高中物理动量守恒
高中物理动量守恒定律重要知识点
高中物理动量守恒定律重要知识点1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.动量守恒定律适用的条件①系统不受外力或所受合外力为零.②当内力远大于外力时.③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.3、常见的表达式①p/=p,其中p/、p分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。
②Δp=0 ,表示系统总动量的增量等于零。
③Δp1=-Δp2,其中Δp1、Δp2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。
(4)注意点:① 研究对象:几个相互作用的物体组成的系统(如:碰撞)。
② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向;③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)④ 条件:系统不受外力,或受合外力为0。
要正确区分内力和外力;条件的延伸:a.当F内>>F外时,系统动量可视为守恒;(如爆炸问题。
)b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。
高中物理动量定理应用用动量定理解释生活中的现象[例 1] 竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
[解析] 纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向.不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变.在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:μmgt=mv。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
高中物理【动量守恒定律】知识点、规律总结
2.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量, 这种现象叫反冲运动. (2)特点:系统内各物体间的相互作用的内力_远__大__于___系统受到的外力.实例:发射 炮弹、爆竹爆炸、发射火箭等. (3)规律:遵从动量守恒定律. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且_远__大__于___系统所受 的外力,所以系统动量_守__恒___.
的动量
系统性 研究的对象是相互作用的两个或多个物体组成的系统 动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动
普适性 的微观粒子组成的系统
2.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程). (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒). (3)规定正方向,确定初、末状态动量. (4)由动量守恒定律列出方程. (5)代入数据,求出结果,必要时讨论说明.
两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在
相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为
“人船模型”问题.
2.“人船模型”的特点
(1)两物体满足动量守恒定律:m1v1-m2v2=0. (2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比
2.弹性碰撞的结论 两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为 m1、速度为 v1 的小 球与质量为 m2 的静止小球发生正面弹性碰撞为例,则有 m1v1=m1v1′+m2v2′ 12m1v21=12m1v1′2+12m2v2′2
【总结提升】 碰撞问题解题策略 (1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解. (2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足: v1=mm11- +mm22v0、v2=m12+m1m2v0. (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.
动量守恒定律教案优秀6篇
动量守恒定律教案优秀6篇高中物理动量守恒定律教案篇一教学目标:一、知识目标1、理解动量守恒定律的确切含义。
2、知道动量守恒定律的适用条件和适用范围。
二、能力目标1、运用动量定理和牛顿第三定律推导出动量守恒定律。
2、能运用动量守恒定律解释现象。
3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).三、情感目标1、培养实事求是的科学态度和严谨的推理方法。
2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用。
重点难点:重点:理解和基本掌握动量守恒定律。
难点:对动量守恒定律条件的掌握。
教学过程:动(1mi)量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律。
(-)系统为了便于对问题的讨论和分析,我们引入几个概念。
1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取。
2.内力:系统内各个物体间的相互作用力称为内力。
3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力。
内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力。
(二)相互作用的两个物体动量变化之间的关系【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B 两滑块相互作用后的速度,测出两滑块的质量mAmB和作用后的位移SA和SB比较mASA 和mBSB.高二物理《动量守恒定律》教案1.实验条件:以A、B为系统,外力很小可忽略不计。
高中物理必修二第八章—16.3.1动量守恒定律
若:∑Fx=0,则: 方程一:m1v1x+m2v2x= m1v1x/+m2v2x/ 方程二: Δp1x= - Δp2x (举例说明某方向动量守恒问题)
注:某方向系统动量守恒,不能说成系统动量守恒。
例题1:容器B置于光滑水平面上,小球A在容器中 沿光滑水平底面运动,与器壁来回发生多次碰撞, 则在整个运动过程中AB组成的系统动量守恒吗? 若容器内底部粗糙系统动量是否守恒?若地面粗 糙系统动量是否守恒?
