插值与拟合ppt
合集下载
插值与拟合实验
x x x x
j 1 j 1 j + 1 j + 1
, x , x 其
j 1
≤ x
x ≤
≤ x
x
j
j
≤ 它
j + 1
1 , 6≤ x≤6 【例 2】 g ( x ) = 】 2 1+ x
用分段线性插值法求插值,并观察插值误差 用分段线性插值法求插值 并观察插值误差. 并观察插值误差 1.在[-6,6]中平均选取 个点作插值 在 中平均选取5个点作插值 中平均选取 个点作插值(xch11) 2.在[-6,6]中平均选取 个点作插值 在 中平均选取11个点作插值 中平均选取 个点作插值(xch12) 3.在[-6,6]中平均选取 个点作插值 在 中平均选取21个点作插值 中平均选取 个点作插值(xch13) 4.在[-6,6]中平均选取 个点作插值 在 中平均选取41个点作插值 中平均选取 个点作插值(xch14)
Matlab程序: 程序: 程序 ch607.m
【例 5】 】 已知飞机下轮廓线上数据如下, 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。 每改变0.1时的y 0.1时的
X Y
0 0
3 5 7 9 11 12 13 14 15 12 17 20 21 20 18 12 10 16
机翼下 轮廓线
【例 6】 】 测得平板表面3*5网格点处的温度分别为: 3*5网格点处的温度分别为 测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形。 试作出平板表面的温度分布曲面z=f(x,y)的图形。 z=f(x,y)的图形 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 先在三维坐标画出原始数据 输入以下命令: 输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值. 以平滑数据, 方向上每隔0.2个单位的地方进行插值. 0.2个单位的地方进行插值
(数学建模课件)第八部分插值与拟合
2020/7/8
例9 多项式函数拟合 x=[34 36 37 38 39 39 39 40 40 41 42 43 43 45 47 48]; y=[1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50 0.44 0.56 0.30 0.42 0.35 0.40 0.41 0.60]; close; plot(x,y) p=polyfit(x,y,2) xi=linspace(34,48,1000); %绘图的X轴数据 z=polyval(p,xi); %得到多项式在数据点处 的值 close; plot(x,y,’ko’,xi,z,’r-’)
xi=0:2*pi*300; yi=interp1(x,y,xi,’cubic’); plot(xi,yi);
2020/7/8
例3 三次样条插值 x=1:12; y=[5 6 9 15 25 29 31 30 22 25 27 24]; close; plot(x,y,x,y,’+’) pp=spline(x,y); [b,c]=unmkpp(pp)
例5 下表给出某企业从1968—2008年间,工龄为 10年、20年、30年的职工的月均工资数据。试 用线性插值求出1973—2003年每隔10年,工龄 为15年、25年职工的月均工资。
工龄 10 年份
1968
507
1978
793
1988
1032
1998
1265
2008
2020/7/8
2496
20
2020/7/8
2、二维插值
Z1=interp2 (X,Y,Z,X1,Y1,’method’) 其中X和Y为两个向量,分别描述原始数据点的 自变量取值,Z是对应于X和Y的函数值;X1和 Y1是两个向量,描述欲插值的点。Method的含 义同一维插值。Z1是根据相应的插值方法得到 的插值结果。
例9 多项式函数拟合 x=[34 36 37 38 39 39 39 40 40 41 42 43 43 45 47 48]; y=[1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50 0.44 0.56 0.30 0.42 0.35 0.40 0.41 0.60]; close; plot(x,y) p=polyfit(x,y,2) xi=linspace(34,48,1000); %绘图的X轴数据 z=polyval(p,xi); %得到多项式在数据点处 的值 close; plot(x,y,’ko’,xi,z,’r-’)
xi=0:2*pi*300; yi=interp1(x,y,xi,’cubic’); plot(xi,yi);
2020/7/8
例3 三次样条插值 x=1:12; y=[5 6 9 15 25 29 31 30 22 25 27 24]; close; plot(x,y,x,y,’+’) pp=spline(x,y); [b,c]=unmkpp(pp)
