操作系统实验银行家算法
操作系统 实验 进程调度 银行家算法 多线程编程 存储管理 磁盘调度
实验一进程调度实验学时:2学时实验类型:设计实验要求:必修一、实验目的多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。
因而引起进程调度。
本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。
二、实验内容1.优先权法、轮转法简化假设1)进程为计算型的(无I/O)2)进程状态:ready、running、finish3)进程需要的CPU时间以时间片为单位确定2.算法描述1)优先权法——动态优先权当前运行进程用完时间片后,其优先权减去一个常数。
2)轮转法三、流程图四、实验程序代码package进程调度;/***@author**/public class CPCB {private String name;private int time;private int count;public int getCount() {return count;}public void setCount(int count) { this.count = count;}public String getName() {return name;}public void setName(String name) { = name;}public int getTime() {return time;}public void setTime(int time) {this.time = time;}}package进程调度;/***@author**/class PCB{private String name;private int time ;private int priority ;public int getTime(){return time;}public void setTime(int time){this.time = time;}public int getPriority(){return priority;}public void setPriority(int priority){ this.priority = priority;}public String getName() {return name;}public void setName(String name) { = name;}}package进程调度;import java.util.LinkedList;/***@author**/class process{private final static int nap_time = 500;private LinkedList<PCB> queue = new LinkedList<PCB>();private LinkedList<CPCB> cqueue = new LinkedList<CPCB>();//优先权算法public void go(int p_Num) throws Exception{for(int i = 0;i<p_Num;i++){PCB pcb = new PCB();int time = (int)(Math.random()*20+1);int pri = (int)(Math.random()*20+4);pcb.setName("进程"+i);pcb.setTime(time);pcb.setPriority(pri);queue.add(pcb);}queue = this.sort(queue);int i=0;while(queue.size()!=0){PCB pcb = (PCB)queue.getFirst();System.out.println(i+"\t\t"+pcb.getName()+"运行\t"+"优先级:"+pcb.getPriority()+"---所需时间:"+pcb.getTime());// Thread.sleep(nap_time);int pre = pcb.getPriority() - 3;int time = pcb.getTime() - 1;if(time<=0){System.out.println(pcb.getName()+"\t\t进程运行结束");PCB p = (PCB)queue.removeFirst();System.out.println("移除队列的进程是\t\t"+p.getName()+"\n队列中还有"+queue.size()+"个进程\n");}else{queue.remove();pcb.setPriority(pre);pcb.setTime(time);// System.out.println("运行后:"+i+"----"+pcb.getName()+"---优先级:"+pcb.getPriority()+"---所需时间:"+pcb.getTime());queue.add(pcb);queue = this.sort(queue);}i++;}}//时间片轮转调度算法public void cycle(int p_Num) throws Exception{final int time = 3; //定义轮转时间片数for(int i = 0;i<p_Num;i++){CPCB cpcb = new CPCB();cpcb.setTime((int)(Math.random()*20)+1);cpcb.setName("进程"+i);cpcb.setCount(0);cqueue.add(cpcb);}while(cqueue.size()!=0){CPCB cpcb = (CPCB)cqueue.getFirst();while(cpcb.getCount()!=time){// Thread.sleep(nap_time);cpcb.setTime(cpcb.getTime() - 1);cpcb.setCount(cpcb.getCount()+1);for(int i=0;i<cqueue.size();i++)//输出进程运行情况{CPCB cpcb1 = (CPCB)cqueue.get(i);System.out.println(cpcb1.getName()+"\t\t所需时间片数"+cpcb1.getTime()+"\t\t已占用CPU时间片数"+cpcb1.getCount());}if(cpcb.getTime()==0){System.out.println(cpcb.getName()+"运行结束\n"+"-------------移除队列的是"+cpcb.getName()+"-------------");cqueue.removeFirst();System.out.println("-------------队列中还有"+cqueue.size()+"个进程--------------");break;}if(cpcb.getCount()==time){// cqueue.remove();System.out.println("----因为"+cpcb.getName()+"占用CPU时间片数"+cpcb.getCount()+"="+time);System.out.println(cpcb.getName()+"时间片运行结束"+cpcb.getCount()+cpcb.getTime());CPCB p = (CPCB)cqueue.removeFirst();cqueue.add(p);cpcb.setCount(0);break;}}}}public LinkedList<PCB> sort(LinkedList<PCB> processes){for(int i=0;i<processes.size();i++){PCB thread = new PCB();thread = processes.get(i);for(int j=i+1;j<processes.size();j++){if(thread.getPriority() < processes.get(j).getPriority()){PCB mythread = new PCB();mythread = thread;//thread = processes.get(j);processes.set(i, processes.get(j));processes.set(j, mythread);}}}return processes;}}package 进程调度;import java.io.BufferedReader;import java.io.InputStreamReader;/**** @author 邱福文**/public class MainFun{public void FPF(){}public static void main (String[] args) throws Exception{Integer n2;do{System.out.print("请输入进程数:");BufferedReader sin = new BufferedReader(new InputStreamReader(System.in));String str = sin.readLine();Integer n = Integer.parseInt(str);System.out.print("请输入调度算法:\n"+"1为优先权\n"+"2为轮转法\n"+"0 退出\n");BufferedReader sin2 = new BufferedReader(new InputStreamReader(System.in));String str2 = sin2.readLine();process p = new process();// do{n2 = Integer.parseInt(str2);switch(n2){case 0:break;case 1:p.go(n);break;case 2:p.cycle(n);break;default:System.out.print("输入有误请重新输入");break;}}while(n2!=0);}}五、实验结果请输入进程数:3请输入调度算法:1为优先权2为轮转法0 退出10 进程0运行优先级:19---所需时间:181 进程1运行优先级:19---所需时间:152 进程0运行优先级:16---所需时间:173 进程1运行优先级:16---所需时间:144 进程0运行优先级:13---所需时间:165 进程1运行优先级:13---所需时间:136 进程2运行优先级:10---所需时间:87 进程0运行优先级:10---所需时间:158 进程1运行优先级:10---所需时间:129 进程2运行优先级:7---所需时间:710 进程0运行优先级:7---所需时间:1411 进程1运行优先级:7---所需时间:1112 进程2运行优先级:4---所需时间:613 进程0运行优先级:4---所需时间:1314 进程1运行优先级:4---所需时间:1015 进程2运行优先级:1---所需时间:516 进程0运行优先级:1---所需时间:1217 进程1运行优先级:1---所需时间:918 进程2运行优先级:-2---所需时间:419 进程0运行优先级:-2---所需时间:1120 进程1运行优先级:-2---所需时间:821 进程2运行优先级:-5---所需时间:322 进程0运行优先级:-5---所需时间:1023 进程1运行优先级:-5---所需时间:724 进程2运行优先级:-8---所需时间:225 进程0运行优先级:-8---所需时间:926 进程1运行优先级:-8---所需时间:627 进程2运行优先级:-11---所需时间:1 进程2 进程运行结束移除队列的进程是进程2队列中还有2个进程28 进程0运行优先级:-11---所需时间:829 进程1运行优先级:-11---所需时间:530 进程0运行优先级:-14---所需时间:731 进程1运行优先级:-14---所需时间:432 进程0运行优先级:-17---所需时间:633 进程1运行优先级:-17---所需时间:334 进程0运行优先级:-20---所需时间:535 进程1运行优先级:-20---所需时间:236 进程0运行优先级:-23---所需时间:437 进程1运行优先级:-23---所需时间:1 进程1 进程运行结束移除队列的进程是进程1队列中还有1个进程38 进程0运行优先级:-26---所需时间:339 进程0运行优先级:-29---所需时间:240 进程0运行优先级:-32---所需时间:1进程0 进程运行结束移除队列的进程是进程0队列中还有0个进程请输入进程数:3请输入调度算法:1为优先权2为轮转法0 退出2进程0 所需时间片数8 已占用CPU时间片数1 进程1 所需时间片数6 已占用CPU时间片数0 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数7 已占用CPU时间片数2 进程1 所需时间片数6 已占用CPU时间片数0 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数3 