几种常见塔板与塔内结构(单溢流)

合集下载

精馏塔操作

精馏塔操作

3.浮阀塔板——————浮阀形式
1-浮阀片;2-凸缘;3-浮阀”腿“;4-塔板上的孔
(a)F1型
(b)V-4型
(c)T型
浮阀塔板
• 优点:能适应气体流量在较大范围内
的波动,具有较大的操作弹性,生产 能力大,板效率高。
•缺点:是处理胶粘性和含固体颗
粒物料时,易导致阀片与塔板粘结 或被架起,同时在操作过程中可能 会发生阀片脱落或卡死等现象,使 塔板效率和操作弹性下降。
出料
• 精馏塔的内部原理:
液体靠重力作用由顶部逐板流向塔 底排出,并在各层塔板的板面上形成 流动的液层;气体则在压力差推动下 ,由塔底向上经过均布在塔板上的开 孔依次传播各层塔板由塔顶排出。
• 在有降液管式的塔板上,有专供液体流通 的降液管,每层板上的液层高度可以由适 当的溢流挡板调节。在塔板上气、液两相 成错流方式接触。 • 板式塔的溢流装置是指溢流堰和看、降液 管。降液管的布置规定了板上液体流动的 途径,一般有以下几种形式:
精馏塔板的选择:
• 层出不穷的新型塔板结构各具特点,应根 据不同的工艺及生产需要来选择塔型。不 是任何情况下都追求高的踏板效率,一般 来说,对难分离物系的高纯度分离希望得 到高的板效率,而对处理量大又易分离的 物系,往往追求高的生产能力,真空精馏 则需要低的压力降。
精馏塔常用的板型主要有四类:



(1)泡罩塔板; (2)筛板; (3)浮阀塔板; (4)喷射型塔板: ①舌形塔板 ②浮动喷射塔板 ③浮舌塔板 ④斜孔塔板 ⑤穿流栅孔塔板
1.泡罩塔板结构示意图
(a)泡罩塔板操作状态示意图
(b) 圆 形 泡 罩 结 构 图
1-升气管;2-泡罩;3-塔板
II----体由一系列平行的浮 动板组成,浮动板支承在支架的三 角槽内,可在一定角度内转动。

化工原理二第三章习题

化工原理二第三章习题

泡罩型 优点:结构简单、造价低,板上液面落差小, 优点 : 结构简单 、 造价低 , 板上液面落差小 , 气 筛孔型 体压降低,生产能力大,传质效率高。 体压降低,生产能力大,传质效率高。 缺点:筛孔易堵塞,不宜处理易结焦、 缺点 : 筛孔易堵塞 , 不宜处理易结焦 、 粘度大的 浮阀型 物料。 物料。 其它型: 其它型:
• 二、选择题 • 1.气液在塔板上有三种接触状态,优良的 .气液在塔板上有三种接触状态, 接触状态是(),操作时一般控制在()。 (),操作时一般控制在 接触状态是(),操作时一般控制在()。 • ①鼓泡接触状态 ②泡沫接触状态 • ③喷射接触状态 • 2.板式塔塔板的漏液主要与()有关,液 ()有关 .板式塔塔板的漏液主要与()有关, 沫夹带主要与()有关,液泛主要与() ()有关 沫夹带主要与()有关,液泛主要与() 有关。 有关。 • ①空塔气速 ②液体流量 ③板上液面落差 ④塔板间距
受液盘
单流型 双流型 溢流形式 U型流 阶梯型流
受液盘
单流型
双流型
受液盘
U 型流
阶梯型流
双流型塔板
有溢流塔板又分为: 有溢流塔板又分为:
泡罩型 筛孔型 浮阀型 其它型: 其它型:
优点:操作弹性较大, 优点:操作弹性较大,塔板不易堵塞 。 缺点:结构复杂、造价高,板上液层厚, 缺点:结构复杂、造价高,板上液层厚,塔 板压降大, 板压降大,生产能力及板效率较低 。
• 三、计算与分析题
• • • • • 本题附图为某塔板的负荷性能图, 为操作点 为操作点。 本题附图为某塔板的负荷性能图,A为操作点。 (1)请作出操作线; )请作出操作线; (2)塔板的上下限各为什么控制; )塔板的上下限各为什么控制; (3)计算塔板的操作弹性; )计算塔板的操作弹性; (4)该塔板设计是否合适,若不合适如何改变塔板的结 )该塔板设计是否合适, 构参数。 构参数。