第三步:分析系统受到的外力,判断系统在过程中动 量是否守恒。
第四步:规定正方向,由动量守恒定律列方程。 对在一条直线上有相反方向的速度时,必须在解题过
程中写明正方向。 第五步:根据题意和物理情景列出辅助方程。 辅助方程主要有:机械能守恒方程,相连物体间的速
度关系式。 第六步:解方程组求解未知量,并根据正、负确定速
⑵图乙中,小车B置于光滑水平面上,小球A沿粗糙 的圆弧面滑下,则AB组成的系统动量守恒吗?
AB
甲
乙
系统动量不守恒,水平方向动量守恒
例题4:如图所示,一辆小车静止在光滑水平面上,一 小球通过轻绳系在小车的立柱上。现将小球拉至与
悬点等高处由静止释放。不计空气阻力,轻绳始终
处于伸直状态。小球在下摆的过程中,下列说法正 确的是:( B ) A、小球的机械能守恒,动量不守恒。 B、小球的机械能不守恒,动量也不守恒。 C、小球与小车组成的系统机械能和动量均守恒。 D、小球与小车组成的系统机械能和动量均不守恒。
度方向。 第七步:验证计算结果,确定答案的正确性,确定多
解情况下答案的取、舍及意义。
例题5:质量均为M的两船A、B静止在水面上,A船上 有一质量为m的人以速度v1跳向B船,又以速度v2跳 离B船,再以v3速度跳离A船……,如此往返10次, 最后回到A船上,求最终A、B两船的速度之比。
高中物理选必一第一章动量守恒定律(1动量2动量定理)
第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
高中物理必修三 讲义 16 A动量守恒定律及应用 基础版
动量守恒定律及应用考点一动量守恒定律的理解和基本应用1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′.系统相互作用前的总动量等于相互作用后的总动量.(2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.技巧点拨应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程).(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒).(3)规定正方向,确定初、末状态动量.(4)由动量守恒定律列出方程.(5)代入数据,求出结果,必要时讨论说明.例题精练1.如图1所示,将一光滑的半圆槽置于光滑水平面上,槽的左侧紧靠在墙壁上.现让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则下列结论中正确的是()图1A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C .小球自半圆槽B 点向C 点运动的过程中,小球与半圆槽在水平方向动量守恒D .小球离开C 点以后,将做竖直上抛运动2.(多选)如图2所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A ,同时给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板,在小木块A 做加速运动的时间内,木板速度大小可能是( )图2A .2.1 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/s3.(多选)某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图3所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移随时间变化关系.已知相互作用时间极短,由图象给出的信息可知( )图3A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16考点二 动量守恒定律的临界问题1.当小物块到达最高点时,两物体速度相同.2.弹簧最短或最长时,两物体速度相同,此时弹簧弹性势能最大.3.两物体刚好不相撞,两物体速度相同.4.滑块恰好不滑出长木板,滑块滑到长木板末端时与长木板速度相同.例题精练4.如图4所示,光滑悬空轨道上静止一质量为3m的小车A,用一段不可伸长的轻质细绳悬挂一质量为2m的木块B.一质量为m的子弹以水平速度v0射入木块(时间极短),在以后的运动过程中,细绳离开竖直方向的最大角度小于90°,试求:(不计空气阻力,重力加速度为g)图4(1)子弹射入木块B时产生的热量;(2)木块B能摆起的最大高度;(3)小车A运动过程的最大速度大小.综合练习一.选择题(共10小题)1.(和平区校级期中)如图所示,质量为m2的小车上有一半圆形的光滑槽,一质量为m1的小球置于槽内,共同以速度v0沿水平面运动,并与一个原来静止的小车m3对接,则对接后瞬间,小车的速度大小为()A.B.C.D.以上答案均不对2.(邳州市校级期中)A、B两球沿一直线发生正碰,如图所示的x﹣t图像记录了两球碰撞前后的运动情况,图中的a、b分别为碰撞前A、B两球的x﹣t图线。