进程1 所需时间片数6 已占用CPU时间片数0 进程2 所需时间片数13 已占用CPU时间片数0 ----因为进程0占用CPU时间片数3=3进程0时间片运行结束36进程1 所需时间片数5 已占用CPU时间片数1 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数4 已占用CPU时间片数2 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数3 已占用CPU时间片数3 进程2 所需时间片数13 已占用CPU时间片数0 进程0 所需时间片数6 已占用CPU时间片数0 ----因为进程1占用CPU时间片数3=3进程1时间片运行结束33进程2 所需时间片数12 已占用CPU时间片数1 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数11 已占用CPU时间片数2 进程0 所需时间片数6 已占用CPU时间片数0 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数3 进程0 所需时间片数6 已占用CPU时间片数0----因为进程2占用CPU时间片数3=3进程2时间片运行结束310进程0 所需时间片数5 已占用CPU时间片数1 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数4 已占用CPU时间片数2 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数3 进程1 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数10 已占用CPU时间片数0 ----因为进程0占用CPU时间片数3=3进程0时间片运行结束33进程1 所需时间片数2 已占用CPU时间片数1 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数0 进程1 所需时间片数1 已占用CPU时间片数2 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数0 进程1 所需时间片数0 已占用CPU时间片数3 进程2 所需时间片数10 已占用CPU时间片数0 进程0 所需时间片数3 已占用CPU时间片数0 进程1运行结束-------------移除队列的是进程1--------------------------队列中还有2个进程--------------进程2 所需时间片数9 已占用CPU时间片数1 进程0 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数8 已占用CPU时间片数2 进程0 所需时间片数3 已占用CPU时间片数0 进程2 所需时间片数7 已占用CPU时间片数3 进程0 所需时间片数3 已占用CPU时间片数0 ----因为进程2占用CPU时间片数3=3进程2时间片运行结束37进程0 所需时间片数2 已占用CPU时间片数1 进程2 所需时间片数7 已占用CPU时间片数0 进程0 所需时间片数1 已占用CPU时间片数2 进程2 所需时间片数7 已占用CPU时间片数0 进程0 所需时间片数0 已占用CPU时间片数3 进程2 所需时间片数7 已占用CPU时间片数0 进程0运行结束-------------移除队列的是进程0--------------------------队列中还有1个进程--------------进程2 所需时间片数6 已占用CPU时间片数1进程2 所需时间片数4 已占用CPU时间片数3----因为进程2占用CPU时间片数3=3进程2时间片运行结束34进程2 所需时间片数3 已占用CPU时间片数1进程2 所需时间片数2 已占用CPU时间片数2进程2 所需时间片数1 已占用CPU时间片数3----因为进程2占用CPU时间片数3=3进程2时间片运行结束31进程2 所需时间片数0 已占用CPU时间片数1进程2运行结束-------------移除队列的是进程2--------------------------队列中还有0个进程--------------请输入进程数:实验二银行家算法一、实验目的死锁会引起计算机工作僵死,因此操作系统中必须防止。
操作系统实验报告----银行家算法
操作系统实验报告----银行家算法班级:______计算机03(7)班______________ 姓名:_________李君益__________________ 学号:______________(61号)___提交日期:____06.7.11___________________ 指导老师: ______林穗____________________一、设计题目加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。
二、设计要求内容:编制银行家算法通用程序,并检测思考题中所给状态的安全性。
要求:(1)下列状态是否安全?(三个进程共享12个同类资源)进程已分配资源数最大需求数1 1 4 (状态a)2 4 43 5 81 1 42 4 6 (状态b)3 6 8(2)考虑下列系统状态分配矩阵最大需求矩阵可用资源矩阵0 0 1 2 0 0 1 2 1 5 2 01 0 0 0 1 7 5 01 3 5 423 5 60 6 3 2 0 6 5 20 0 1 4 0 6 5 6问系统是否安全?若安全就给出所有的安全序列。
若进程2请求(0420),可否立即分配?三、设计分析一.关于操作系统的死锁1.死锁的产生计算机系统中有许多独占资源,他们在任一时刻只能被一个进程使用,如磁带机,绘图仪等独占型外围设备,或进程表,临界区等软件资源。
两个进程同时向一台打印机输出将导致一片混乱,两个进程同时进入临界区将导致数据库错误乃至程序崩溃。
正因为这些原因,所有操作系统都具有授权一个进程独立访问某一辞源的能力。
一个进程需要使用独占型资源必须通过以下的次序:●申请资源●使用资源●归还资源若申请施资源不可用,则申请进程进入等待状态。
对于不同的独占资源,进程等待的方式是有差别的,如申请打印机资源、临界区资源时,申请失败将一位这阻塞申请进程;而申请打开文件文件资源时,申请失败将返回一个错误码,由申请进程等待一段时间之后重试。
《操作系统》课程实验报告银行家算法
《操作系统》课程实验报告实验名称:银行家算法姓名:学号:地点:指导老师:专业班级:一、实验目的:1)对死锁避免中的银行家算法做进一步的理解。
2)加深理解死锁的概念3)加深理解安全序列和安全状态的概念4)通过编程,掌握银行家算法分配资源的一步步实现过程二、实验内容:1)给出系统可用资源向量2)给出当前状态系统中各个进程的资源分配情况3)根据系统当前资源状态和各个进程的资源分配情况,判断系统是否处于安装状态,若系统处于安全状态,给出所有的安全序列和每一个安全序列所对应的资源分配图,若系统不处于安全序列,则发出死锁警告。
三、实验主要代码/**银行家算法(实现所有存在路径的查找)*///构造进程单位struct Process{string p_name; //进程的名称int Max[N]; //进程对于各个资源的最大需求数目int Allocation[N]; //进程已经得到的各个资源的数目int Need[N]; // 进程对各个资源所需要的数目};int p_num, s_num; // 进程数、资源种类static struct Process P[N];int Available[N]; //系统中各个资源可用的数目void dfs(int step){/**银行家算法(实现所有存在路径的查找)搜寻所有的安全序列 */for (int i = 0; i < p_num; i++){back_time++; // 找到当前安全序列的时间点int flag = 0;if (vis[i]) continue;//判断现有的系统资源是否满足该进程的需求for (int j = 0; j < s_num; j++){if (Available[j] < P[i].Need[j]){flag = 1;break;}}if (flag) continue;vis[i] = true;//该进程运行完毕ans[step] = i;//将这个可以运行的进程编号存入数组当中// 回收资源for (int j = 0; j < s_num; j++)Available[j] += P[i].Allocation[j];//如果所有的进程都全部执行完毕if (step == p_num)Print(ans, p_num);dfs(step + 1);vis[i] = false;for (int j = 0; j < s_num; j++)Available[j] -= P[i].Allocation[j];}}四、实验过程分析本次实验的主要任务是实现银行家算法,通过输入当前某一时刻系统的资源数目和所有进程相关的资源信息,然后通过算法的实现判断当前系统是否处于不安全状态,如果是处于安全状态那么找到所有的安全序列。
操作系统银行家算法实验报告
实验五银行家算法一、实验目的和要求①理解死锁概念,银行家算法及安全检测算法。
②在Linux操作系统下用C++进行编程。
③利用C++设计实现银行家算法的基本过程。
④验证银行家算法对于避免死锁的作用。
二、实验方法内容①算法设计思路1.设计进程对各类资源最大申请表示及初值确定。
2.设定系统提供资源初始状况。
3.设定每次某个进程对各类资源的申请表示。
4.编制程序,依据银行家算法,决定其申请是否得到满足。
②算法流程图如下:③算法中用到的数据结构说明1. 可利用资源向量Available ,它是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源的数目,其初始值是系统中所配置的该类全部可用资源数目。
其数值随该类资源的分配和回收而动态地改变。
如果Available[j]=k,标是系统中现有Rj类资源k个。
2. 最大需求矩阵P,这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。
如果P(i,j)=k,表示进程Pi需要Rj类资源的最大数目为k。
3. 分配矩阵Allocation,这是一个n×m的矩阵,它定义了系统中的每类资源当前一分配到每一个进程的资源数。
如果Allocation(i,j)=k,表示进程Pi 当前已经分到Rj类资源的数目为k。
Allocation i表示进程Pi的分配向量,有矩阵Allocation的第i行构成。
4. 需求矩阵Need,这是一个n×m的矩阵,用以表示每个进程还需要的各类资源的数目。
如果Need(i,j)=k,表示进程Pi还需要Rj类资源k个,才能完成其任务。
Need i表示进程i的需求向量,由矩阵Need的第i行构成。
上述三个矩阵间存在关系:Need(i,j)=P(i,j)-Allocation(i,j);5. Request i是进程Pi 的请求向量。
Request i(j)=k表示进程Pi请求分配Rj类资源k个。
操作系统实验二:银行家算法
操作系统实验⼆:银⾏家算法实验⼆银⾏家算法⼀、实验⽬的1、了解什么是操作系统安全状态和不安全状态;2、了解如何避免系统死锁;3、理解银⾏家算法是⼀种最有代表性的避免死锁的算法,掌握其实现原理及实现过程。
⼆、实验内容根据银⾏家算法的基本思想,编写和调试⼀个实现动态资源分配的模拟程序,并能够有效避免死锁的发⽣。
三、实验原理进程申请资源时,系统通过⼀定的算法判断本次申请是否不可能产⽣死锁(处于安全状态)。
若可能产⽣死锁(处于不安全状态),则暂不进⾏本次资源分配,以避免死锁。
算法有著名的银⾏家算法。
1、什么是系统的安全状态和不安全状态?所谓安全状态,是指如果系统中存在某种进程序列<P1,P2,…,Pn>,系统按该序列为每个进程分配其所需要的资源,直⾄最⼤需求,则最终能使每个进程都可顺利完成,称该进程序列<P1,P2,…,Pn,>为安全序列。
如果不存在这样的安全序列,则称系统处于不安全状态。
2、银⾏家算法把操作系统看作是银⾏家,操作系统管理的资源相当于银⾏家管理的资⾦,进程向操作系统请求分配资源相当于⽤户向银⾏家贷款。
为保证资⾦的安全,银⾏家规定:(1) 当⼀个顾客对资⾦的最⼤需求量不超过银⾏家现有的资⾦时就可接纳该顾客;(2) 顾客可以分期贷款,但贷款的总数不能超过最⼤需求量;(3) 当银⾏家现有的资⾦不能满⾜顾客尚需的贷款数额时,对顾客的贷款可推迟⽀付,但总能使顾客在有限的时间⾥得到贷款;(4) 当顾客得到所需的全部资⾦后,⼀定能在有限的时间⾥归还所有的资⾦。
操作系统按照银⾏家制定的规则设计的银⾏家算法为:(1)进程⾸次申请资源的分配:如果系统现存资源可以满⾜该进程的最⼤需求量,则按当前的申请量分配资源,否则推迟分配。
(2)进程在执⾏中继续申请资源的分配:若该进程已占⽤的资源与本次申请的资源之和不超过对资源的最⼤需求量,且现存资源能满⾜该进程尚需的最⼤资源量,则按当前申请量分配资源,否则推迟分配。
(3)⾄少⼀个进程能完成:在任何时刻保证⾄少有⼀个进程能得到所需的全部资源⽽执⾏到结束。
操作系统实验四-银行家算法