塔盘结构形式的选择

塔盘结构形式的选择

塔盘结构形式的选择1.塔盘的形式(1)板式塔塔盘可分为溢流式和穿流式两类。

因为溢流式塔盘有降液管,塔盘上的液层高度可通过溢流堰高度来控制,因此溢流式塔盘操作弹性大,且可保证一定的效率,而穿流式塔盘的操作弹性小,效率较差,因此使用溢流式塔盘。

图3.1板式塔盘(2)塔盘结构分为整块式与分块式塔盘一般塔径在800mm~900mm以下时,为了便于安装与检修,建议采用整块式塔盘;当塔径在800mm~900mm以上时,人可以在塔内进行装拆,可采用分块式塔盘。

分块式塔盘是把若干块塔盘板通过紧固件连接在一起,组成一个完整的塔板。

而本设计塔径为1800/1400mm,因而本塔全采用分块式塔盘。

2.液体在塔板上的流型当液体在塔板上流动时,除要克服与上升气流接触而产生的阻力外还要克服流经塔板上的构件而产生的阻力。

经过的距离越长,阻力也越大。

因而在塔板上形成液面落差,使上升的气流不能均匀分布,导致塔板效率降低。

因此,正确选择液体在塔板上的流型予以重视,特别是在液量与塔径很大的场合。

液体的流型主要有以下几种:(1)单流(或单溢流)型是最简单也是最常用的一种。

液体横流过整块塔板,行程长,塔板效率好。

但在液量与塔径过大时,液面落差大,塔板效率差。

(2)双流(或双溢流)型液量较大或塔径较大时采用。

因缩短了液流的行程,有利于减少液面落差,同时也降低溢流堰上液流强度与降液管负荷。

(3)U形流型液气比小时采用,其液流行程虽长,液面落差不会太大。

(4)其他流型液量与塔径都很大时,用四流型或阶梯型更为合适。

可减少液流行程,降低液面落差,但结构较为复杂。

液体的流型选用单溢流型。

单溢流分块式塔板如图3.2所示:图3.2单溢流塔板3.降液管与受液盘(1)降液管可分为圆形降液管和弓形降液管。

降液管是塔板间液体流动的通道,也是溢流液中夹带的气体得以分离的场所。

圆形降液管的流通面积小,没有足够的空间分离溢流液中的气泡,气相夹带严重,塔板效率较低。

由于泡沫分离不好,容易产生拦液,影响塔板的操作弹性,塔板面积的利用率也较低,因此除液体负荷很小的小塔以外,一般均推荐采用弓形降液管。

化工原理课程设计精馏板式塔的设计

化工原理课程设计精馏板式塔的设计
④ 降液管的宽度Wd和截面积Af: 可根据堰长lw与塔径D的比值,由图中查取Wd/D和Af/AT的值,。求得的降液 管的宽度和截面积,应按照下式进行验算液体在降液管内的停留时间,并
确保停留时间大于或等于3~5s,这样使得溢流中的泡沫有足够的时间在降
液管中分离。
(27)
⑤ 降液管底隙高度hb:
(28)
• 采用合适的回流比; • 蒸馏系统的合理设置,如采用中间再沸器和中间 冷凝器的流程,可以提高精馏塔的热力学效率。
3.板式精馏塔的工艺计算
釜。 (1) (2)
得出:
3.1物料衡算及操作线方程
• 常规塔:一处进料和塔顶、塔底各有一个产品,塔釜间接蒸汽加热的精馏
(3)
(4)
式中:F、D、W——分别为原料液、馏出液和釜残液流量,kmol/h;
2.2进料状态的选择
• • • • • • •
进料状态以进料热状态参数q表示,有五种进料状态; q>1.0时,为低于泡点温度的冷液进料; q=1.0时,为泡点下饱和液体; q=0时,为露点下的饱和蒸气; 1>q>0时,为介于泡点和露点间的气液混合物; q<0时,为高于露点的过热蒸气进料。 为使塔的操作稳定,免受季节气温影响,精、提馏段采 用相同塔径以便于制造,则采用饱和液体(泡点)进料, 但需增设原料预热器。
• 4、塔的负荷性能图(放在说明书的流体力学验算后、用 标准坐标纸绘制)
2.设计方案的确定
2.1操作压力
精馏操作可以在常压、减压和加压下进行。
除热敏性物料外,凡通过常压精馏即可实现分离要 求,并能用江河水或循环水将馏出物冷凝下来的 系统,都采用常压精馏;
对热敏性物料或混合物沸点过高的系统,宜采用减 压精馏; 常压下成气态的物料必须采用加压精馏。