例5 下表给出某企业从1968—2008年间,工龄为 10年、20年、30年的职工的月均工资数据。试 用线性插值求出1973—2003年每隔10年,工龄 为15年、25年职工的月均工资。
工龄 10 年份
1968
507
1978
793
1988
1032
1998
1265
2008
2020/7/8
2496
20
2020/7/8
2、二维插值
Z1=interp2 (X,Y,Z,X1,Y1,’method’) 其中X和Y为两个向量,分别描述原始数据点的 自变量取值,Z是对应于X和Y的函数值;X1和 Y1是两个向量,描述欲插值的点。Method的含 义同一维插值。Z1是根据相应的插值方法得到 的插值结果。
十讲插值与拟合ppt课件
容易确定.例如知道时间与因变量有二次函数
关系,且过原点。
2019/7/27
mathworks
19
10.6 曲线拟合
• 所以选取 r1(x)x2,r2(x)x ,用
ya1x2 a2x
作拟合.若无法知道y与x之间的关系,
通常可以将数据(xi,yi),i=1,2,…,
n作图,直观地判断应该用什么样的曲线 去作拟合.人们常用的曲线有(参见图7)
2019/7/27
mathworks
15
10.6 曲线拟合
• 1.线性最小二乘法
• 曲线拟合问题的提法是,已知一组 (二维)数据,即平面上的n个点(xi,yi), i=1,2,…,n,xi互不相同,寻求一个 函数(曲线)y=f(x),使f(x)在某种准则 下与所有数据点最为接近,即曲线拟合 得最好,如下图, 图中δi为(x i ,y i) 与y=f(x)的距离).
• 拟合准则是使n个点(xi,yi),i=1,2,…,
n,与y=f(xi)的距离δi的平方和最小,称最 小二乘准则.
2019/7/27
mathworks
18
10.6 曲线拟合
2.函数rk (x) 的选取
• 面对一组数据(xi,yi), i = 1, 2,…n,用
线性最小二乘法作曲线拟合时,首要的、也是 关键的一步是恰当地选取 r1(x)r,2(x) , rm (x) 如果通过机理分析、能够知道 y与 x之间应 该有什么样的函数关系,则 r1(x)r,2(x) , rm (x)
• 格式 yi = interp1(x,Y,xi) %返回插值向量yi, 每一元素对应于参量xi,同时由向量x与Y的内 插值决定。参量x指定数据Y的点。若Y为一矩 阵 , 则 按 Y 的 每 列 计 算 。 yi 是 阶 数 为 length(xi)*size(Y,2)的输出矩阵。
关系,且过原点。
2019/7/27
mathworks
19
10.6 曲线拟合
• 所以选取 r1(x)x2,r2(x)x ,用
ya1x2 a2x
作拟合.若无法知道y与x之间的关系,
通常可以将数据(xi,yi),i=1,2,…,
n作图,直观地判断应该用什么样的曲线 去作拟合.人们常用的曲线有(参见图7)
2019/7/27
mathworks
15
10.6 曲线拟合
• 1.线性最小二乘法
• 曲线拟合问题的提法是,已知一组 (二维)数据,即平面上的n个点(xi,yi), i=1,2,…,n,xi互不相同,寻求一个 函数(曲线)y=f(x),使f(x)在某种准则 下与所有数据点最为接近,即曲线拟合 得最好,如下图, 图中δi为(x i ,y i) 与y=f(x)的距离).
• 拟合准则是使n个点(xi,yi),i=1,2,…,
n,与y=f(xi)的距离δi的平方和最小,称最 小二乘准则.
2019/7/27
mathworks
18
10.6 曲线拟合
2.函数rk (x) 的选取
• 面对一组数据(xi,yi), i = 1, 2,…n,用
线性最小二乘法作曲线拟合时,首要的、也是 关键的一步是恰当地选取 r1(x)r,2(x) , rm (x) 如果通过机理分析、能够知道 y与 x之间应 该有什么样的函数关系,则 r1(x)r,2(x) , rm (x)
• 格式 yi = interp1(x,Y,xi) %返回插值向量yi, 每一元素对应于参量xi,同时由向量x与Y的内 插值决定。参量x指定数据Y的点。若Y为一矩 阵 , 则 按 Y 的 每 列 计 算 。 yi 是 阶 数 为 length(xi)*size(Y,2)的输出矩阵。
计算方法PPT课件第五章 插值与拟合
因此
li (x)
(x x0 )(x x1 ) (xi x0 )(xi x1 )
(x ( xi
xi1 )(x xi1 ) ( x xi1 )( xi xi1 ) ( xi
xn ) xn
)
n x x j . j0 xi x j ji
5.2.2 拉格朗日插值多项式
设用试验或观测方法得到函数 的如下函数y 值f表(x)
xi x0 , x1, , xn
yi y 0 , y1 , , y n
(5.11)
其中:yi f (xi )(i 0,1,..., n).我们用插值基函数li (x)(i 0, 1,..., n)的线性组合来构造满足式(5.11)的插值多项式,令
2020年1月26日星期日
主讲 韩光朋
17
(2) 将x 2.5代入,得L2 (2.5) 1.2625,因此
f (2.5) L2 (2.5) 1.2625.