银行家算法xxx711103xx2012年5月21日一、实验目的通过实验,加深对多实例资源分配系统中死锁避免方法——银行家算法的理解,掌握Windows环境下银行家算法的实现方法,同时巩固利用Windows API进行共享数据互斥访问和多线程编程的方法。
二、实验内容1. 在Windows操作系统上,利用Win32 API编写多线程应用程序实现银行家算法。
2. 创建n个线程来申请或释放资源,只有保证系统安全,才会批准资源申请。
3. 通过Win32 API提供的信号量机制,实现共享数据的并发访问。
三、实验步骤(设计思路和流程图)最主要的用以实现系统功能的应该有两个部分,一是用银行家算法来判断,二是用安全性算法来检测系统的安全性。
1、银行家算法设Requesti是进程Pi的请求向量,如果Requesti[j]=K,表示进程Pi 需要K个Rj类型的资源。
当Pi发出资源请求后,系统按下述步骤进行检查:(1) 如果Requesti[j]≤Need[i,j],便转向步骤2;否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2) 如果Requesti[j]≤Available[j],便转向步骤(3);否则,表示尚无足够资源,Pi须等待。
(3) 系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值:Available[j]∶=Available[j]-Requesti[j];Allocation[i,j]∶=Allocation[i,j]+Requesti[j];Need[i,j]∶=Need[i,j]-Requesti[j];(4) 系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
2、安全性算法(1) 设置两个向量:①Work∶=Available; ②Finish(2) 从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false; ②Need[i,j]≤Work[j];若找到,执行步骤(3),否则,执行步骤(4)。
操作系统实验报告--银行家算法
操作系统实验报告二一:实验标题:实现死锁避免算法:银行家算法。
二:实验环境:操作系统:windows7编译器:Visual Studio 2010三:设计方案:1.实验目的通过程序模拟银行家算法,理解如何应用银行家算法避免死锁。
2.实验手段直接在C源程序定义整形进程数量、资源种类;用2维数组表示最大需求、已分配的资源。
从文件获取相关数量。
3.验证方式检验当前资源是否有安全序列,是的话输出安全序列。
四:实验代码:#include<stdio.h>#include<stdlib.h>#define P_num 5#define R_num 3int Allocation[P_num][R_num],Avaliable[R_num],Max[P_num][R_num]; int Need[P_num][R_num];int compare(int *a,int *b,int n){ int i;for(i = 0;i < n;i ++)if(a[i] < b[i])return 0;return 1;}void add(int *a,int *b,int n){ int i;for(i = 0;i < n;i++)a[i] += b[i];}void substract(int *a,int *b,int n){ int i;for(i = 0;i < n;i++)a[i] -= b[i];}void assign(int *a,int *b,int n){ int i;for(i = 0;i < n;i ++)a[i] = b[i];}void input(){FILE *fp;int i,j;if((fp = fopen("banker.txt","r")) == 0){ printf("cannot open the file");exit(0);}for(i = 0;i < P_num; ++i)for(j = 0;j < R_num; ++j){fscanf(fp,"%d",&Allocation[i][j]);}for(i = 0;i < P_num; ++i)for(j = 0;j < R_num; ++j){fscanf(fp,"%d",&Max[i][j]);}for(j = 0;j < R_num; ++j){fscanf(fp,"%d",&Avaliable[j]);}fclose(fp);for(i = 0;i < P_num; ++i)for(j = 0;j < R_num; ++j){Need[i][j] = Max[i][j] - Allocation[i][j];}}int issafe(int *sp){int i;int count = 0;int n = 0;int work[R_num],finish[P_num];assign(work,Avaliable,R_num);for(i = 0;i < P_num;i ++)finish[i] = 0;n = P_num;while(n --){for(i = 0;i < P_num;i ++)if((finish[i] == 0) && compare(work,Need[i],R_num)){ add(work,Allocation[i],R_num);finish[i] = 1;sp[count] = i;count ++;}if(count >= P_num)return 1;}return 0;}int request(int pid,int *r,int n){int i;int sp[P_num];if(compare(Need[pid],r,n) == 1 && compare(Avaliable,r,n) == 1){ substract(Avaliable,r,n);add(Allocation[pid],r,n);substract(Need[pid],r,n);if(issafe(sp)){printf("Security Path:\n\t");for(i = 0;i < P_num;i ++)printf("p[%d] ",sp[i]);printf("\n");return 1;}else{add(Avaliable,r,n);substract(Allocation[pid],r,n);add(Need[pid],r,n);printf("no Security Parh on this request\n");return 0;}}else{printf("no Security Parh on this request\n");return 0;}}void main(){int id,i;int r[R_num],sp[P_num];input();if(issafe(sp)){printf("Security Path:\n\t");for(i = 0;i < P_num;i ++)printf("p[%d] ",sp[i]);printf("\n");}elseprintf("failed\n");printf("input the new request's id:");scanf("%d",&id);printf("input the new request:");for(i = 0;i < R_num;++ i)scanf("%d",&r[i]);request(id,r,R_num);}banker.txt文件内容:0 1 02 0 03 0 22 1 10 0 27 5 33 2 29 0 22 2 24 3 33 3 2所得结果:Security Path:P[1] p[3] p[4] p[0] p[2] Intput the new request's id:0Input the new request:0 2 0Security Path:p[3] p[1] p[2] p[0] p[4] 问题和想法:。
银行家算法操作系统实验报告
竭诚为您提供优质文档/双击可除银行家算法操作系统实验报告篇一:计算机操作系统银行家算法实验报告计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or=need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;need=need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②need 如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程p获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:work=work+Allocation;Finish[i]=true;转向步骤(2)。
操作系统实验之银行家算法
操作系统实验之银行家算法操作系统实验中的银行家算法复杂难懂,那么我们究竟要怎么去理解呢?下面由店铺为大家整理了操作系统实验银行家算法的相关知识,希望大家喜欢!操作系统实验——银行家算法一、实验目的1、理解银行家算法。
2、掌握进程安全性检查的方法与资源分配的方法。
二、实验内容与基本要求编制模拟银行家算法的程序,并以下面给出的例子验证所编写的程序的正确性。
进程已占资源最大需求数资源种类 A B C D A B C DP0 0 0 1 2 0 0 1 2P1 1 0 0 0 1 7 5 0P2 1 3 5 4 2 3 5 6P3 0 6 3 2 0 6 5 2P4 0 0 1 4 0 6 5 6现在系统中A、B、C、D 4类资源分别还剩1、5、2、0个,请按银行家算法回答:1、现在系统是否处于安全状态?2、如果现在进程P1提出需要(0、4、2、0)个资源的请求,系统能否满足它的请求?三、实验报告内容1、银行家算法和安全性检查算法原理银行家算法:银行家算法最初级原为银行系统设计,以确保银行在发放现金贷款时,不会发生不能满足所有客户需要的情况。
在OS设计中,也可以用它来避免死锁。
为实现银行家算法,每个新进程在进入系统时它必须申明在运行过程中,可能需要的每种资源类型的最大单元数目,其数目不应超过系统所拥有的资源总量。
当某一进程请求时,系统会自动判断请求量是否小于进程最大所需,同时判断请求量是否小于当前系统资源剩余量。
若两项均满足,则系统试分配资源并执行安全性检查算法。
安全性检查算法 :安全性检查算法用于检查系统进行资源分配后是否安全,若安全系统才可以执行此次分配;若不安全,则系统不执行此次分配。
安全性检查算法原理为:在系统试分配资源后,算法从现有进程列表寻找出一个可执行的进程进行执行,执行完成后回收进程占用资源;进而寻找下一个可执行进程。
当进程需求量大于系统可分配量时,进程无法执行。
当所有进程均可执行,则产生一个安全执行序列,系统资源分配成功。
计算机操作系统银行家算法实验报告
计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要办法,通过编写一种简朴的银行家算法程序,加深理解有关资源申请、避免死锁等概念,并体会和理解死锁和避免死锁的具体实施办法。
三、问题分析与设计:1、算法思路:先对顾客提出的请求进行正当性检查,即检查请求与否不不大于需要的,与否不不大于可运用的。
若请求正当,则进行预分派,对分派后的状态调用安全性算法进行检查。
若安全,则分派;若不安全,则回绝申请,恢复到原来的状态,回绝申请。
2、银行家算法环节:(1)如果Requesti<or =Need,则转向环节(2);否则,认为出错,由于它所需要的资源数已超出它所宣布的最大值。
(2)如果Request<or=Available,则转向环节(3);否则,表达系统中尚无足够的资源,进程必须等待。
(3)系统试探把规定的资源分派给进程Pi,并修改下面数据构造中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查本次资源分派后,系统与否处在安全状态。
3、安全性算法环节:(1)设立两个向量①工作向量Work。
它表达系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表达系统与否有足够的资源分派给进程,使之运行完毕,开始时先做Finish[i]=false,当有足够资源分派给进程时,令Finish[i]=true。
(2)从进程集合中找到一种能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行环节(3);否则,执行环节(4)。
(3)当进程P 获得资源后,可顺利执行,直至完毕,并释放出分派给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向环节(2)。
操作系统课程设计-银行家算法(流程图+源代码+设计报告)
操作系统课程设计-银行家算法(流程图+源代码+设计报告)一、实验目的:熟悉银行家算法,理解系统产生死锁的原因及避免死锁的方法,加深记意。
二、实验要求:用高级语言编写和调试一个描述银行家算法的程序。