板式塔主要类型得结构与特点

板式塔主要类型得结构与特点

板式塔主要类型得结构与特点工业上常用得板式塔有:泡罩塔、浮阀塔、筛板塔、穿流栅孔板塔浮阀塔具有得优点:生产能力大,塔板效率高,操作弹性大,结构简单,安装方便。

二、板式塔得流体力学特性1、塔内气、液两相得流动A 使气液两相在塔板上进行充分接触以增强传质效果B 使气液两相在塔内保持逆流,并在塔板上使气液量相保持均匀得错流接触,以获得较大得传质推动力。

2、气泡夹带:液体在下降过程中,有一部分该层板上面得气体被带到下层板上去,这种现象称为气泡夹带。

3、液(雾)沫夹带:气体离开液层时带上一些小液滴,其中一部分可能随气流进入上一层塔板,这种现象称为液(雾)沫夹带。

4、液面落差液体从降液管流出得横跨塔板流动时,必须克服阻力,故进口一侧得液面将比出口这一侧得高。

此高度差称为液面落差。

液面落差过大,可使气体向上流动不均,板效率下降。

5、气体通过塔板得压力降压力降得影响:A 气体通过塔板得压力降直接影响到塔低得操作压力,故此压力降数据就是决定蒸馏塔塔底温度得主要依据。

B 压力降过大,会使塔得操作压力改变很大。

C 压力降过大,对塔内气液两相得正常流动有影响。

压力降:ΔPP =ΔPC+ΔPL+ΔPδ塔板本身得干板阻力ΔPC板上充气液层得静压力ΔPL液体得表面张力ΔPδ折合成塔内液体得液柱高度M,则ΔPP /ρLg=ΔPC/ρLg +ΔPL/ρLg +ΔPδ/ρLg即hp =hc+hL+hδ浮阀塔得压力降一般比泡罩塔板得小,比筛板塔得大。

在正常操作情况,塔板得压力降以290—490 N/m2、在减压塔中为了减少塔得真空度损失,一般约为98—245Pa 通常应在保证较高塔板效率得前提下,力求减少塔板压力降,以降低能耗及改善塔得操作性能。

6、液泛(淹塔)汽液量相中之一得流量增大到某一数值,上、下两层板间得压力降便会增大到使降液管内得液体不能畅顺地下流。

当降液管内得液体满到上一层塔板溢流堰顶之后,便漫但上层塔板上去,这种现象,称为液泛(淹塔)如气速过大,便有大量液滴从泡沫层中喷出,被气体带到上一层塔板,或有大量泡沫生成。

正戊烷—正己烷用筛板精馏塔设计

正戊烷—正己烷用筛板精馏塔设计
图4.2正己烷密度与温度的关系图
已知:混合液密度 (a质量分率),混合气体密度 。
(5)含有悬浮物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔和孔径较大的筛板塔等。不宜使用填料。
(6)操作过程中有热效应的系统,用板式塔为宜。因塔盘上积有液层,可在其中安放换热管,进行有效的加热或冷却。
1.4.2与操作条件有关的因素
(1)若气相传质阻力大(即气相控制系统,如低黏度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统(如水洗二氧化碳),宜采用板式塔,因为板式塔中液相呈湍流,用气体在液层中鼓泡。
加热蒸汽压力250kpa(表压)
单板压降Δp=0.7kPa(表压)
全塔效率ET=51.23%
(5)设备型式筛板精馏塔
(6)厂址安徽淮南
(7)设备工作日330天/年(一年又一个月检修)
(8)淮南地区的当地大气压101.33kPa
2.2
2.2.1设计方案的确定
本设计任务为分离正戊烷和正己烷混合物。对于二元混合物的分离,应采用常压下的连续精馏装置。本设计采用泡点进料,将原料夜通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送入储罐。该物系属易分离物系,最小回流比较小,操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
精馏段操作线方程:
提馏段操作线方程:
相平衡方程为x=
两操作线交点的横坐标为
(5)求理论塔板数:交替使用相平衡方程与操作线方程
1:以下交替使用精馏段操作线方程与相平衡方程:


化工原理第六章第六节 板式塔

化工原理第六章第六节 板式塔

2013-1-7
2.塔板上的液面落差
液面落差:塔板进出口清液层高度差 减少液面落差的措施: 多溢流。
2013-1-7
当液体横向流过塔板时,为克服板上的摩擦阻力和板
上部件(如泡罩、浮阀等)的局部阻力,需要一定的液位
差,则在板上形成由液体进入板面到离开板面的液面落差。 液面落差也是影响板式塔操作特性的重要因素,液面落差 将导致气流分布不均,从而造成漏液现象,使塔板的效率 下降。因此,在塔板设计中应尽量减小液面落差。
2013-1-7
3.筛孔塔板
2013-1-7
筛孔塔板简称筛板,其结构如图所示。塔板上开有许多均
匀的小孔,孔径一般为3~8mm。筛孔在塔板上为正三角形排
列。塔板上设置溢流堰,使板上能保持一定厚度的液层。 操作时,气体经筛孔分散成小股气流,鼓泡通过液层, 气液间密切接触而进行传热和传质。在正常的操作条件下, 通过筛孔上升的气流,应能阻止液体经筛孔向下泄漏。 筛板的优点是结构简单、造价低,板上液面落差小,气 体压降低,生产能力大,传质效率高。其缺点是筛孔易堵塞, 不宜处理易结焦、粘度大的物料。 应予指出,筛板塔的设计和操作精度要求较高,过去工业 上应用较为谨慎。近年来,由于设计和控制水平的不断提高, 可使筛板塔的操作非常精确,故应用日趋广泛。
2013-1-7
奥康内尔收集了
几十个工业塔的塔板
效率数据,认为对于 蒸馏塔,可用相对挥 发度与进料液体黏度 的乘积αμL作为参数来
表示全塔效率,关联
曲线见图6-56。
图6-56 精馏塔效率关联曲线
2013-1-7
(二)单板效率(莫弗里板效率)
单板效率又称莫弗里(Murphree)板效率。它用汽相(或液相)经过 一实际塔板时组成变化与经过一理论板时组成变化的比值来表示。

