现
匹配网络设计
匹配网络的作用
匹配网络的应用场景
匹配网络是用于实现射频微波电路中 各个元件之间的阻抗匹配,确保信号 传输的效率和质量。
在射频微波电路中,如放大器、滤波 器、混频器等元件都需要用到匹配网 络,以确保信号的顺畅传输。
匹配网络的设计方法
可以采用传输线理论、Smith Chart 等方法进行匹配网络的设计,通过调 整元件的阻抗值来实现匹配。
01
03
滤波器在射频微波电路中的设计和制作需考虑其频率 响应特性、插入损耗和群时延等因素,以确保电路性
能的稳定性和可靠性。
04
滤波器的种类繁多,常见的有LC滤波器、微带线滤波 器和介质滤波器等,根据不同的应用需求选择合适的 滤波器类型和规格。
03

射频电路设计一PPT课件

射频电路设计一PPT课件

• 教材:
1、射频电路设计——理论与应用 美Ludwig,R. 徐承和等译 电子工业出版社 2003-05
2、ADS应用详解——射频电路设计与仿真 陈艳华等编著 人民邮电出版社
• 参考书: 1、射频电路设计 黄智伟编著 电子工业出版社 2006-04
2、射频电路设计 美W.Alan.Davis 李福乐译 机械工业出版社 2005-10-09
精选ppt
高频电感的等效电路 15
1.4.3 高频电感-射频特性2
• 一个射频线圈的阻抗绝对值与频率的关 系如右图所示:当频率接近谐振点时, 射频线圈(RFC)的阻抗迅速提高,当 频率继续提高时,寄生电容Cs的影响则 成为主要的,线圈的阻抗降低。
• 线圈电阻的影响通常用品质因数Q来表 示
Q X Rs
晶体薄片具有正、反压电效应。当石英晶体薄片的几 何尺寸和结构一定时,具有一个固有的机械振动频率。 当高频交流电压加于晶片两端时,晶片将随交变信号 的变化而产生机械振动,当信号频率与晶片固有振动 频率相等时,产生了谐振。

石 常小英,晶所体以谐振石英器晶的等体谐效振电感器具Lq非有常非大常,高而的CQq值和,rq都其非Q 值为
➢ 射频电路的主要部件:
– 传输线
– 滤波器
– 功率放大器
– 混频器和振荡器
精选ppt
7
1.2 量纲和单位
➢在自由空间,向z方向传播的平面电磁(EM)波,

➢当E⊥H⊥传播方向时,即为横电磁(TEM)波: ➢特性阻抗(波阻抗):电场和磁场分量的比
➢波相速:
精选ppt
8
1.3 频谱
精选ppt
9
1.4 无源元件的射频特性
典型的表面线装电感的尺寸为60X120mil, 电感值从1nH至1000µH。

《射频技术基础》课件

《射频技术基础》课件
工业领域:射频加热、射频焊接、射 频干燥等
军事领域:雷达、电子对抗、通信等
射频技术的发展历程
19世纪末,无线 电技术的诞生
20世纪初,无线 电技术的快速发展
20世纪中叶,射 频技术的广泛应用
21世纪初,射频 技术的创新与突破
03 射频技术基础知识
电磁波基础知识
电磁波:由电场和磁场相互激发产生的波
无线传感器网络中的射频技术
射频技术在无线传感器网 络中的应用
射频技术的特点和优势
射频技术的应用场景和案 例
射频技术在无线传感器网 络中的挑战和问题
物联网中的射频技术
射频识别 (RFID): 用于物品识别
和追踪
无线传感器网 络(WSN): 用于环境监测
和数据采集
近场通信 (NFC): 用于移动支付 和身份验证
射频技术在无线通信系统中的应用 实例
添加标题
添加题
添加标题
射频技术在无线通信系统中的发展 趋势
雷达系统中的射频技术
雷达系统:用于探测、跟踪和识别目标 射频技术:在雷达系统中用于发射和接收电磁波 应用实例:雷达系统中的射频技术用于探测、跟踪和识别目标 特点:射频技术在雷达系统中具有高精度、远距离、全天候等优点
调制:将信息信号转换为射 频信号的过程
解调方式:幅度解调、频率 解调、相位解调等
调制解调器的作用:实现射 频信号的调制和解调
射频信号的传输与接收:通 过天线进行传输和接收
射频信号的发射与接收
射频信号的发射:通过天线 将信号发射到空气中
射频信号的产生:通过振荡 器产生高频信号
射频信号的接收:通过天线 接收信号,并通过滤波器、
滤波器的类型:包括低通滤 波器、高通滤波器、带通滤 波器等