三、实验内容:1、设计一个结构体,用于描述每个进程对资源的要求分配情况。
包括:进程名--name[5],要求资源数目--command[m](m类资源),还需要资源数目--need[m],已分配资源数目--allo[m]。
2、编写三个算法,分别用以完成:①申请资源;②显示资源;③释放资源。
(动态完成)四、程序流程图五、源程序:最新版本:bk5.c/*bk2.c::可以自定义进程及资源数目,可选择读文件或创建新文件,但不超过10,5*//*可修改# define NP 10*//* # define NS 5 */ /*资源种类*//*bk3.c::可以继续分配资源(〉2)*//*bk4.c::可保存分析结果*//*bk5.c::除以上功能外,对暂时不能分配的可以进行另外一次尝试,并恢复已分配的资源*/ /*四、程序流程图:五、源程序:最新版本:bk5.c/*bk2.c::可以自定义进程及资源数目,可选择读文件或创建新文件,但不超过10,5*//*可修改# define NP 10*//* # define NS 5 */ /*资源种类*//*bk3.c::可以继续分配资源(〉2)*//*bk4.c::可保存分析结果*//*bk5.c::除以上功能外,对暂时不能分配的可以进行另外一次尝试,并恢复已分配的资源*/ #include "string.h"#include "stdio.h"#include "dos.h"#include "conio.h"#define MOVEIN 1#define GUIYUE 2#define ACC 3#define OK 1#define ERROR 0#define MAXSH 7#define MAXSHL 10#define MAXINPUT 50#define maxsize 100int act;int ip=0;int line=0; /*line为要写的行号,全局变量*/int writeok;int right;char wel[30] = {"Welcome To Use An_Li System"};char ente[76]={" 警告:未经作者同意不得随意复制更改!"};char rights[40]={"Copyright (c) 2002"};struct date today;struct time now;typedef struct{int data[maxsize];int top;}stack;int emptystack(stack *S){if(S->top==48&&S->data[S->top]==35)return(1); /*35 is '#'*/ else return(0);}int push(stack *S,int x){if(S->top>=maxsize-1)return(-1);else{S->top++;S->data[S->top]=x;return(0);}}int gettop(stack *S){return S->data[S->top];}int pop(stack *S){if(emptystack(S)){printf("the stack is empty\n");exit(1);}else S->top--;return S->data[S->top+1];}void initstack(stack *S){int i;S->top=0;S->data[S->top]=35;}/*****模拟打字机的效果*********/delay_fun(){int i;void music();for(i=0;;i++){if(wel!='\0'){delay(1000);textcolor(YELLOW);gotoxy(26+i,8);cprintf("%c",wel);printf("谢谢");printf("网络 ");music(1,60);}else break;}delay(500000);for(i=0; ; i++){if(ente!='\0'){delay(1000);textcolor(RED);/*显示警告及版权*/ gotoxy(2+i,11);cprintf("%c",ente);music(1,60);}else break;}delay(40000);for(i=0;;i++){if(rights != '\0'){delay(1000);textcolor(YELLOW);gotoxy(30+i,14);cprintf("%c",rights);music(1,60);}elsebreak;}getch();}/*********登陆后的效果**********/logined(){ int i;clrscr();gotoxy(28,10);textcolor(YELLOW);cprintf("程序正在载入请稍候.....");gotoxy(35,12);for(i=0;i<=50;i++){gotoxy(40,12);delay(8000);cprintf("%02d%已完成",i*2);gotoxy(i+15,13);cprintf("\n");cprintf("|");}main0();}/*********对PC扬声器操作的函数****/void music(int loop,int f) /* f为频率*/{ int i;for(i=0;i<30*loop;i++){sound(f*20);delay(200);}nosound();}int analys(int s,int a){int hh,pos;switch(a){case (int)'i':hh=0;break;case (int)'+':hh=1;break;case (int)'*':hh=2;break;case (int)'(':hh=3;break;case (int)')':hh=4;break;case (int)'#':hh=5;break;case (int)'E':hh=6;break;case (int)'T':hh=7;break;case (int)'F':hh=8;break;default:{printf(" \n analys()分析发现不该有的字符 %c !(位置:%d)",a,ip+1); writeerror('0',"\n............分析出现错误!!!");writeerror(a,"\n 错误类型: 不该有字符 ");printf("谢谢");printf("网 ");return ERROR;}}pos=(s-48)*10+hh;switch(pos){case 3:case 43:case 63:case 73:act=4;return MOVEIN;case 0:case 40:case 60:case 70:act=5;return MOVEIN;case 11:case 81: act=6;return MOVEIN;case 92:case 22:act=7;return MOVEIN;case 84:act=11;return MOVEIN;/*-------------------------------------------*/ case 91:case 94:case 95:act=1;return GUIYUE;case 21:case 24:case 25:act=2;return GUIYUE;case 101:case 102:case 104:case 105:act=3;return GUIYUE;case 31:case 32:case 34:case 35:act=4;return GUIYUE;case 111:case 112:case 114:case 115:act=5;return GUIYUE;case 51:case 52:case 54:case 55:act=6;return GUIYUE;/*+++++++++++++++++*/case 15:return ACC;/*******************************/case 6:return 1;case 7:case 47:return 2;case 8:case 48:case 68:return 3;case 46:return 8;case 67:return 9;case 78:return 10;default:{if(a=='#')printf("");else printf(" \n analys() 分析发现字符%c 不是所期望的!(位置:%d)",a,ip+1);writeerror('0',"\n ...........分析出现错误!!!");writeerror(a,"\n 错误类型: 字符 ");writeerror('0'," 不是所期望的! ");printf("谢谢");printf("网 ");return ERROR;}}}int writefile(int a,char *st){FILE *fp;fp=fopen("an_slr.txt","a");if(fp==0){printf("\nwrite error!!");writeok=0;}else{if(a==-1){fprintf(fp," %s ",st); /*若a==-1则为添加的注释*/}else if(a==-2){getdate(&today);gettime(&now);fprintf(fp,"\n 测试日期: %d-%d-%d",today.da_year,today.da_mon,today.da_day); fprintf(fp," 测试时间:%02d:%02d:%02d",now.ti_hour,now.ti_min,now.ti_sec);}else if(a>=0) fprintf(fp,"\n step: %02d , %s",a,st);writeok=1;fclose(fp);}return writeok;}int writeerror(char a,char *st) /*错误类型文件*/{FILE *fpp;fpp=fopen("an_slr.txt","a");if(fpp==0){printf("\nwrite error!!");writeok=0;}else{if(a=='0') fprintf(fpp," %s ",st); /*若a=='0' 则为添加的注释*/else fprintf(fpp," %s \'%c\'(位置:%d) ",st,a,ip+1);writeok=1;fclose(fpp);}return writeok;}/*^^^^^^^^^^^^^^^^^^^^^^*/main0(){int an,flag=1,action,lenr;char a,w[MAXINPUT];int len,s,ss,aa,ana;stack *st;char r[MAXSH][MAXSHL]; /*初始化产生式*/strcpy(r[0],"S->E");strcpy(r[1],"E->E+T");strcpy(r[2],"E->T");strcpy(r[3],"T->T*F");strcpy(r[4],"T->F");strcpy(r[5],"F->(E)");strcpy(r[6],"F->i");clrscr();printf("\nplease input analyse string:\n");gets(w);len=strlen(w);w[len]='#';w[len+1]='\0';initstack(st);push(st,48); /* (int)0 进栈*/writefile(-1,"\n------------------------SLR(1)词法分析器-------------------------");writefile(-1,"\n 计本003 安完成于2003.01.12 14:04");writefile(-1,"\n谢谢");writefile(-1,"网 ");writefile(-1,"\n 以下为串");writefile(-1,w);writefile(-1,"('#'为系统添加)的分析结果: ");writefile(-2," ");do{s=gettop(st);aa=(int)w[ip];action=analys(s,aa);if(action==MOVEIN){ss=48+act;push(st,aa);push(st,ss); /* if ss=4 int =52 */ip++;}else if(action==GUIYUE){lenr=strlen(r[act])-3;for(an=0;an<=2*lenr-1;an++)pop(st); /* #0 */s=gettop(st); /* s=0 */push(st,(int)r[act][0]);/*将产生式左端 F 进栈 */ana=analys(s,(int)r[act][0])+48;if(ana>59)printf("\分析出错:ana>59!!!");push(st,ana);/*analys(s,aa)即为goto(s',aa) */if((line+1)%20==0){printf("\nThis screen is full,press any key to continue!!!");getche();clrscr();}printf(" step %02d: %s\n",line++,r[act]);writefile(line,r[act]);}else if(action==ACC){flag=0;right=1;}else if(action==ERROR){flag=0;right=0;} /*接受成功*/else{flag=0;right=0;} /* 出错*/}while(flag==1);if(right==1)printf("\nok,输入串 %s 为可接受串!!",w);if(right==0)printf("\nsorry,输入串 %s 分析出错!!",w);if(writeok==1){printf("\nAnWin soft have wrote a file an_slr.txt");if(right==1)writefile(-1,"\n最终结果:输入串为可接受串!"); }}main() /*主函数*/{clrscr();delay_fun();logined();}六、测试报告-操作系统课程设计-银行家算法(流程图+源代码+设计报告)六、测试报告:(测试结果保存于系统生成的an.txt 文件中)以下为课本上的实例::-------------------------------------------------------------------------------------========================银行家算法测试结果=========================-------------------------------------------------------------------------------------T0 时刻可用资源(Available) A:3, B:3, C:2测试日期: 2003-6-28 请求分配时间: 14:07:29经测试,可为该进程分配资源。