(四)塔板上的液体流动安排

(四)塔板上的液体流动安排

一、塔板结构(一)气液鼓泡区(二)溢流堰(三)降液管(四)塔板上的液体流动安排根据液体流量和塔径的大小,塔板上的液体流量安排有:单溢流、双溢流。

(1)单溢流:塔板上只有一个降液管,一般是弓形的,多用于小塔。

(2)双溢流:塔板上有两个溢流堰,上层塔板的液体分成两半,从左右两个降液管流到下层塔板,再分别流向中间的降液管,径中间的降液管流到下层塔板,再由中央向两侧流动。

特点:液体流径短,液面落差小,由于液气比较大的塔。

塔板结构复杂。

二、塔板上气液两相的流动现象汽液两相的接触状态、液面落差、漏液、液沫夹带、液泛(一)汽液两相的接触状态鼓泡接触状态:汽速低时。

接触面积为气泡的表面。

由于气泡少,接触面小,且气泡表面的湍动程度不强,所以传质阻力大。

泡沫接触状态:随着汽速的增加,气泡的数量不断增多,气泡相连,气泡间形成液膜。

在气泡不断相互碰撞、合并和破裂的过程中,液沫表面不断更新,形成一些直径较小、扰动剧烈的动态泡沫。

塔板上的液体大部分以泡沫之间的液膜形式存在。

特点:接触表面大,且表面不断更新。

有利于传热和传质。

喷射接触状态:汽速再进一步增大,气相以喷射状态穿过液层,将塔板上的液体破碎成许多大小不同的液滴,抛向上方空间。

大液滴落下,小液滴被气相夹带走,成为液沫夹带。

特点:液相为分散相,气体为连续相。

液滴的表面成为传质的表面,传质面积大。

液滴的多次形成与合并使液滴表面不断更新,这些有利于传质和传热。

关于泡沫状态和喷射状态下操作的几个问题:1.通常在泡沫状态、喷射状态或两者的过渡状态(混合泡沫状态)下操作,常压精馏塔多在混合泡沫状态下操作。

2.液体流量一定时,汽速小,泡沫状态;汽速大,喷射状态。

一定的汽速下,液流量大,泡沫状态;液流量小,喷射状态。

总之,L/V大,泡沫状态,L/V小,喷射状态。

3.易挥发组分和难挥发组分的表面张力σ难和σ易相对大小接触状态有影响。

对双组分混合液的σ易<σ难,易在泡沫状态下操作。

塔结构

塔结构

塔设备是化工、石油等工业中广泛使用的重要生产设备。

塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。

因此,蒸馏和吸收操作可在同样的设备中进行。

根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。

板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。

气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。

填料塔内装有各种形式的固体填充物,即填料。

液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。

气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。

目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。

蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。

本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。

第1节板式塔板式塔为逐级接触式气液传质设备。

在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。

气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。

板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便3.1.1塔板类型按照塔内气液流动的方式,可将塔板分为错流塔板与逆流塔板两类。

错流塔板:塔内气液两相成错流流动,即流体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。

错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。

但是降液管占去一部分塔板面积,影响塔的生产能力;而且,流体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称之为液面落差。

化工原理6.7 板式塔

化工原理6.7 板式塔
② 气相以水平方向吹入液层,气、液接触时间较长而液沫
夹带较小,故塔板效率较高。
③ 操作弹性大。
④ 结构简单、造价低,安装检修方便。
⑤ 浮阀对材料的抗腐蚀性能要求较高。
脚钩
F-1型
6.7
板式塔
6.7.6.4 导向筛板(林德筛板)
(1)适用范围
适用于真空精馏操作的高效低压降塔板。
(2)评价指标
每块塔板的压降与板效率的比值。
6.7
6.7.1
板式塔
板式塔的结构特点和流体力学特性
6.7.1.1 板式塔的结构及功能
(1)主要构件:
塔体、塔板及气、液体进出口管等。塔体为圆柱形壳体。
(2)塔内流体流动:
塔内液体在重力作用下自上而下流经各层塔板,最后由塔
底排出。
塔内气体在压力差作用下经塔板上的小孔由下而上穿过塔
板上的液层,最后由塔顶排出。
操作范围宽
缺点
适用范围
结构复杂
阻力大
生产能力低
某些要求弹性好的特殊

浮阀板
效率高
操作范围宽
采用不锈钢
浮阀易脱落
分离要求高
负荷变化大
原油常压分馏塔
筛板
效率较高
成本低
安装要求水平易堵
操作范围窄
分离要求高
塔板较多
化工中丙烯塔
舌型塔板
结构简单
生产能力大
操作范围窄
效率较低
分离要求较低的
闪蒸塔
斜孔板
生产能力大
效率高
注意:气体和液体沿塔板的不均匀流动,传质量减少,
效率下降。
6.7
板式塔
6.7.2.3 板式塔的不正常操作
(1)液泛

多晶硅提纯塔

多晶硅提纯塔


2.采用0.2至0.3的极低的高径比,使填料在乱堆时也能体现一定程度的有序排列的特点,从 而降低了填料的阻力降,有效地抑制两相的非理想流动,有助于进一步提高处理能力和传质
效率。