《射频电路与天线》课件

《射频电路与天线》课件

电容元件
定义
电容元件是一种能够存储电场能 量的元件,其基本结构是两个平
行板导体之间的绝缘介质。
工作原理
当电压施加在电容元件上时,会在 电介质中产生电场,使得两极板之 间产生电荷吸引力。
特性
电容元件具有容抗,其值与电容量 和频率成反比。在射频电路中,电 容元件常用于滤波、耦合和匹配等 应用。
电阻元件
天线的工作原理
总结词
天线的工作原理
VS
详细描述
天线的工作原理基于电磁波的传播和辐射 。当天线受到电磁波激励时,会在其周围 产生电磁场,形成电磁波的辐射和传播。 天线的形状、尺寸和材料等因素决定了其 辐射特性和方向性。常见的天线形式包括 偶极子天线、单极子天线、抛物面天线等 ,它们各有不同的工作原理和应用场景。
能将得到进一步提升,为无线通信技术的发展提供有力支持。
02 射频电路的基本元件
电感元件
定义
电感元件是一种能够存储磁场能量的 元件,其基本结构是一个导线绕组。
工作原理
特性
电感元件具有感抗,其值与电感量成 正比,与频率成反比。在射频电路中 ,电感元件常用于滤波、耦合和调谐 等应用。
当电流在电感元件中流动时,会产生 一个与电流变化方向相反的感应电动 势,阻碍电流的变化。
《射频电路与天线》PPT课件
contents
目录
• 射频电路概述 • 射频电路的基本元件 • 天线基础 • 常见天线类型与应用 • 天线阵列与馈电网络 • 射频电路与天线的未来发展
01 射频电路概述
定义与特点
总结词
射频电路是无线通信系统中的关键组成部分,具有频率高、频带宽、信号传输损耗低等特点。
要点二
详细描述
在进行馈电网络设计与实现时,需要综合考虑信号传输效 率、功率分配均匀性、相位一致性等因素。通过对传输线 型式、功率分配器和相位调整器等进行合理选择和设计, 可以确保馈电网络的性能满足天线阵列的工作需求。同时 ,还需要考虑馈电网络的可靠性、可维护性和成本等因素 ,以满足实际应用的需求。

《射频电路设计一》课件

《射频电路设计一》课件
设计匹配网络
为确保信号传输效率,设计合适的信号源和负载 匹配网络。
3
设计滤波器、功分器等辅助电路
根据系统需求,设计相应的滤波器、功分器等辅 助电路。
电路版图绘制与仿真验证
使用专业软件绘制电路版图
使用专业软件,如Cadence、Mentor Graphics等,绘制射频电路 的版图。
进行电磁仿真验证
《射频电路设计一 》ppt课件
目 录
• 射频电路概述 • 射频电路的基本元件 • 射频电路的分析方法 • 射频电路的设计流程 • 射频电路的调试与优化 • 案例分析
01
射频电路概述
定义与特点
定义
射频电路是指工作在射频频段的 电子电路,通常用于无线通信、 雷达、导航等领域。
特点
射频电路具有高频率、高带宽、 高灵敏度等特点,能够实现高速 、远距离的无线信号传输。
具有通直流阻交流的特性,常用于滤波、 振荡、延迟等电路中。
种类
包括空心电感、磁芯电感、变压器等。
应用
在射频电路中,电感常用于调谐、匹配、 滤波等电路中。
电阻
定义
导体对电流的阻碍作用称为电阻,是一个物理量,符号为R。
特性
具有消耗电能的作用,常用于限流、分压等电路中。
种类
包括碳膜电阻、金属膜电阻、线绕电阻等。
传输线近似分析法
总结词
传输线近似分析法适用于分析传输线和微波网络,通过将电路简化为传输线模型 ,便于理解和计算。
详细描述
传输线近似分析法主要应用于传输线和微波网络的射频电路设计。该方法将电路 简化为传输线模型,通过求解传输线和微波网络的参数来分析电路性能。该方法 计算简便,精度较高,适用于对信号传输特性要求较高的场合。