操作系统实验-银行家算法
银行家算法1.目的和要求本实验的目的是通过银行家算法模拟设计,了解死锁避免的基本原理,掌握安全状态和银行家算法算法。
2.实验内容用高级语言实现银行家算法,避免系统中的进程陷入死锁状态。
3.实验环境4.实验提示4.1 银行家算法在实施资源分配之前,先计算该次分配后所产生的状态是否安全,即是否存在一种顺序,使得所有的进程都能执行结束。
若安全则分配,否则拒绝分配。
Ps:安全状态:指系统能按照某种顺序如<P1,P2,…Pn>(称其为安全序列),来为每个进程分配其所需资源,直至最大需求,使每个进程都可顺利完成。
若不存在这样的一个安全序列,则称系统处于不安全状态。
○1银行算法中的数据结构:1.可利用资源向量Available:是一个含有m个元素的数组,其中每个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类资源全部可用资源数目。
2.最大需求矩阵Max:是一个n*m的矩阵,Max(i,j)=k表示进程i需要Rj资源的最大数目是k个。
3.分配矩阵Allocation:是一个n*m的矩阵, Allocation(i,j)=k表示进程i当前已分得Rj资源k个。
4.需求矩阵Need:也是一个n*m的矩阵, Need(i,j)=k表示进程i还需要Rj资源k个。
Need[i,j]=Max[i,j]-Allocation[i,j]○2安全性算法:1.设置两个向量:1)工作向量Work。
表示系统可供给进程继续运行所需要的各类资源数目。
2)Finish。
表示系统是否有足够的资源分配给进程。
2.从进程集合中找到一个能满足下述条件的进程:Finish[i]=false; Need i<=Work;如找到,执行步骤3;否则,执行步骤4。
3.当进程P i获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行: Work=Work+Allocation;Finish[i]=true ;go to step 2;4.如果所有进程P i的Finish[i]=true ,则表示系统出于安全状态;否则,系统处于不安全状态。
操作系统实验银行家算法模拟实现(强烈推荐)
操作系统实验银行家算法模拟实现(强烈推荐)银行家算法模拟实现一.实验目的1) 理解死锁避免相关内容;2) 掌握银行家算法主要流程;3) 掌握安全性检查流程。
二.实验描述本实验主要对操作系统中的死锁预防部分的理论进行实验。
要求实验者设计一个程序,该程序可对每一次资源申请采用银行家算法进行分配。
三.实验内容1) 设计多个资源(≥3);2) 设计多个进程(≥3);3) 设计银行家算法相关的数据结构;4) 动态进行资源申请、分配、安全性检测并给出分配结果。
四.实验要求1) 编写程序完成实验内容;2) 画出安全性检测函数流程图;3) 小组派1人上台用PPT演讲实现过程;4) 撰写实验报告。
测试要求1) 进行Request请求,输入参数为进程号、资源号和资源数;2) 进行3次以上的Request请求;3) 至少进行1次资源数目少于可用资源数,但不安全的请求。
五.实验设备PC机1台,要求安装DOS7.1、Turbo C3.0、Windows2000。
六.实验结果七.实验思考1)针对死锁有哪些可行方案?2)死锁解除的难点是什么?八.银行家算法介绍8.1银行家算法的数据结构1) 可利用资源向量Available。
其中每个元素代表每类资源的数目。
2) 最大需求矩阵Max。
其中每个元素代表每个进程对于每类资源的最大需求量。
Max[i,j]=K表示i进程对于j类资源的最大需求量为K。
3) 分配矩阵Allocation。
其中每个元素代表每个进程已得到的每类资源的数目。
4) 需求矩阵Need。
其中每个元素代表每个进程还需要的每类资源的数目。
8.2银行家算法Request i [j]=K表示进程Pi需要K个j类资源。
1)如果Request i [j]≤Need[i , j],便转向步骤2,否则认为出错。
2)如果Request i [j]≤Available[j],便转向步骤3,否则表示无足够资源,Pi需等待;3)系统尝试分配资源给Pi;4)系统进行安全性检查,检查此次资源分配后,系统是否安全。
操作系统实验项目银行家算法
实验四、银行家算法(一)目的和要求银行家算法是由Dijkstra设计的最具有代表性的避免死锁的算法。
本实验要求用高级语言编写一个银行家的模拟算法。
通过本实验可以对预防死锁和银行家算法有更深刻的认识。
(二)实验内容1、设置数据结构包括可利用资源向量(Availiable),最大需求矩阵(Max),分配矩阵(Allocation),需求矩阵(Need)2、设计安全性算法设置工作向量Work 表示系统可提供进程继续运行可利用资源数目,Finish 表示系统是否有足够的资源分配给进程(三)实验环境1、pc2、vc++(四)、程序源代码:/*子函数声明*/int Isprocessallover(); //判断系统中的进程是否全部运行完毕void Systemstatus(); //显示当前系统中的资源及进程情况int Banker(int ,int *); //银行家算法void Allow(int ,int *); //若进程申请不导致死锁,用此函数分配资源void Forbidenseason(int ); //若发生死锁,则显示原因/*全局变量*/int Availiable[3]={3,3,2}; //初始状态,系统可用资源量int Max[5][3]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};//各进程对各资源的最大需求量int Allocation[5][3]={{0,1,0},{2,0,0},{3,0,2},{2,1,1},{0,0,2}};//初始状态,各进程占有资源量int Need[5][3]={{7,4,3},{1,2,2},{6,0,0},{0,1,1},{4,3,1}};//初始状态时,各进程运行完毕,还需要的资源量int over[5]={0,0,0,0,0}; //标记对应进程是否得到所有资源并运行完毕#include <iostream.h>/*主函数*/void main(){int process=0; //发出请求的进程int decide=0; //银行家算法的返回值int Request[3]={0,0,0}; //申请的资源量数组int sourcenum=0; //申请的各资源量/*判断系统中进程是否全部运行完毕*/step1: if(Isprocessallover()==1){cout<<"系统中全部进程运行完毕!";return;}/*显示系统当前状态*/Systemstatus();/*人机交互界面*/step2: cout<<"\n输入发出请求的进程(输入“0”退出系统): ";cin>>process;if(process==0){cout<<"放弃申请,退出系统!";return;}if(process<1||process>5||over[process-1]==1){cout<<"系统无此进程!\n";goto step2;}cout<<"此进程申请各资源(A,B,C)数目:\n";for(int h=0;h<3;h++){cout<<char(65+h)<<"资源:";cin>>sourcenum;Request[h]=sourcenum;}/*用银行家算法判断是否能够进行分配*/decide=Banker(process,Request);if (decide==0){/*将此进程申请资源分配给它*/Allow(process,Request);goto step1;}else{/*不能分配,显示原因*/Forbidenseason(decide);goto step2;}}/*子函数Isprocessallover( )的实现*/int Isprocessallover(){int processnum=0;for(int i=0;i<5;i++){/*判断每个进程是否运行完毕*/if(over[i]==1)processnum++;}if(processnum==5)/*系统中全部进程运行完毕*/return 1;elsereturn 0;}/*子函数Systemstatus( )的实现*/void Systemstatus(){cout<<"此刻系统中存在的进程:\n";for(int i=0;i<5;i++){if(over[i]!=1)cout<<"P"<<i+1<<" ";}cout<<endl;cout<<"此刻系统可利用资源(单位:个):\n";cout<<"A B C\n";for(int a=0;a<3;a++){cout<<Availiable[a]<<" ";}cout<<endl;cout<<"此刻各进程已占有资源如下(单位:个): \n"<<" A B C\n";for(int b=0;b<5;b++){if(over[b]==1)continue;cout<<"P"<<b+1<<" ";for(int c=0;c<3;c++)cout<<Allocation[b][c]<<" ";cout<<endl;}cout<<"各进程运行完毕还需各资源如下(单位:个):\n"<<" A B C\n";for(int f=0;f<5;f++){if(over[f]==1)continue;cout<<"P"<<f+1<<" ";for(int g=0;g<3;g++)cout<<Need[f][g]<<" ";cout<<endl;}}/*子函数Banker(int ,int &)的实现*/int Banker(int p,int *R){int num=0; //标记各资源是否能满足各进程需要int Finish[5]={0,0,0,0,0}; //标记各进程是否安全运行完毕int work[5]={0,0,0,0,0}; //用于安全检查int AvailiableTest[3]; //用于试分配int AllocationTest[5][3]; //同上int NeedTest[5][3]; //同上/*判断申请的资源是否大于系统可提供的资源总量*/for(int j=0;j<3;j++){if(*(R+j)>Availiable[j])/*返回拒绝分配原因*/return 1;}/*判断该进程申请资源量是否大于初始时其申明的需求量*/for(int i=0;i<3;i++){if(*(R+i)>Need[p-1][i])/*返回拒绝原因*/return 2;}/*为检查分配的各数据结构赋初值*/for(int t=0;t<3;t++){AvailiableTest[t]=Availiable[t];}for(int u=0;u<5;u++){for(int v=0;v<3;v++){AllocationTest[u][v]=Allocation[u][v];}}for(int w=0;w<5;w++){for(int x=0;x<3;x++){NeedTest[w][x]=Need[w][x];}}/*进行试分配*/for(int k=0;k<3;k++)//修改NeedTest[]{AvailiableTest[k]-=*(R+k);AllocationTest[p-1][k]+=*(R+k);NeedTest[p-1][k]-=*(R+k);}/*检测进程申请得到满足后,系统是否处于安全状态*/ for(int l=0;l<3;l++){work[l]=AvailiableTest[l];}for(int m=1;m<=5;m++){for(int n=0;n<5;n++){num=0;/*寻找用此刻系统中没有运行完的进程*/if(Finish[n]==0&&over[n]!