高中物理动量守恒定律知识点总结
中学物理动量守恒定律学问点总结中学物理动量守恒定律是中学物理的重点和难点,那么有哪些学问点是必需驾驭的呢?以下是为您整理关于中学物理动量守恒定律学问点相关资料,希望对您有所帮助。
中学物理动量守恒定律学问点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)留意:内力的冲量对系统动量是否守恒没有影响,但可变更系统内物体的动量。
内力的冲量是系统内物体间动量传递的缘由,而外力的冲量是变更系统总动量的缘由。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必需留意区分总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A 的速度)3、一般碰撞:有完整的压缩阶段,只有部分复原阶段,动量守恒,动能减小。
4、人船模型两个原来静止的物体(人和船)发生相互作用时,不受(其它)外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(留意:几何关系)中学物理动量守恒定律学问点(二)冲量与动量(物体的受力与动量的变更)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F确定}4.动量定理:I=p或Ft=mvtmvo {p:动量变更p=mvtmvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p也可以是m1v1+m2v2=m1v1+m2v26.弹性碰撞:p=0;Ek=0 {即系统的动量和动能均守恒}7.非弹性碰撞p=0;0EKEKm {EK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞p=0;EK=EKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相(对子)弹相对长木块的位移}中学(物理(学习(方法)))要重视试验物理学是一门以试验为基础的科学,很多物理概念、物理规律都是从自然现象的试验中(总结)出来的。
高中物理动量守恒定律
一、概念复习
1、动量:p = mv
2、冲量:I=F·t
3、动量定理:即 p ′ — p=I
4、动量守恒定律 如果一个系统不受外力,或者所受外力之和为零 (两个物体)m1v1+m2v2=m1v/1+m2v/2
动量守恒定律成立的三个条件:
(1) 系统不受外力或者所受外力之和为零 (2) 若系统所受合外力不为零,但在内力远大于外
m2 m2
V0
m1
m2
V1ˊ
V2ˊ
V2
2m1 m1 m2
V0
m1
m2
碰撞问题的解应同时遵守三个原则:
(1)系统动量守恒的原则:P′=P (2)空间可行性原则
(63. )反不冲违运背动能:量一守个恒静的止原的则物体:在EK内′≤力E作K 用下分裂为两个部分,
一部分向某个方向运动,另一部分必然向相反的方向运动。这个
现象叫做反冲。
二、应用动量定理或动量守恒定律 解题的一般步骤
• 1.选取研究对象和系统,确定物理过程(是解 题关键所在),根据是否满足动量守恒的条件选 择用动量守恒定律还是动量定理; 2.选取正方向(或建立坐标系)和参考系(一 般以地面为参考系); 3.写出初末状态的动量(注意:一般以相对地面 速度),或应用动量定理时的冲量;
例7、带有1/4光滑圆弧轨道质量为M的滑车静止于光
滑水平面上,如图示,一质量为m的小球以速度v0水 平冲上滑车,当小球上行再返回并脱离滑车时,以下
说法正确的是: ( B C D )
A.小球一定水平向左作平抛运动
B.小球可能水平向左作平抛运动
v0
C.小球可能作自由落体运动
m
M
D.小球可能水平向右作平抛运动
高中物理第08章动量守恒 动量守恒定律应用 四种常见模型
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
高中物理(动量守恒定律)
高中物理(动量守恒定律)动量守恒定律:后总前总p p =或p p '=或'+'=+22112211v m v m v m v m一、研究对象:两个或两个以上物体组成的系统。
二、特点:满足动量守恒的物理过程常常是物体间短暂时间内相互作用的过程。
三、性质:(1)矢量性:表达式'+'=+22112211v m v m v m v m 中守恒式两边不仅大小相等,且方向相同,等式两边总动量是系统内所有物体动量矢量和。
一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).四、条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