射频电路设计理论与应用课件

射频电路设计理论与应用课件
射频电路设计理论与应用课 件
目录
• 射频电路设计概述 • 射频电路设计基础理论 • 射频电路核心组件设计 • 射频电路应用技术 • 射频电路设计案例分析与实践
01
射频电路设计概述
射频电路的定义与应用领域
定义
射频电路是指工作在射频频段的 电路,通常包括无线收发系统、 微波电路、射频放大器、混频器 等。
应用领域
射频电路广泛应用于通信、雷达 、电子对抗、医疗电子、测量仪 器等领域。
射频电路设计的挑战与重要性
挑战
射频电路设计面临诸多挑战,如频率高、波长短、信号幅度 小、易受干扰等。此外,还需要考虑电路的稳定性、线性度 、效率等因素。
重要性
随着无线通信技术的飞速发展,射频电路作为无线通信系统 的核心组成部分,其性能直接影响到整个系统的传输质量、 可靠性以及功耗等方面。因此,研究射频电路设计理论与应 用具有重要意义。
4. 设计收发机控制电路,实 现自动增益控制、频率合成、
校准等功能。
5. 制作并调试收发机系统硬 件,编写并烧录相关控制软件

6. 对收发机系统进行综合测 试与性能评估,确保满足设计
要求。
THANKS
感谢观看
射频电路在雷达系统中的应用
发射链路
射频电路在雷达系统的发射链路中起 到关键作用。它负责产生高频大功率 信号,并通过天线辐射出去,用于探 测目标。
接收链路
射频电路在雷达接收链路中用于接收 反射回来的微弱信号。它需要具备高 灵敏度和低噪声性能,以确保准确的 目标探测和距离测量。
射频电路在微波工程中的应用
03
射频电路核心组件设计
滤波器设计
频率选择
滤波器类型
滤波器是射频电路中用于频率选择的核心 组件,能够实现对特定频率信号的通过或 抑制。

《接收机射频电路》课件

《接收机射频电路》课件

动态范围控制
通过控制接收机的动态范围,避免信号过载或欠载,减 小失真,提高信号质量。
06
接收机射频电路的发展趋势与展 望
新技术与新材料的应用
纳米技术
利用纳米材料制作更小、更高效的射 频电路元件,提高接收机的灵敏度和 性能。
新型材料
探索和利用新型材料,如石墨烯、氮 化镓等,以改善射频电路的性能和稳 定性。
未来发展方向与挑战
5G和6G技术
随着5G和6G通信技术的发展,接收机射频电路需 要适应更高的频率和更复杂的环境条件。
智能化和自动化
发展智能化和自动化的接收机射频电路,以实现 更高效、更精准的信号接收和处理。
兼容性和互操作性
提高接收机射频电路的兼容性和互操作性,以满 足不同设备和系统的需求。
THANKS
收信号的范围。灵敏度通常用dBm或dBu表示,其数值越小表示灵敏度越高。
动态范围
总结词
动态范围是指接收机在正常工作条件下 ,能够处理的信号强度的最大值与最小 值之差。
VS
详细描述
动态范围是衡量接收机射频电路性能的重 要指标之一,它反映了接收机在正常工作 条件下能够处理的信号强度范围。动态范 围越大,表示接收机能够处理的信号强度 范围越广,从而更好地适应不同的信号环 境。动态范围通常用dB表示。
抗干扰能力
要点一
总结词
抗干扰能力是指接收机在存在干扰信号的情况下,能够正 常工作并保持性能稳定的能力。
要点二
详细描述
在实际应用中,接收机射频电路往往会受到各种干扰信号 的影响,如其他无线通信设备的干扰、电磁波干扰等。因 此,抗干扰能力是评价接收机性能的重要指标之一。一个 好的接收机射频电路应具备良好的抗干扰能力,以确保在 复杂的环境中仍能保持稳定的性能表现。抗干扰能力通常 通过实际测试和应用来评估。