=1){for(int p=0;p<3;p++){if(NeedTest[n][p]<=work[p])num++;}if(num==3){for(int q=0;q<3;q++){work[q]=work[q]+AllocationTest[n][q];}Finish[n]=1;}}}}for(int r=0;r<5;r++){if(Finish[r]==0&&over[r]!=1)/*返回拒绝分配原因*/return 3;}return 0;}/*子函数Allow(int ,int &)的实现*/void Allow(int p,int *R){cout<<"可以满足申请!";static int overnum;/*对进程所需的资源进行分配*/for(int t=0;t<3;t++){Availiable[t]=Availiable[t]-*(R+t);Allocation[p-1][t]=Allocation[p-1][t]+*(R+t);Need[p-1][t]=Need[p-1][t]-*(R+t);}/*分配后判断其是否运行完毕*/overnum=0;for(int v=0;v<3;v++){if(Need[p-1][v]==0)overnum++;}if(overnum==3){/*此进程运行完毕,释放其占有的全部资源*/for(int q=0;q<3;q++)Availiable[q]=Availiable[q]+Allocation[p-1][q];/*标记该进程运行完毕*/over[p-1]=1;cout<<"进程P"<<p<<"所需资源全部满足,此进程运行完毕!\n";}}/*子函数Forbidenseason(int )的实现*/void Forbidenseason(int d){cout<<"不能满足申请,此进程挂起,原因为:\n";switch (d){case 1:cout<<"申请的资源量大于系统可提供的资源量!";break;case 2:cout<<"申请的资源中有某种资源大于其声明的需求量!";break;case 3:cout<<"若满足申请,系统将进入不安全状态,可能导致死锁!";}}。
操作系统实验三银行家算法
实验三银行家算法一、实验内容运用某种高级语言(如C或C++)模拟银行家算法的处理过程。
二、实验目的银行家算法是避免死锁的代表性算法。
本实验旨在加深了解有关资源申请、避免死锁、状态安全性等概念,并体会和运用避免死锁的具体实施方法。
然后依照本实验,自行设计模拟程序。
三、实验题目银行家算法的模拟。
[提示]:(1) 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。
若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。
(2) 安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。
安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。
不安全状态一定导致死锁。
安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j <i )当前占有资源量之和。
(3) 设requesti为进程p[i]的请求向量,如果requesti[j]=K,表示进程p[i]需要K个Rj 资源。
当系统发出请求后,系统按下述步骤开始检查:1)如果requesti[j]<=need[i][j],转向步骤2;否则报告出错,申请的资源已经大于它需要的最大值。
2)如果requesti[j]<=available[j],转向步骤3;否则报告出错,尚无足够的资源。
操作系统银行家算法实验报告
操作系统银行家算法实验报告操作系统银行家算法实验报告引言:操作系统是计算机科学中的一个重要领域,它负责管理计算机的硬件和软件资源,以提供良好的用户体验。
在操作系统中,银行家算法是一种重要的资源分配和调度算法,它可以确保系统中的进程安全地访问资源,避免死锁的发生。
本实验旨在通过实践运用银行家算法,深入理解其原理和应用。
实验目的:1. 理解银行家算法的基本原理;2. 掌握银行家算法的实现方法;3. 分析银行家算法在资源管理中的应用。
实验过程:1. 实验环境的搭建在本次实验中,我们使用了一台运行Windows操作系统的计算机,并安装了Java开发环境。
同时,我们使用了一个模拟的资源管理系统,以便更好地理解和实践银行家算法。
2. 银行家算法的原理银行家算法是通过对系统中的资源进行合理分配,以避免死锁的发生。
它基于以下几个假设:- 每个进程对资源的最大需求量是已知的;- 系统中的资源数量是有限的;- 进程在请求资源时必须先声明其最大需求量;- 进程在释放资源后,不能再重新请求。
3. 银行家算法的实现银行家算法的实现主要包括以下几个步骤:- 初始化:获取系统中的资源总量和每个进程的最大需求量;- 安全性检查:通过模拟分配资源并检查系统是否处于安全状态,以确定是否可以满足进程的资源请求;- 资源分配:根据安全性检查的结果,决定是否分配资源给进程。
4. 银行家算法的应用银行家算法在实际应用中具有广泛的用途,尤其是在多任务操作系统中。
它可以用于资源的分配和调度,以确保系统中的进程能够安全地访问资源,避免死锁的发生。
结论:通过本次实验,我们深入了解了银行家算法的原理和应用。
银行家算法作为一种重要的资源管理和调度算法,可以有效地避免死锁的发生,提高系统的可靠性和稳定性。
在今后的学习和工作中,我们将继续深入研究操作系统相关的算法和原理,以提升自己在该领域的专业能力。
操作系统原理-银行家算法
广州大学学生实验报告一、实验目的1、掌握银行家算法二、实验器材1、计算机一台。
2、Linux三、实验内容1、运行银行家算法四、实验步骤、记录和结果实验七:银行家算法银行家算法代码如下:#include "stdio.h"#include "stdlib.h"#define alloclen sizeof(struct allocation)#define maxlen sizeof(struct max)#define avalen sizeof(struct available)#define needlen sizeof(struct need)#define finilen sizeof(struct finish)#define pathlen sizeof(struct path)struct allocation //已分配资源数{int value;struct allocation *next;};struct max //最大需求资源数{int value;struct max *next;};struct available /*可用资源数*/{int value;struct available *next;};struct need /*需求资源数*/{int value;struct need *next;};struct path//安全序列{int value;struct path *next;};struct finish{int stat;struct finish *next;};int main(){int row,colum,status=0,i,j,t,temp,processtest;//row为进程数,colum为资源种类数struct allocation *allochead,*alloc1,*alloc2,*alloctemp;//已分配资源链表struct max *maxhead,*maxium1,*maxium2,*maxtemp;//最大需求资源链表struct available*avahead,*available1,*available2,*workhead,*work1,*work2,*worktemp,*worktemp1;struct need *needhead,*need1,*need2,*needtemp;//需求资源链表struct finish *finihead,*finish1,*finish2,*finishtemp;struct path *pathhead,*path1,*path2;//安全序列printf("\n请输入系统资源的种类数:");scanf("%d",&colum);printf("请输入现时内存中的进程数:");scanf("%d",&row);printf("请输入已分配资源矩阵:\n");//生成进程已分配资源链表Allocationfor(i=0;i<row;i++){for (j=0;j<colum;j++){printf("请输入已分配给进程p%d 的%c 种系统资源:",i,'A'+j);//如果是第一次,创建头结点if(status==0){allochead=alloc1=alloc2=(struct allocation*)malloc(alloclen);alloc1->next=alloc2->next=NULL;scanf("%d",&allochead->value);status++;}else{alloc2=(struct allocation *)malloc(alloclen);scanf("%d,%d",&alloc2->value);if(status==1){allochead->next=alloc2;status++;}alloc1->next=alloc2;alloc1=alloc2;}}}alloc2->next=NULL;status=0;printf("请输入最大需求矩阵:\n");//生成最大需求链表Maxfor(i=0;i<row;i++){for (j=0;j<colum;j++){printf("请输入进程p%d 种类%c 系统资源最大需求:",i,'A'+j);if(status==0){maxhead=maxium1=maxium2=(struct max*)malloc(maxlen);maxium1->next=maxium2->next=NULL;scanf("%d",&maxium1->value);status++;}else{maxium2=(struct max *)malloc(maxlen);scanf("%d,%d",&maxium2->value);if(status==1){maxhead->next=maxium2;status++;}maxium1->next=maxium2;maxium1=maxium2;}}}maxium2->next=NULL;status=0;printf("请输入现时系统剩余的资源矩阵:\n");//生成剩余资源链表for (j=0;j<colum;j++){printf("种类%c 的系统资源剩余:",'A'+j);if(status==0){avahead=available1=available2=(struct available*)malloc(avalen);workhead=work1=work2=(struct available*)malloc(avalen);available1->next=available2->next=NULL;work1->next=work2->next=NULL;scanf("%d",&available1->value);work1->value=available1->value;status++;}else{available2=(struct available*)malloc(avalen);work2=(struct available*)malloc(avalen);scanf("%d,%d",&available2->value);work2->value=available2->value;if(status==1){avahead->next=available2;workhead->next=work2;status++;}available1->next=available2;available1=available2;work1->next=work2;work1=work2;}}available2->next=NULL;work2->next=NULL;status=0;alloctemp=allochead;maxtemp=maxhead;//生成进程需求资源数链表for(i=0;i<row;i++)for (j=0;j<colum;j++){if(status==0){needhead=need1=need2=(struct need*)malloc(needlen);need1->next=need2->next=NULL;need1->value=maxtemp->value-alloctemp->value;status++;}else{need2=(struct