3.可以根据体系和生产要求,采用多种材质加工制造。主要有Φ16 mm、Φ25 mm、Φ38 mm、Φ50 mm和Φ75 mm等多种规格。因而选用范围宽、设计弹性大。
Af Af (a)圆 形 ( b)弓 形 图 10- 16 降 液 管 示 意 图
(6) 溢流堰
We 降液管 how hw HT h0 筛板 溢流堰 lw Af Aa Ws Af r x Wd
图 10- 17 单 溢 流 塔 板 示 意 图
堰长 :为使液流均匀通过塔板,一般对单溢流 lw 0.6 ~ 0.8 D 对双溢流
(1)由于克服了非活化区,使得塔板上鼓泡 区域增加,增加了气液传质机会 。 (2)液相返混是影响塔板效率的最重要的因 素之一。高效导向筛板很好地克服了液相返 混 。 (3)消除了液面梯度,降低了漏液量和雾沫 夹带
导向筛板特点
► 压降低: 与泡罩塔板、浮阀塔板、筛板塔板等相比,导向 筛板的压降比筛板塔板的还低10%左右。 抗堵能力强 从导向孔中喷出的气体推动物料在塔板上水平 前进,这样可以强化液体在塔板上的流动,对 粘性物料,可以多设置导向孔 结构简单、造价低廉
(b) 图 10- 14 塔 板 流 动 型 式
(c)
(d)
传统塔板上有较大的液面梯度,液流不畅,存在着非 活化区、液相返混,容易堵塔、液泛,通量小、效率 低的缺点。
高效导向筛板的工作原理:
在高效导向筛板上开设了大量筛孔及少部分导向孔,通 过筛孔的气体在塔板上与液体错流,穿过液层垂直上升, 通过导向筛板的气体,沿塔板水平前进,将动量传递给塔 板上水平流动的液体,从而推动液体在塔板上均匀稳定前 进,克服了原来塔板上的液面落差和液相返混,提高了生 产能力和板效率,解决了堵塔、液泛等问题。

板式塔的15种塔板介绍

板式塔的15种塔板介绍

在低气量时,开度小;气量大时,阀片自 动上升,开度增大。因此,气量变化时, 通过阀片周边流道进入液体层的气速较稳 定。同时,气体水平进入液层也强化了气 液接触传质。
优点:结构简单,生产能力和操作弹性大,
板效率高。综合性能较优异。
缺点:采用不锈钢,浮阀易脱落
JCV浮阀塔板
结构:阀笼与塔板固定,阀片在阀笼内上 下浮动。
网孔塔板
网孔塔板由冲有倾斜开孔的薄板制成,具 有舌形塔板的特点。这种塔板上装有倾斜 的挡沫板,其作用是避免液体被直接吹过 塔板,并提供气液分离和气液接触的表面。
网孔塔板具有生产能力大,压降低,加工 制造容易的特点。
垂直筛板
在塔板上开按一定排列的若干大孔(直径 100~200mm),孔上设置侧壁开有许多筛孔 的泡罩,泡罩底边留有间隙供液体进入罩 内。
缺点:板效率及操作弹性不及溢流塔板。
与溢流式塔板相比,逆流式塔板应用范围 小得多,常见的板型有筛孔式、栅板式、 波纹板式等。
泡罩塔板
在工业上最早(1813年)应用的一种塔板, 其主要元件由升气管和泡罩构成,泡罩安 装在升气管顶部,泡罩底缘开有若干齿缝 浸入在板上液层中,升气管顶部应高于泡
罩齿缝的上沿,以防止液体从中漏下。
浮舌塔板
为使舌形塔板适应低负荷生产,提高操作 弹性,研制出了可变气道截面(类似于浮 阀塔板)的浮舌塔板。
斜孔塔板
在舌形塔板上发展的斜孔塔板,斜孔的开 口方向与液流垂直且相邻两排开孔方向相 反,既保留了气体水平喷出、气液高度湍 动的优点,又避免了液体连续加速,可维 持板上均匀的低液面,从而既能获得大的 生产能力,又能达到好的传质效果。
优点:气流由舌片喷出并带动液体沿同方 向流动。气液并流避免了返混和液面落差, 塔板上液层较低,塔板压降较小。