五、碰撞:指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,故通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分。
六、分类:(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
【0=∆p ;0=∆k E 】'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+=()2121211'22m m v m m v m v +-+=(2)一般非弹性碰撞——碰撞结束后,形变部分消失,碰撞前后系统总动量相等,动能有部分损失。
高中物理必备知识点:动量守恒定律及其应用总结
高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。
即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。
在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。
例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。
当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。
高中物理-动量守恒定律
动量守恒定律与系统的能量守恒类似,系统的动量也存在守恒的情况。
动量什么情况下才守恒呢?动量守恒定律又是通过什么实验来验证的呢?我们下面就来研究动量守恒定律的内容。
动量守恒定律的内容如果一个系统不受外界力或所受外界的力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
还可以表述为,当没有外界的力作用时,系统内部不同物体间动量相互交换,但总动量之和为固定值。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体。
提醒同学们,动量也是矢量。
如静止的铀核发生α衰变,反冲核和α粒子的动量的动量变化大小相同,方向相反,动量变化的矢量和是零,但两个动量在数量上都增大了。
动量守恒定律的公式基本公式:m1v1+m2v2=m1v1′+m2v2′;此公式为两个物体动量守恒的表达式,多个物体碰撞可以写成:m1v1+m2v2+……=m1v1′+m2v2′+……公式还可以写成p1+p2=p1′+p2′,或者Δp1+Δp2=0,Δp1=-Δp2(动量变化量守恒)下面,我们来探究动量守恒定律的条件是什么?动量守恒定律的条件用一句话来说动量守恒的前提条件:在规定的方向上,系统不受“外界的力”。
这句话共有三个要素:1方向;2系统;3外力。
(1)关于方向的说明:在探究动量是否守恒的时候,要首先明确方向,一般规定碰撞或运动所在的直线对应的方向(正负两个方向均可)。
(2)对“外力”的理解:这个“外力”指的是“外界的力”,与研究系统内部的力无关,什么是内部的力呢?举个例子,比如两个人在理想冰面互推的“推力”,等等。
而外力呢?对于这两个人来说,墙给某个人的力就是(这个系统)外界的力。
(3)系统的说明:使用动量守恒定律,必须是两个或两个以上的物体构成的系统,或者爆破为两个物体的整体。
总之一句话,我们研究动量的对象是多个物体组成的系统。
(4)需要记忆的动量守恒定律模型:总结:“光滑面两球相撞”、“冰面互推”、“两个弹簧链接的物体”、“斜面上滑动小物块”、“子弹射入木块”、“火箭发射”、“人在船面上走动”、“二起脚空中爆破”、“粒子裂变”等。
人教版高中物理选择性必修第1册 1.3 动量守恒定律
系统动量守恒吗?在哪个方向上动量是守恒的?
再见
守恒?
守
恒
练1.(多选)两位同学穿旱冰鞋,面对面站立不动,互推后向相
反的方向运动,不计摩擦阻力,下列判断正确的是( BD )
A.互推后两位同学各自的动量增加,总动量也增加
B.互推后两位同学动量大小相等,方向相反
C.分离时质量大的同学的速度大一些
D.分离时质量大的同学的速度小一些
0 = 11 + 22
m1v1
v=
m1 + m2
代入数值,得 v= 0.9 m/s
x
问题5:处理课本例题,归纳如何动量守恒定律进行解题?
一枚在
例题2
m2
m1
v
解析
空中飞行的火箭,质
量为m,在某点的速
向右为正方向
x
度为v,方向水平,
0
p = mv
火箭炸裂前的总动量为
燃料即将耗尽。火箭
p = m1v1 + ( m - m1 )v2
合在一起继续运动,
求货车碰撞后的运动
速度。
解析
m1
v
0
m2
沿碰撞前货车运动的方向建立坐标轴,有
v1 = 2 m/s 设两车结合后的速度为v 。
两车碰撞前的总动量为 p = m1v1
两车碰撞后的总动量为 p = ( m1 + m2 )v
由动量守恒定律可得: m1v1 = ( m1 + m2 )v
所以
问题7:整理思路,想想我们这一节课学习了什么?