need *)malloc(needlen);need2->value=(maxtemp->value)-(alloctemp->value);if(status==1){needhead->next=need2;status++;}need1->next=need2;need1=need2;}maxtemp=maxtemp->next;alloctemp=alloctemp->next;}need2->next=NULL;status=0;//初始化finsh默认值finsh=falsefor(i=0;i<row;i++){if(status==0){finihead=finish1=finish2=(struct finish*)malloc(finilen);finish1->next=finish2->next=NULL;finish1->stat=0;status++;}else{finish2=(struct finish*)malloc(finilen);finish2->stat=0;if(status==1){finihead->next=finish2;status++;}finish1->next=finish2;finish1=finish2;}}finish2->next=NULL; /*Initialization compleated*/status=0;processtest=0;for(temp=0;temp<row;temp++){alloctemp=allochead;needtemp=needhead;finishtemp=finihead;worktemp=workhead;for(i=0;i<row;i++){worktemp1=worktemp;if(finishtemp->stat==0){//检测是否满足分配资源条件for(j=0;j<colum;j++,needtemp=needtemp->next,worktemp=worktemp->next) if(needtemp->value<=worktemp->value)processtest++;if(processtest==colum){//分配资源for(j=0;j<colum;j++){worktemp1->value+=alloctemp->value;worktemp1=worktemp1->next;alloctemp=alloctemp->next;}if(status==0)//记录安全序列{pathhead=path1=path2=(struct path*)malloc(pathlen);path1->next=path2->next=NULL;path1->value=i;status++;}else{path2=(struct path*)malloc(pathlen);path2->value=i;if(status==1){pathhead->next=path2;status++;}path1->next=path2;path1=path2;}finishtemp->stat=1;}else{//恢复finish=false状态for(t=0;t<colum;t++)alloctemp=alloctemp->next;finishtemp->stat=0;}}else//安全性检测失败for(t=0;t<colum;t++){needtemp=needtemp->next;alloctemp=alloctemp->next;}processtest=0;worktemp=workhead;finishtemp=finishtemp->next;}}path2->next=NULL;finishtemp=finihead;for(temp=0;temp<row;temp++){if(finishtemp->stat==0){printf("\n系统处于非安全状态!\n");exit(0);}finishtemp=finishtemp->next;}printf("\n系统处于安全状态.\n");printf("\n安全序列为: \n");do{printf("p%d ",pathhead->value);}while(pathhead=pathhead->next);printf("\n");return0;}实验过程与结果使用如下表格数据进行测试:P3 00 2 06 4P4 00 1 06 5先列出Need表Allocation Max NeedA B C A B C A B CP0 00 3 00 4 00 1P1 100 17 5 07 5P2 13 5 23 5 100P3 00 2 06 4 06 2P4 00 1 06 5 06 4过程分析:当前系统中可用资源数为1,4,0,只能满足进程P2,所以P2获得资源,执行,释放资源,可用资源变为2,7,5;此时可满足P1,P2,P3,P4,假定P1获得资源,执行,释放资源,可用资源变为3,7,5;此时可满足P0,P3,P4,假定P0获得资源,执行,释放资源,可用资源变为3,7,8;此时可满足P3,P4,假定P3获得资源,执行,释放资源,可用资源变为3,7,10;最后P4运行。
OS银行家算法实验报告
《操作系统原理》实验报告银行家算法实验专业:计算机科学与技术学号:************姓名:***实验日期:2012-5-9一、实验目的通过实验用编程语言模拟银行家诉法来加强对银行家安全算法的理解和掌握。
二、实验内容熟悉避免死锁发生的方法,死锁与安全序列的关系,编程实现银行家算法,要求输出进程的安全序列。
三、算法中用到的数据结构1.可利用资源向量Available2.最大需求矩阵Max3.分配矩阵Allocation4.需求矩阵Need模拟实现银行家算法以避免死锁的出现.分两部分组成:第一部分:银行家算法(扫描)1.如果Request<=Need,则转向2;否则,出错2.如果Request<=Available,则转向3,否则等待3.系统试探分配请求的资源给进程4.系统执行安全性算法第二部分:安全性算法1.设置两个向量(1).工作向量:Work=Available(表示系统可提供给进程继续运行所需要的各类资源数目)(2).Finish:表示系统是否有足够资源分配给进程(True:有;False:没有).初始化为False2.若Finish[i]=False&&Need<=Work,则执行3;否则执行4(I为资源类别)3.进程P获得第i类资源,则顺利执行直至完成!并释放资源:Work=Work+Allocation;Finish[i]=true;转24. 若所有进程的Finish[i]=true,则表示系统安全;否则,不安全!四、算法流程图五、实现代码#include <stdio.h>#define P_NUM 5#define S_NUM 3int Max[P_NUM][S_NUM],Allocation[P_NUM][S_NUM],Need[P_NUM][S_NUM];int Available[S_NUM],Request[S_NUM];int Work[S_NUM],Finish[P_NUM],CurrentProcessId=-1,Arrange[P_NUM],CurrentId=0; FILE *fpr,*fpw;int times=0;void init(){int i=0,j=0;for(i=0;i<P_NUM;i++){for(j=0;j<S_NUM;j++){scanf("%d",&Max[i][j]);}for(j=0;j<S_NUM;j++){scanf("%d",&Allocation[i][j]);Need[i][j]=Max[i][j]-Allocation[i][j];}Finish[i]=0;}for(j=0;j<S_NUM;j++){scanf("%d",&Available[j]);}}void allocation(){int j=0,reasonable=1;if(CurrentProcessId>-1 && CurrentProcessId<P_NUM){printf("P%d Requests :( ",CurrentProcessId);for(j=0;j<S_NUM;j++){Need[CurrentProcessId][j]=Need[CurrentProcessId][j]-Request[j];Allocation[CurrentProcessId][j]=Allocation[CurrentProcessId][j]+Request[j];Available[j]=Available[j]-Request[j];printf("%d ",Request[j]);if(Need[CurrentProcessId][j]<0 || Available[j]<0)reasonable=0;}printf(")\n");if(reasonable==0){UnAllocation();printf("The Request is not reasonable! The below table is same with the top table! \n");}}}int UnAllocation(){int j=0;if(CurrentProcessId>-1 && CurrentProcessId<P_NUM){for(j=0;j<S_NUM;j++){Need[CurrentProcessId][j]=Need[CurrentProcessId][j]+Request[j];Allocation[CurrentProcessId][j]=Allocation[CurrentProcessId][j]-Request[j];Available[j]=Available[j]+Request[j];}}}void safeCheck(){int j=0,processNo=0,times=0;for(j=0;j<S_NUM;j++){Work[j]=Available[j];}processNo=meetCommand();if(processNo<0){UnAllocation();printf("this state is not safty!\n");}else{printf("Assign source in sequence :");for(j=0;j<P_NUM;j++){printf("→P%d",Arrange[j]);}printf("\n\n\n\n\n");}CurrentProcessId=-1;for(j=0;j<P_NUM;j++){Finish[j]=0;Arrange[j]=0;}}int meetCommand(){int meet=0,finish=1,i=0,j=0,maxUnFinish=0;for(i=0;i<P_NUM;i++){if(Finish[i]==0){finish=0;maxUnFinish=i;}}if(finish==1)return 0;for(i=0;i<P_NUM ;i++){if(Finish[i]==0){meet=0;for(j=0;j<S_NUM;j++){if(Need[i][j]>Work[j])meet=-1;}if(meet==0 ){Finish[i]=1;printCheckInfo(i);for(j=0;j<S_NUM;j++){Work[j]=Work[j]+Allocation[i][j];}Arrange[CurrentId]=i;CurrentId++;meetCommand();}if(i==maxUnFinish && meet==-1)return -1;}}return 0;}void printInfo(){int i=0,j=0;printf("┌───────┬────────┬─────────┬─────────┬────────┐\n");printf("││Max │Allocation │Need │Available │\n");printf("│processID ├────────┼─────────┼─────────┼────────┤\n");printf("││ A B C │ A B C │ A B C │ A B C │\n");printf("├───────┼────────┼─────────┼─────────┼────────┤\n");for(i=0;i<P_NUM;i++){printf("│P%d │",i);for(j=0;j<S_NUM;j++){printf(" %d ",Max[i][j]);}printf("│");for(j=0;j<S_NUM;j++){printf("%d ",Allocation[i][j]);}printf("│");for(j=0;j<S_NUM;j++){printf("%d ",Need[i][j]);}printf(" │");if(i==0){for(j=0;j<S_NUM;j++){printf("%d ",Available[j]);}printf(" │\n");}if(i>0)printf(" │\n");}printf("└───────┴────────┴─────────┴─────────┴────────┘\n");}int