射频电路基础课件(xin)第四章

射频电路基础课件(xin)第四章

(2) 功率谱密度。 由于电流脉冲的随机性, 其大小方向均 不确定, 不能用它们的电流谱密度叠加, 因此引入功率谱密度 S(f)的概念。 功率谱密度S(f)表示单位频带内的功率, 单位是 dBm/Hz(0 dBm表示1 mW功率)。 引入了功率谱, 就可以避免 叠加相位的不确定性。 以电流功率谱表示的噪声功率为
第四章
噪声与小信号放大器
式中:
1 F( f ) = f 2 1+ ( ) fa
f 2 ) 1 + ( 1− α0 fa
(4.2.4)
式(4.2.4)表明, 晶体管的分配噪声不是白噪声, 其功率 谱密度是频率的函数。 频率愈高, |α|2愈小, 则分配噪 声愈大。
第四章
PI =

f2 f1
S I ( f ) df
第四章
噪声与小带f2-f1内的积分值。 以 电压量表示的噪声功率为
PU =

f2 f1
S U ( f )df
它是用电压量表示的功率谱密度在频带f2-f1内的积分值。 也可以用噪声电流均方值I2n和噪声电压均方值U2n示在频带 ∆f=f2-f1内单位电阻上的噪声功率。
PnA
4kTRB = = kTB 4R
第四章
噪声与小信号放大器
1. 电阻热噪声 在晶体管中, 载流子的不规则热运动会产生热噪声, 其 主要来源是基区体电阻rbb′。 相比之下, 发射区和集电区的热 噪声很小, 一般可以忽略不计。 2. 散粒噪声 晶体管外加偏压时, 由于载流子穿过PN结的速度不同, 使得单位时间内通过PN结的载流子数不同, 从而引起PN结上 的电流在某一平均值上有一微小的起伏。 这种电流随机起伏 所产生的噪声称为散粒噪声。

射频基础知识讲座PPT课件

射频基础知识讲座PPT课件

• 频综
• 耦合
• 检测(功率)
•57
射频电路的基本功能部件
• 频综的组成 ▽ VCO、VCXO 、TCXO、OCXO ▽ PLL(锁相环)
•58
射频电路的基本功能部件
• 频综的主要参数 ▽频率 ▽相噪 ▽功率
•59
射频电路的基本功能部件
• 放大
• 衰减
• 混频 RF
IF LO
• 滤波
• 频综

10*log(2)=3dB
10*log(4)=6dB
级联增益=2*4=8倍
10*log(8)=9dB
级联增益=3+6=9dB
•24
射频的一些基本概念
• dBm ▽是一个功率的单位 ▽10*log(功率/mW) ▽1W=10*log(1W/1mW) =10*log(1000) =30dBm
•25
射频的一些基本概念
▽压控衰减器
▽AGC(自动增益控制)
•48
射频电路的基本功能部件
• 衰减器的主要参数 ▽衰减量 ▽IP3(P1dB) ▽输入输出阻抗
•49
射频电路的基本功能部件
• 放大
• 衰减
• 混频 RF
IF LO
• 滤波
• 频综
• 耦合
• 检测(功率)
•50
射频电路的基本功能部件
• 混频 ▽无源混频 ▽有源混频
RFE
TRx
DIV
RFE功能示意框图
•16
基站射频系统的基本组成与架构
天 线1
BT M注 入 获 取
R FCM
LNA
4分
路器
TE ST TR X
天 线0
BTM 注入 获取