(3)
f
(x)
ln(1
x), 求出f
''' ( x)
2 (1 x)3
,
从而max f ''' ( x) 1 .
1 x3
Rn (x)
f (n1) ( )
(n 1)!
n1
(
x)
,
(5.6)
其中: (a,b)且依赖于x,而x [a,b].
证明(见P111)略
2020年1月26日星期日
主讲 韩光朋
9
在实际插值问题中,由 于一般不知道,且实
际插值中f (x)一般较复杂或者未知, 因此用余项公 式(5.6)求误差是较困难的, 只能对其进行估计。 若
《插值与拟合》课件
拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。
《数值分析》第二讲插值法PPT课件
1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1
且
P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)
数学建模插值与拟合课件
2. Lagrange插值公式
设函数 y f (x) 在 n 1个相异点 x0 , x1, x2 , , xn 上的值为 y 0 , y1, y2 , , yn ,要求一个次数≤n 的代数多
项式
Pn (x) a0 a1x a2 x 2 an x n
使在节点 xi 上成立 Pn (xi ) yi (i 0,1,2, , n) ,称此为 n 次代数插值问题,Pn (x) 称为插值多项式。可以证明 n
如果不要求近似函数通过所有数据点, 而是要求它能较好地反映数据变化规律的近 似函数的方法称为数据拟合。(必须有函数 表达式)
近似函数不一定(曲线或曲面)通过所 有的数据点。
三、插值与拟合的区别和联系
1、联系 都是根据实际中一组已知数据来构造一个能够 反映数据变化规律的近似函数的方法。 2、区别 插值问题不一定得到近似函数的表达形式,仅 通过插值方法找到未知点对应的值。数据拟合 要求得到一个具体的近似函数的表达式。
图所示,当n 增大时,pn x在两端会发出激烈
的振荡,这就是所谓龙格现象。
龙格现象
2
y=1/(1+x2) y=p4(x) y=p10(x) 1.5
1
0.5
0
-0.5
-5 -4 -3 -2 -1
0
1
2
3
4
5
x
To MATLAB lch(larg1)
分段插值的概念
所谓分段插值,就是将被插值函数逐段 多项式化。一般来说,分段插值方法的处理 过程分两步,先将所考察的区间作一分划
y1
lj(x)
当n =2 时,有三点二次(抛物线)插值多项式:
P2
(x)
(x (x0
x1)(x x2 ) x1)(x0 x2 )
设函数 y f (x) 在 n 1个相异点 x0 , x1, x2 , , xn 上的值为 y 0 , y1, y2 , , yn ,要求一个次数≤n 的代数多
项式
Pn (x) a0 a1x a2 x 2 an x n
使在节点 xi 上成立 Pn (xi ) yi (i 0,1,2, , n) ,称此为 n 次代数插值问题,Pn (x) 称为插值多项式。可以证明 n
如果不要求近似函数通过所有数据点, 而是要求它能较好地反映数据变化规律的近 似函数的方法称为数据拟合。(必须有函数 表达式)
近似函数不一定(曲线或曲面)通过所 有的数据点。
三、插值与拟合的区别和联系
1、联系 都是根据实际中一组已知数据来构造一个能够 反映数据变化规律的近似函数的方法。 2、区别 插值问题不一定得到近似函数的表达形式,仅 通过插值方法找到未知点对应的值。数据拟合 要求得到一个具体的近似函数的表达式。
图所示,当n 增大时,pn x在两端会发出激烈
的振荡,这就是所谓龙格现象。
龙格现象
2
y=1/(1+x2) y=p4(x) y=p10(x) 1.5
1
0.5
0
-0.5
-5 -4 -3 -2 -1
0
1
2
3
4
5
x
To MATLAB lch(larg1)
分段插值的概念
所谓分段插值,就是将被插值函数逐段 多项式化。一般来说,分段插值方法的处理 过程分两步,先将所考察的区间作一分划
y1
lj(x)
当n =2 时,有三点二次(抛物线)插值多项式:
P2
(x)
(x (x0
x1)(x x2 ) x1)(x0 x2 )
曲线插值和曲线拟合
y
(x , y )
0 0
y L2 x
(x , y )
1 1
(x , y )
2 2
y f x
0
Байду номын сангаас
x
0
14 图2-3
x
1
x
例:(1,2), (0,0), (2,1), (3,3)