设备选型—板式塔

设备选型—板式塔

物质在相间的转移过程称为传质(分离)过程。

常见的有蒸馏、吸收、萃取和干燥等单元操作。

蒸馏是分离液体混合物的典型单元操作。

它是通过加热造成气液两相物系,利用物系中各组分的挥发度不同的特性以实现分离的目的。

塔设备是能够实现蒸馏和吸收两种分离操作的气液传质设备,按结构形式可以分为板式塔和填料塔两大类。

在工业生产上,一般当处理量大时多采用板式塔,处理量小时采用填料塔。

选用原则(典型的)1、腐蚀性介质,易起泡物系,热敏性物料,高粘性物料通常选用填料塔。

2、对于中、小规模的塔器,和塔径小于600mm时,宜选用填料塔,可节省费用并方便施工。

3、对于处理易聚合或含颗粒的物料,宜采用板式塔。

不易堵塞也便于清洗。

4、对于在分离过程中有明显吸热或放热效应的介质,宜采用板式塔。

5、对于有多个进料及侧线出料的塔器,且各侧线之间板数较少,宜采用板式塔。

采用填料塔时内件结构较复杂。

6、对于处理量或负荷波动较大的场合,宜采用板式塔。

因液体量过小会造成填料层中液体分布不均匀,填料表面未充分润湿,影响塔的效率;当液体量过大时易产生液流影响传质,采用条阀等板式塔具有较大的操作弹性。

7、对于塔顶、塔底产品均有质量要求的塔系,宜采用板式塔。

8、根据各种工艺流程和特点,在同一塔内,可以采用板式及填料共存的塔型,即混合塔型。

适用于沿塔高气、液负荷变化较大的塔系。

板式塔为逐板接触式气液传质设备。

●评价塔设备性能的主要指标:生产能力、塔板效率、操作弹性、塔板压强降●浮阀塔的工艺计算:包括塔径、塔高及塔板上主要部件工艺尺寸的计算。

一、工艺模拟计算后能够确定的参数(模拟计算可求得理论板层数、回流比、馏出液量、釜残液量、塔径、每层塔板的气液相负荷、冷凝器和再沸器负荷)1、估算塔径最常用的标准塔径(mm)为600,700,800,1000,1200,1400, (4200)原料通常从与原料组成相近处(加料板)进入塔内。

加料板以上的塔段称为精馏段,以下(包括加料板)成为提馏段。

第四章 气液传质设备 通过本章学习,应掌握板式塔的结构、塔板的类型、板式塔的流体力学性能与操作特性;

第四章   气液传质设备 通过本章学习,应掌握板式塔的结构、塔板的类型、板式塔的流体力学性能与操作特性;
2020/5/20
喷射接触状态
二、气体通过塔板的压降
气体通过塔板需克服一定的阻力塔板压降。 干板阻力 板上各部件所造成的局部阻力。
塔板 充气液层阻力 阻力 板上充气液层的静压力形成的阻力。
表面张力阻力 液体表面张力形成的阻力。 塔板压降=干板压降+充气液层压降+表面张力压降
2020/5/20
二、气体通过塔板的压降
2020/5/20
2020/5/20
筛孔塔板 a.操作示意图;b.筛孔布置图
二、塔板的类型
筛孔塔板的优缺点 优点
❖ 结构简单、造价低 ❖ 生产能力大 ❖ 板上液面落差小,气体压降低 ❖ 塔板效率较高
缺点
❖ 操作弹性小 ❖ 筛孔易堵塞,不宜处理易结焦、粘度大的物料
2020/5/20
二、塔板的类型
泡沫接触状态
一、塔板上气液两相的接触状态
4. 喷射接触状态 当气速继续增加,把板
上液体向上喷成大小不等的 液滴,直径较大的液滴受重 力作用落回到塔板上,直径 较小的液滴被气体带走,形 成液沫夹带。液滴回到塔板 上又被分散,这种液滴反复 形成和聚集,使传质面积增 加,表面不断更新,是一种 较好的接触状态。
板应考虑哪些问题? 作业题: 无
2020/5/20
缺点
❖ 处理易结焦、高粘度物料阀片易与塔板粘结 ❖ 操作时阀片易脱落或卡死
2020/5/20
二、塔板的类型
(4)喷射型塔板 ① 舌型塔板
舌型塔板的结构特点是,在塔板上冲出许多 舌孔,方向朝塔板液体流出口一侧张开。舌片与 板面成一定的角度,有18°、20°、25°三种 ( 一 般 为 2 0 ° ) , 舌 片 尺 寸 有 5 0 × 5 0 mm 和 25×25mm两种。舌孔按正三角形排列,塔板的 液体流出口一侧不设溢流堰,只保留降液管。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档