第12章射频控制电路无线通信射频电路技术与设计文光

第12章射频控制电路无线通信射频电路技术与设计文光

态时信号就传递到负载;对串联结构,器件低阻状态才允许信
号传输。
5
§12.1 射频开关
2. 插入损耗和隔离度 插入损耗定义为理想开关在导通状态传递给负载的功率与实
际开关在导通状态真正传给负载功率之比值,常以分贝数表示。
如果用VL表示在理想开关负载两端的电压,则插入损耗IL可
写为:
2
IL VL VL1
3
§12.1 射频开关
12.1.2 GaAs FET 在典型的开关模式中,当栅源负偏置在数值上大于夹断电
压Vp即( Vgs Vp )时,漏源之间电阻很大,可视为一个高阻抗状 态;当零偏置栅电压加载到栅极时,则产生一个低阻抗状态。 FET的两个工作区域可以用图(a)形象表示。FET中与电阻性 和电容性区域相关的部分如图(b)所示。
19
§12.2 射频移相器
12.2.4 加载线型移相器
加载线型移相器常用于对45°和22.5°移相设计。在这种电路中 ,移相原理如图中所示。入射波经历的移相 决定于归一化电 纳b=B/r。
由b引起的反射为:
G= 1-(1+jb) = -jb 1+(1+jb) 2+jb
电压传输系数 Γ 则可以写成:
tan 1
Bn
2Xn
Bn
X
2 n
2(1 Bn X n )
当 Bn和 Xn两者都改变符号时[如图(b)所示],相位 保持相同 幅度而改变符号,S21幅度不变。因此在低通和高通网络之间切 换所引起相移 由下式给出:
2 tan1
Bn
2Xn
Bn
X
2 n
2(1 Bn X n )
24
§12.2 射频移相器
13

射频电路设计第一章

射频电路设计第一章

噪声系数
01
噪声系数
描述了电路内部噪声对信号的影响 程度,通常用噪声系数表示。
灵敏度
描述了电路能够检测到的最小信号 强度,通常用灵敏度表示。
03
02
信噪比
描述了信号与噪声之间的比例关系, 通常用信噪比表示。
选择性
描述了电路对不同频率信号的选择 能力,通常用选择性表示。
04
05
射频电路的设计流程
系统指标分析
动态范围
描述了电路能够处理的信号强度范围,通常 用动态范围表示。
功率增益
功率增益
描述了电路对输入信号的功率放大能力,通 常用功率增益表示。
效率
描述了电路将直流功率转化为射频功率的能 力,通常用效率表示。
稳定性
描述了电路在不同工作条件下的性能稳定性, 通常用稳定性表示。
可靠性
描述了电路在不同工作条件下的寿命和可靠 性,通常用可靠性表示。
匹配网络
为避免信号反射和能量损失,需要 设计合适的匹配网络,使元件与传 输线之间达到良好的阻抗匹配。
元件稳定性
考虑元件在射频频率下的稳定性, 以及温度、湿度等环境因素对元件 性能的影响。
电路仿真与优化
电路模型建立
根据实际电路结构和元件参数,建立精确的电路模型。
仿真分析
利用仿真软件对电路模型进行分析,预测电路性能。
感谢观看
THANKS
射频电路的应用领域
无线通信
雷达与导航
广播
物联网
手机、基站、无线局域 网等。
气象雷达、卫星定位系 统等。
电视广播、调频广播等。
传感器节点、智能家居 等。
射频电路的发展趋势
01
02
03