( x 0)(x 2)(x 3) l0 ( x ) (1 0)(1 2)(1 3) ( x 1)(x 0)(x 3) l2 ( x) (2 1)(2 0)(2 3) ( x 1)(x 2)(x 3) l1 ( x) (0 1)(0 2)(0 3) ( x 1)(x 0)(x 2) l3 ( x) (3 1)(3 0)(3 2)
设
g ( x) a00 ( x) ann ( x)
则
g ( xi ) f ( xi ) a00 ( xi ) ann ( xi ) a00 ( x0 ) a11 ( x0 ) an n ( x0 ) f ( x0 ) a (x ) a (x ) a (x ) f (x ) 0 0 1 1 1 1 n n 1 1 a00 ( xn ) a11 ( xn ) an n ( xn ) f ( xn ) 所以 a }n 有解,当且仅当系数行列式不为0 { i i 0
1 ai ( xi x0 ) ( xi xi 1 )(xi xi 1 ) ( xi xn ) ( x x0 ) ( x xi 1 )( x xi 1 ) ( x xn ) li ( xi x0 ) ( xi xi 1 )( xi xi 1 ) ( xi xn )
插值法与曲线拟合
故用线性插值求得的近似值为
y
(x , y ) 00
y L2x
(x , y ) 11
y f x
(x , y ) 22
0
x0
x1
x
图2-3
11515 100
121 121
11*115 100 121 100
10.714
15
仿上,用抛物插值公式(2.7)所求得的近似值为
例1 已知 100 10, 121 11, 144 12分别用线性插值和抛物插值
求 115 的值。
14
解 因为115在100和121之间,故取节点x0=100,x1=121相应地有
y0=10,y1=11,于是,由线性插值公式(2.5)可得
L1
(x)
10
*
x 121 100 121
11*
x 100 121 100
为插值多项式Pn (x) 的余项。
17
关于误差有如下定理2中的估计式。
定理2 设 f (x) 在区间 a,b
上有直到n+1阶导数,x0, x1,, xn
为区间 a,b 上n+1个互异的节点, Pn (x) 为满足条件:
Pn (xi ) f (xi )(i 0,1,, n)
(2.9)
的n次插值多项式,则对于任何 x a,b ,有
的n次插值多项式(2.2),这样,由(2.2)式可以求出n+1个n次插 插多项式 l0 (x), l1(x),,ln (x) 。容易看出,这组多项式仅与节点的取
法有关,称它们为在n+1个节点上的n次基本插值多项式或n次插值
基函数。
11
2.2 拉格朗日插值多项式
利用插值基函数立即可以写出满足插值条件(1.3)的n次插值
第4章_插值与拟合-牛顿法
设给定函数个互异的节点处的函数值为关于节点的二阶差商缺倒数第二个节点缺最后一个节点最后一个节点倒数第二个节点缺倒数第二个节点缺最后一个节点最后一个节点倒数第二个节点由此定义显然
第4章 插值与拟合
4.3 差商与牛顿插值公式
Lagrange 插值多项式的基函数:
l j ( x)
( x x0 )(x x1 )( x x j 1 )(x x j 1 )( x xn ) ( x j x0 )(x j x1 )( x j x j 1 )(x j x j 1 )( x j xn )
4.3.3 牛顿插值余项
若将 x xi , (i 0,1,, n) 视为一个节点,则由一阶均差定义 有
f ( x) f ( x0 ) f [ x, x0 ](x x0 )
同理,由二阶均差定义 有
f ( x0 ) f ( x) f [ x, x0 ] f [ x, x0 ] f [ x0 , x1 ] f [ x, x0x ,0x1 ]( xx x1 )
j 1 k 0
n
j 1
2.差商的性质
性质1:差商与函数值的关系 f(x) 关于 x0 , x1 ,, xk 1 , xk 的 k 阶差商是 f(x) 在这些点上 函数值的线性组合,即
1 f [ x0 , x1 ,, xk 1 , xk ] f ( x j ) j 0 i 0 x j xi
(i j k )
为 f ( x) 关于节点 xi , x j , xk 的二阶差商
最后一个节点-倒 数第二个节点
称
缺倒数第二个节点
缺最后一个节点
f [ x0 , x1,, xk 1, xk ]
f [ x0 , x1 ,, xk 2 , xk ] f [ x0 , x1 ,, xk 1 ] xk xk 1
第4章 插值与拟合
4.3 差商与牛顿插值公式