printCheckInfo(int i){int j=0,allFinsh=1;if(times==0){printf("┌───────┬────────┬─────────┬─────────┬────────┐\n");printf("││Work │Allocation │Need ││\n");printf("│processID ├────────┼─────────┼─────────┤States │\n");printf("││ A B C │ A B C │ A B C ││\n");printf("├───────┼────────┼─────────┼─────────┼────────┤\n");times++;}printf("│P%d │",i);for(j=0;j<S_NUM;j++){if(Work[j]>9)printf(" %d ",Work[j]);if(Work[j]<10)printf(" %d ",Work[j]);}printf("│");for(j=0;j<S_NUM;j++){printf("%d ",Allocation[i][j]);}printf("│");for(j=0;j<S_NUM;j++){printf("%d ",Need[i][j]);}printf(" │");for(j=0;j<P_NUM;j++){printf("%d ",Finish[j]);allFinsh*=Finish[j];}printf(" │\n");if(allFinsh==0)printf("├───────┼────────┼─────────┼─────────┼────────┤\n");if(allFinsh> 0)printf("└───────┴────────┴─────────┴─────────┴────────┘\n");}main(){int j=0;char comeOn;fpr = fopen("banker.txt","r");fpw = fopen("outcoming.txt","w");printf("程序运行结果如下:\n");init();printInfo();allocation();safeCheck();scanf("\n%c",&comeOn);while(comeOn=='y'|| comeOn=='Y'){printInfo();scanf("%d",&CurrentProcessId);for(j=0;j<S_NUM;j++){scanf("%d",&Request[j]);}allocation();times=0;CurrentId=0;safeCheck();scanf("\n%c",&comeOn);}}六、总结通过了这次实验更透彻的理解了银行家算法如何来避免思索的产生,以及对银行家算法的具体实现步骤更加清晰的理解。
操作系统实验银行家算法
实验三银行家算法一、实验内容简要描述1.实验目标:加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。
2.实验要求:银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。
用银行家算法实现资源分配。
设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。
进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
二、报告主要内容1.设计思路A、设计进程对各在资源最大申请表示及初值确定。
B、设定系统提供资源初始状态。
C、设定每次某个进程对各类资源的申请表示。
D、编制程序,依据银行家算法,决定其申请是否得到满足。
2.主要数据结构假设有M个进程N类资源,则有如下数据结构:MAX[M*N] M个进程对N类资源的最大需求量AVAILABLE[N] 系统可用资源数ALLOCATION[M*N] M个进程已经得到N类资源的资源量NEED[M*N] M个进程还需要N类资源的资源量银行家算法:设进程I提出请求Request[N],则银行家算法按如下规则进行判断。
(1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。
(2)如果Request[N]<=AVAILABLE,则转(3);否则,出错。
(3)系统试探分配资源,修改相关数据:AVAILABLE=AVAILABLE-REQUESTALLOCATION=ALLOCATION+REQUESTNEED=NEED-REQUEST(4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三银行家算法一、实验内容简要描述1.实验目标:加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。
2.实验要求:银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。
用银行家算法实现资源分配。
设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。
进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。
二、报告主要内容1.设计思路A、设计进程对各在资源最大申请表示及初值确定。
B、设定系统提供资源初始状态。
C、设定每次某个进程对各类资源的申请表示。
D、编制程序,依据银行家算法,决定其申请是否得到满足。
2.主要数据结构假设有M个进程N类资源,则有如下数据结构:MAX[M*N] M个进程对N类资源的最大需求量AVAILABLE[N] 系统可用资源数ALLOCATION[M*N] M个进程已经得到N类资源的资源量NEED[M*N] M个进程还需要N类资源的资源量银行家算法:设进程I提出请求Request[N],则银行家算法按如下规则进行判断。
(1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。
(2)如果Request[N]<=A V AILABLE,则转(3);否则,出错。
(3)系统试探分配资源,修改相关数据:A V AILABLE=A V AILABLE-REQUESTALLOCATION=ALLOCA TION+REQUESTNEED=NEED-REQUEST(4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。
安全性检查:(1)设置两个工作向量WORK=A V AILABLE;FINISH[M]=FALSE(2)从进程集合中找到一个满足下述条件的进程,FINISH[i]=FALSENEED<=WORK如找到,执行(3);否则,执行(4)(3)设进程获得资源,可顺利执行,直至完成,从而释放资源。
WORK=WORK+ALLOCATIONFINISH=TRUEGO TO 2(4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。
3.主要代码源程序:#include<iostream>using namespace std;#define MAXPROCESS 50 /*最大进程数*/#define MAXRESOURCE 100 /*最大资源数*/int AVAILABLE[MAXRESOURCE]; /*可用资源数组*/int MAX[MAXPROCESS][MAXRESOURCE]; /*最大需求矩阵*/int ALLOCATION[MAXPROCESS][MAXRESOURCE]; /*分配矩阵*/int NEED[MAXPROCESS][MAXRESOURCE]; /*需求矩阵*/int REQUEST[MAXPROCESS][MAXRESOURCE]; /*进程需要资源数*/bool FINISH[MAXPROCESS]; /*系统是否有足够的资源分配*/ int p[MAXPROCESS]; /*记录序列*/int m,n; /*m个进程,n个资源*/void Init();bool Safe();void Bank();int main(){Init();Safe();Bank();}void Init() /*初始化算法*/{int i,j;cout<<"请输入进程的数目:";cin>>m;cout<<"请输入资源的种类:";cin>>n;cout<<"请输入每个进程最多所需的各资源数,按照"<<m<<"x"<<n<<"矩阵输入"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++)cin>>MAX[i][j];cout<<"请输入每个进程已分配的各资源数,也按照"<<m<<"x"<<n<<"矩阵输入"<<endl;for(i=0;i<m;i++){for(j=0;j<n;j++){cin>>ALLOCATION[i][j];NEED[i][j]=MAX[i][j]-ALLOCATION[i][j];if(NEED[i][j]<0){cout<<"您输入的第"<<i+1<<"个进程所拥有的第"<<j+1<<"个资源数错误,请重新输入:"<<endl;j--;continue;}}}cout<<"请输入各个资源现有的数目:"<<endl;for(i=0;i<n;i++){cin>>AVAILABLE[i];}}void Bank() /*银行家算法*/{int i,cusneed;char again;while(1){cout<<"请输入要申请资源的进程号(注:第个进程号为,依次类推)"<<endl;cin>>cusneed;cout<<"请输入进程所请求的各资源的数量"<<endl;for(i=0;i<n;i++){cin>>REQUEST[cusneed][i];}for(i=0;i<n;i++){if(REQUEST[cusneed][i]>NEED[cusneed][i]){cout<<"您输入的请求数超过进程的需求量!请重新输入!"<<endl;continue;}if(REQUEST[cusneed][i]>AVAILABLE[i]){cout<<"您输入的请求数超过系统有的资源数!请重新输入!"<<endl;continue;}}for(i=0;i<n;i++){AVAILABLE[i]-=REQUEST[cusneed][i];ALLOCATION[cusneed][i]+=REQUEST[cusneed][i];NEED[cusneed][i]-=REQUEST[cusneed][i];}if(Safe()){cout<<"同意分配请求!"<<endl;}else{cout<<"您的请求被拒绝!"<<endl;for(i=0;i<n;i++){AVAILABLE[i]+=REQUEST[cusneed][i];ALLOCATION[cusneed][i]-=REQUEST[cusneed][i];NEED[cusneed][i]+=REQUEST[cusneed][i];}}for(i=0;i<m;i++){FINISH[i]=false;}cout<<"您还想再次请求分配吗?是请按y/Y,否请按其它键"<<endl;cin>>again;if(again=='y'||again=='Y'){continue;}break;}}bool Safe() /*安全性算法*/ {int i,j,k,l=0;int Work[MAXRESOURCE]; /*工作数组*/for(i=0;i<n;i++)Work[i]=AVAILABLE[i];for(i=0;i<m;i++)FINISH[i]=false;for(i=0;i<m;i++){if(FINISH[i]==true)continue;else{for(j=0;j<n;j++){ if(NEED[i][j]>Work[j])break;}if(j==n){FINISH[i]=true;for(k=0;k<n;k++)Work[k]+=ALLOCATION[i][k];p[l++]=i;i=-1;}else{continue;}}if(l==m){cout<<"系统是安全的"<<endl;cout<<"安全序列:"<<endl;for(i=0;i<l;i++){cout<<p[i];if(i!=l-1)cout<<"-->";}cout<<""<<endl;return true;}if(l>=m) cout<<"系统是不安全的"<<endl;}return 1;}实验结果三、实验心得(实验中遇到的问题及解决过程、实验中产生的错误及原因分析、实验的体会及收获、对做好今后实验提出建设性建议等。
)在多个进程同时运行时,系统根据各类系统资源的最大需求和各类系统的剩余资源为进程安排安全序列,使得系统能快速且安全地运行进程,不至发生死锁。
银行家算法是避免死锁的主要方法,其思路在很多方面都非常值得我们来学习借鉴。
本实验中我对数据结构的设计算法存在问题,在同学的帮助下,还是理解了,并且参考网上存在的银行家算法完成了本试验。
对于银行家算法的了解更加深入,还体会了死锁和避免死锁的具体实施方法。