射频电路设计-理论与应用 王子宇 译ppt课件

射频电路设计-理论与应用 王子宇 译ppt课件

14
20
13
10
12
11 10
9 8
7 6
107
108
109
1010 1011
频率 ,Hz
0
-10
-20
-30
107
108
109
1010 1011
频率 ,Hz
可见RLC串联电路换成并联电路以后,则带通电路变成带阻电路,其
衰减曲线要陡峭得多。
8
当L 1 C
时电路发生串联谐振,其谐振频率:0
1 LC
1 jL
1
1
1
RL
0 1
1
R
RG
1 jL
1 1 jL RL
1 RL
RG RL
1
故:V2 1
1
VG
A
1 R
RG
1 jL
1 RL
RG=50Ω,R=10Ω,L=100nH
当ω→0时: V2 0 VG
当ω→∞时: V2
RL
VG RG R RL
6
5.1.4 带通和带阻滤波器
故: 1
QLD
1
滤波器平中均的储功能率损耗
c
1

负载平 中均 的储 功能 率损耗
c
1
QF
1
Q3 E
5.1.2 低通滤波器
ZG R
图示为一阶低通滤波器,设ZG=RG,ZL=RL
用四个级连ABCD参量网络构成。
VG
V1
C
V2 ZL
则:CA
B D
1 RG
0
1
1
0
R 1 0 1 0 1 jC 11/ RL 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• High pass filter (passive)
Transfer |H()| function 1
• Filters used in electronics can be constructed from resistors, inductors, capacitors, transmission line sections, and resonating structures (e.g., piezoelectric crystal, Surface Acoustic Wave (SAW) devices, mechanical resonators, etc.).
射频电路设计基础
11
3B. RF Microwave Filters
2
1.0 Basic Filter Theory
3
Introduction
• An ideal filter is a linear 2-port network that provides perfect transmission of signal for frequencies in a certain passband region, infinite attenuation for frequencies in the stopband region, and a linear phase response in the passband (to reduce signal distortion).
• An active filter may contain a transistor, FET, and an op-amp.
Filter LPF HPF BPF
Active Passive Active Passive
5
Filter Frequency Response
• Frequency response implies the behavior of the filter with respect to steady-state sinusoidal excitation (e.g., energizing the filter with a sine voltage or current source and observing its output).
4
Categorization of Filters
• Low pass filter (LPF), high pass filter (HPF), bandpass filter (BPF), bandstop filter (BSF), arbitrary type, etc.
• In each category, the filter can be further divided into active and passive types.
6
Filter Frequency Response (cont’d)
• Low pass filter (passive)
V1()
Filter H()
V2() ZL
|H()|
1
Transfer
function
H V2 V1
(1.1a)
Complex value
Arg(H()) c
A()/dB
• Low pass filter (passive) continued...
A()/dB
Passband
50
40
30
20
10
3Hale Waihona Puke 0cTransition band
Stopband
Cut-off frequency (3 dB)
V1()
Filter H()
V2()
ZL
9
Filter Frequency Response (cont’d)
• In an active filter, there can be amplification of the signal power in the passband region; a passive filter do not provide power amplification in the passband.
50
40
Real value
c
30 20 10 3
Atten nA ua 2tL i0oo 1g 0V V1 2 (1.1b)
0
c
7
Filter Frequency Response (cont’d)
• Low pass filter (passive) continued...
• For the impedance matched system, using s21 to observe the filter response is more convenient, as this can be easily measured using a vector network analyzer (VNA).
• There are various approaches to displaying the frequency response:
– Transfer function H() (the traditional approach) – Attenuation factor A() – S-parameters, e.g., s21() – Others, such as ABCD parameters, etc.
• The goal of filter design is to approximate the ideal requirements within acceptable tolerance with circuits or systems consisting of real components.
Vs
Zc
a1
Zc
Zc b2
Zc
Filter
Zc Zc
20log|s21()|
0 dB
Arg(s21())
Transmission line is optional
c
s11ab11a20 s21ba21a20
Complex value
8
Filter Frequency Response (cont’d)
相关文档
最新文档