Lagrange 插值多项式的基函数:
l j ( x)
( x x0 )(x x1 )( x x j 1 )(x x j 1 )( x xn ) ( x j x0 )(x j x1 )( x j x j 1 )(x j x j 1 )( x j xn )
4.3.3 牛顿插值余项
若将 x xi , (i 0,1,, n) 视为一个节点,则由一阶均差定义 有
f ( x) f ( x0 ) f [ x, x0 ](x x0 )
同理,由二阶均差定义 有
f ( x0 ) f ( x) f [ x, x0 ] f [ x, x0 ] f [ x0 , x1 ] f [ x, x0x ,0x1 ]( xx x1 )
j 1 k 0
n
j 1
2.差商的性质
性质1:差商与函数值的关系 f(x) 关于 x0 , x1 ,, xk 1 , xk 的 k 阶差商是 f(x) 在这些点上 函数值的线性组合,即
1 f [ x0 , x1 ,, xk 1 , xk ] f ( x j ) j 0 i 0 x j xi
(i j k )
为 f ( x) 关于节点 xi , x j , xk 的二阶差商
最后一个节点-倒 数第二个节点
称
缺倒数第二个节点
缺最后一个节点
f [ x0 , x1,, xk 1, xk ]
f [ x0 , x1 ,, xk 2 , xk ] f [ x0 , x1 ,, xk 1 ] xk xk 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hours=1:12; temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:0.1:12; t=interp1(hours,temps,h,'spline'); plot(hours,temps,'+',h,t,hours,temps,'r:') xlabel('Hour'),ylabel('Degrees Celsius’)
插值与拟合
一、插值的基本原理 二、拟合的基本原理 三、插值与拟合的关系
四、插值的MATLAB实现 五、拟合的Matlab实现
一、概述
我们经常会遇到大量的数据需要处理, 而处理数据的关键就在于这些算法,例如 数据拟合、参数估计、插值等数据处理算 法。此类问题在MATLAB中有很多现成的 函数可以调用,熟悉MATLAB,这些方法 都能游刃有余的用好。
例:测得平板表面3×5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形.
1.先在三维坐标画出原始数据,画出粗糙的温度分布曲线图.
输入以下命令:
x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps)
y/x
1200 1600 2000 2400 2800
3200 3600 4000
返回
五、拟合的使用及求解
5.1 引言
对于情况较复杂的实际问题(因素不易 化简,作用机理不详)可直接使用数据组建 模,寻找简单的因果变量之间的数量关系, 从而对未知的情形作预报。这样组建的模型 为拟合模型。 拟合模型的组建主要是处理 好观测数据的误差,使用数学表达式从数量 上近似因果变量之间的关系。拟合模型的组 建是通过对有关变量的观测数据的观察、分 析和选择恰当的数学表达方式得到的。
海底曲面图
%程序二:插值并作出水深小于5的海域范围。
x1=75:1:200;
y1=-50:1:150;
[x1,y1]=meshgrid(x1,y1);
z1=griddata(x,y,z,x1,y1,'v4'); %插值
z1(z1>=5)=nan; %将水深大于5的置为nan,这 样绘图就不会显示出来 meshc(x1,y1,z1)
如果不要求近似函数通过所有数据点, 而是要求它能较好地反映数据变化规律的近 似函数的方法称为数据拟合。(必须有函数 表达式) 近似函数不一定(曲线或曲面)通过所
有的数据点。
三、插值与拟合的区别和联系
1、联系 都是根据实际中一组已知数据来构造一个能够 反映数据变化规律的近似函数的方法。 2、区别 插值问题不一定得到近似函数的表达形式,仅 通过插值方法找到未知点对应的值。数据拟合 要求得到一个具体的近似函数的表达式。
xi处的 插值结果
插值节点
被插值点
‘nearest’ ‘linear’
插值方法
最邻近插值; 线性插值; ‘spline’ 三次样条插值; ‘cubic’ 立方插值; 注意:所有的插值方法 都要求x是单调的,并且xi不 缺省时 分段线性插值. 能够超过x的范围.
例:从1点12点的11小时内,每隔1小时测量一次温 度,测得的温度的数值依次为:5,8,9,15,25, 29,31,30,22,25,27,24.试估计每隔1/10小 时的温度值.
水深小于5的海域范围
实验作业1
山区地貌:在某山区测得一些地点的高程如下表:(平 面区域1200≤x ≤4000,1200≤y ≤3600),试作出该山区的 地貌图和等高线图,并对几种插值方法进行比较.
3600 3200 2800 2400 2000 1600 1200 1480 1500 1500 1500 1390 1320 1130 1500 1550 1200 1200 1500 1450 1250 1550 1600 1100 1100 1500 1420 1280 1510 1550 1550 1350 1400 1400 1230 1430 1600 1600 1450 900 1300 1040 1300 1600 1550 1200 1100 700 900 1200 1600 1380 1150 1060 900 500 980 1550 1070 1010 950 850 700
To MATLAB hd1
1.输入插值基点数据 2.在矩形区域(75,200)×(-50,150)进行插值。
3. 作海底曲面图 4.作出水深小于5的海域范围,即z=5的等高线.
返回
%程序一:插值并作海底曲面图 x =[129.0 140.0 103.5 88.0 185.5 195.0 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5 ]; y =[ 7.5 141.5 23.0 147.0 22.5 137.5 85.5 -6.5 -81 3.0 56.5 -66.5 84.0 -33.5 ]; z =[ 4 8 6 8 6 8 8 9 9 8 8 9 4 9 ]; x1=75:1:200; y1=-50:1:150; [x1,y1]=meshgrid(x1,y1); z1=griddata(x,y,z,x1,y1,'v4'); meshc(x1,y1,z1)
%作图
To MATLAB (temp)
例 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值.
X Y 0 0 3 1.2 5 1.7 7 2.0 9 2.1 11 2.0 12 1.8 13 1.2 14 1.0 15 1.6
y
机翼下 轮廓线
x
To MATLAB(plane) 返回
5.2 拟合模型的分类 5.2.1 直线拟合
5.2.2 曲线拟合
5.2.3 观察数据修匀
对于已给一批实测数据,由于实测方法、 实验环境等一些外界因素的影响,不可避免 地会产生随机干扰和误差。我们自然希望根 据数据分布的总趋势去剔除观察数据中的偶 然误差,这就是所谓的数据修匀(或称数据 平滑)问题。
直 线 拟 合 问 题 引 例 1
º 温度 t ( C) 20.5 32.7 51.0 73.0 95.7 已知热敏电阻数据:
电阻R() 765 求60º C时的电阻R.
1100 1000 900 800 700 20
826
873
942 1032
设 R=at+b a,b为待定系数
40
60
80
100
‘nearest’最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 'v4'- MATLAB提供的插值方法 缺省时, 双线性插值
要求cx取行向量,cy取为列向量.
例 在某海域测得一些点(x,y)处的水深z由下表 给出,船的吃水深度为5英尺,在矩形区域(75,200) ×(-50,150)里的哪些地方船要避免进入.
数据拟合在很多赛题中有应用,与图形
处理有关的问题很多与插值和拟合有关系,
例如98年美国赛A题,生物组织切片的三维插
值处理,94年A题逢山开路,山体海拔高度的
插值计算,2003年吵的沸沸扬扬的“非典”
问题也要用到数据拟合算法,观察数据的走
向进行处理, 2005年的雨量预报的评价的插
值计算。2001年的公交车调度拟合问题,
2003年的饮酒驾车拟合问题。
预测点和实测点的图形
插值后的图形
喝两瓶酒的拟合曲线
喝1-5瓶酒的拟合曲线
二、基本概念
在实际中,常常要处理由实验或测量所 得到的一些离散数据。插值与拟合方法就是 要通过这些数据去确定某一类已知函数的参 数或寻求某个近似函数,使所得到的近似函 数与已知数据有较高的拟合精度。 如果要求这个近似函数(曲线或曲面) 经过所已知的所有数据点,则称此类问题为 插值问题。 (不需要函数表达式)
c(t ) c0e
kt
c, k为待定系数
曲 线 拟 合 问 题 的 提 法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…,n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有 数据点最为接近,即曲线拟合得最好. y + +
4.3 MATLAB实现插值 Matlab 实现:实现分段线性插值不需 要编制函数程序,它自身提供了内部的功 能函数 interp1(一维插值)
intep2(二维)
interp3(三维) intern(n维)
用MATLAB作插值计算
一维插值函数: yi=interp1(x,y,xi,'method')
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
被插值点
插值方法
‘nearest’ 最邻近插值; ‘linear’ 双线性插值; ‘cubic’ 双三次插值;
缺省时 双线性插值. 要求x0,y0单调;x,y可取为矩阵,或x 取行向量,y取为列向量,x,y的值分别不能超 出x0,y0的范围.
x y z x y z
129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 157.5 -6.5 9 107.5 77 81 162 162 117.5 -81 3 56.5 -66.5 84 -33.5 9 8 8 9 4 9
曲 线 拟 合 问 题 引 例 2
已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 8.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
插值与拟合
一、插值的基本原理 二、拟合的基本原理 三、插值与拟合的关系
四、插值的MATLAB实现 五、拟合的Matlab实现
一、概述
我们经常会遇到大量的数据需要处理, 而处理数据的关键就在于这些算法,例如 数据拟合、参数估计、插值等数据处理算 法。此类问题在MATLAB中有很多现成的 函数可以调用,熟悉MATLAB,这些方法 都能游刃有余的用好。
例:测得平板表面3×5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形.
1.先在三维坐标画出原始数据,画出粗糙的温度分布曲线图.
输入以下命令:
x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps)
y/x
1200 1600 2000 2400 2800
3200 3600 4000
返回
五、拟合的使用及求解
5.1 引言
对于情况较复杂的实际问题(因素不易 化简,作用机理不详)可直接使用数据组建 模,寻找简单的因果变量之间的数量关系, 从而对未知的情形作预报。这样组建的模型 为拟合模型。 拟合模型的组建主要是处理 好观测数据的误差,使用数学表达式从数量 上近似因果变量之间的关系。拟合模型的组 建是通过对有关变量的观测数据的观察、分 析和选择恰当的数学表达方式得到的。
海底曲面图
%程序二:插值并作出水深小于5的海域范围。
x1=75:1:200;
y1=-50:1:150;
[x1,y1]=meshgrid(x1,y1);
z1=griddata(x,y,z,x1,y1,'v4'); %插值
z1(z1>=5)=nan; %将水深大于5的置为nan,这 样绘图就不会显示出来 meshc(x1,y1,z1)
如果不要求近似函数通过所有数据点, 而是要求它能较好地反映数据变化规律的近 似函数的方法称为数据拟合。(必须有函数 表达式) 近似函数不一定(曲线或曲面)通过所
有的数据点。
三、插值与拟合的区别和联系
1、联系 都是根据实际中一组已知数据来构造一个能够 反映数据变化规律的近似函数的方法。 2、区别 插值问题不一定得到近似函数的表达形式,仅 通过插值方法找到未知点对应的值。数据拟合 要求得到一个具体的近似函数的表达式。
xi处的 插值结果
插值节点
被插值点
‘nearest’ ‘linear’
插值方法
最邻近插值; 线性插值; ‘spline’ 三次样条插值; ‘cubic’ 立方插值; 注意:所有的插值方法 都要求x是单调的,并且xi不 缺省时 分段线性插值. 能够超过x的范围.
例:从1点12点的11小时内,每隔1小时测量一次温 度,测得的温度的数值依次为:5,8,9,15,25, 29,31,30,22,25,27,24.试估计每隔1/10小 时的温度值.
水深小于5的海域范围
实验作业1
山区地貌:在某山区测得一些地点的高程如下表:(平 面区域1200≤x ≤4000,1200≤y ≤3600),试作出该山区的 地貌图和等高线图,并对几种插值方法进行比较.
3600 3200 2800 2400 2000 1600 1200 1480 1500 1500 1500 1390 1320 1130 1500 1550 1200 1200 1500 1450 1250 1550 1600 1100 1100 1500 1420 1280 1510 1550 1550 1350 1400 1400 1230 1430 1600 1600 1450 900 1300 1040 1300 1600 1550 1200 1100 700 900 1200 1600 1380 1150 1060 900 500 980 1550 1070 1010 950 850 700
To MATLAB hd1
1.输入插值基点数据 2.在矩形区域(75,200)×(-50,150)进行插值。
3. 作海底曲面图 4.作出水深小于5的海域范围,即z=5的等高线.
返回
%程序一:插值并作海底曲面图 x =[129.0 140.0 103.5 88.0 185.5 195.0 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5 ]; y =[ 7.5 141.5 23.0 147.0 22.5 137.5 85.5 -6.5 -81 3.0 56.5 -66.5 84.0 -33.5 ]; z =[ 4 8 6 8 6 8 8 9 9 8 8 9 4 9 ]; x1=75:1:200; y1=-50:1:150; [x1,y1]=meshgrid(x1,y1); z1=griddata(x,y,z,x1,y1,'v4'); meshc(x1,y1,z1)
%作图
To MATLAB (temp)
例 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值.
X Y 0 0 3 1.2 5 1.7 7 2.0 9 2.1 11 2.0 12 1.8 13 1.2 14 1.0 15 1.6
y
机翼下 轮廓线
x
To MATLAB(plane) 返回
5.2 拟合模型的分类 5.2.1 直线拟合
5.2.2 曲线拟合
5.2.3 观察数据修匀
对于已给一批实测数据,由于实测方法、 实验环境等一些外界因素的影响,不可避免 地会产生随机干扰和误差。我们自然希望根 据数据分布的总趋势去剔除观察数据中的偶 然误差,这就是所谓的数据修匀(或称数据 平滑)问题。
直 线 拟 合 问 题 引 例 1
º 温度 t ( C) 20.5 32.7 51.0 73.0 95.7 已知热敏电阻数据:
电阻R() 765 求60º C时的电阻R.
1100 1000 900 800 700 20
826
873
942 1032
设 R=at+b a,b为待定系数
40
60
80
100
‘nearest’最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 'v4'- MATLAB提供的插值方法 缺省时, 双线性插值
要求cx取行向量,cy取为列向量.
例 在某海域测得一些点(x,y)处的水深z由下表 给出,船的吃水深度为5英尺,在矩形区域(75,200) ×(-50,150)里的哪些地方船要避免进入.
数据拟合在很多赛题中有应用,与图形
处理有关的问题很多与插值和拟合有关系,
例如98年美国赛A题,生物组织切片的三维插
值处理,94年A题逢山开路,山体海拔高度的
插值计算,2003年吵的沸沸扬扬的“非典”
问题也要用到数据拟合算法,观察数据的走
向进行处理, 2005年的雨量预报的评价的插
值计算。2001年的公交车调度拟合问题,
2003年的饮酒驾车拟合问题。
预测点和实测点的图形
插值后的图形
喝两瓶酒的拟合曲线
喝1-5瓶酒的拟合曲线
二、基本概念
在实际中,常常要处理由实验或测量所 得到的一些离散数据。插值与拟合方法就是 要通过这些数据去确定某一类已知函数的参 数或寻求某个近似函数,使所得到的近似函 数与已知数据有较高的拟合精度。 如果要求这个近似函数(曲线或曲面) 经过所已知的所有数据点,则称此类问题为 插值问题。 (不需要函数表达式)
c(t ) c0e
kt
c, k为待定系数
曲 线 拟 合 问 题 的 提 法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…,n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有 数据点最为接近,即曲线拟合得最好. y + +
4.3 MATLAB实现插值 Matlab 实现:实现分段线性插值不需 要编制函数程序,它自身提供了内部的功 能函数 interp1(一维插值)
intep2(二维)
interp3(三维) intern(n维)
用MATLAB作插值计算
一维插值函数: yi=interp1(x,y,xi,'method')
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
被插值点
插值方法
‘nearest’ 最邻近插值; ‘linear’ 双线性插值; ‘cubic’ 双三次插值;
缺省时 双线性插值. 要求x0,y0单调;x,y可取为矩阵,或x 取行向量,y取为列向量,x,y的值分别不能超 出x0,y0的范围.
x y z x y z
129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 157.5 -6.5 9 107.5 77 81 162 162 117.5 -81 3 56.5 -66.5 84 -33.5 9 8 8 9 4 9
曲 线 拟 合 问 题 引 例 2
已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 8.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01