1、定律内容:一个系统不受外力或所受外力之和为零,这个
系统的总动量保持不变。
2、公式表达:m1v1+m2v2=m1v1′+m2v2′
【高中物理】动量守恒定律+课件+高二上学期物理人教版(2019)选择性必修第一册
解:以v方向为正方向
mv = m1v1 + (m - m1 )v2
m1
m2
解出
v2
=
mv m1v1 m m1
v1为负值,分母为正值,则 v2为正值,即剩余部分沿原方向运动
总结提升
用动量守恒定律解题的步骤
速滑接力比赛
斯诺克比赛
正负电子对撞实验
宇宙大爆炸
冰壶比赛
第 11 页
生活场景 的应用
原子核裂变反应
如图,一个木箱原来静止在光滑水平面上,木 箱内粗糙的底板上放着一个小木块。木箱和小 木块都具有一定的质量。现使木箱获得一个向 右的初速度v0,则( )
A.小木块和木箱最终都将静止 B.小木块最终将相对木箱静止,二者一起向右运动 C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起 向左运动
第一章 动量守恒定律
1.3 动量守恒定律
一、动量守恒定律——理论推导:动量定理
m2
m1
m2 m1
m2
m1
F2
A
B
F1
A
B
F2Δt m2v2 m2v
F1Δt m1v1 m1v
F1 F2
m1v1 - m1v1 - (m2v2 - m2v2 )
m1v1 + m2v2 m1v1 + m2v2
(多选)如图,光滑的水平面上有一质量为M=4kg的长木板,长木板 的左端放置一质量m=1 kg的小物块,木板与物块间的动摩擦因数 μ=0.2,现使木板与物块以相等的速率 v₀= 1m/s 分别向左、向右运 动,两者相对静止时物块恰好滑到木板的右端,g 取10m/s².则下
高中物理--动量守恒定律
题型探究
题型1 动量大小的计算及方向的判断
【例1】一个物体的质量为2 kg ,此物体竖直落下,以
10 m/s的速度碰到水泥地面上,随后又以8 m/s的速
度被反弹起.若取竖直向上为正方向,则小球与地面
5.如图2所示, 木块A静置在光滑的水平面上,其曲面
部分MN光滑,水平部分NP粗糙,现有一物体
B自M点由静止下滑,设NP足够长,则下列说法中
正确的是
( BC )
图2 A.A、B最终以同一速度(不为零) B.A、B C.A先做加速运动, D.A先做加速运动,后做匀速运动 解析 系统在水平方向上不受外力,所以系统在水
2.同时性:动量是一个瞬时量,动量守恒指的是系统任 一瞬时的动量守恒,列方程m1v1+m2v2=m1v1′+m2v2′ 时,等号左侧是作用前(或某一时刻)各物体的动量和, 等号右侧的是作用后(或另一时刻)各物体的动量和, 不同时刻的动量不能相加.
3.相对性:由于动量大小与参考系的选取有关,因此 应用动量守恒定律时,应注意各物体的速度必须 是相对于地面的速度.
1.当物体的速度大小不变,方向变化时,动量一定改
变,动能却不变,如匀速圆周运动.
2.在谈及动量时,必须明确是物体在哪个时刻或哪
个状态所具有的动量. 3.物体动量的变化率 p 等于它所受的力,这是牛
t
顿第二定律的另一种表达形式.
热点二、应用动量守恒定律解题时要注意“四性”
1.矢量性:对于作用前后物体的运动方向都在同一直线 上的问题,应选取统一的正方向,凡是与选取正方向 相同的动量为正,相反为负.若方向未知,可设为与正 方向相同列动量守恒方程,通过解得结果的正负判定 未知量的方向.
高中物理课件:动 量 守 恒 定 律
B.4 J
C.5 J
D.6 J
8、在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心 发生对心碰撞如图(a)所示,碰撞前后两壶运动的v—t图线如图(b)中实 线所示,其中红壶碰撞前后的图线平行,两冰壶质量相等,则( )
A.两壶发生了弹性碰撞 B.碰后蓝壶速度为0.8m/s C.碰后蓝壶移动的距离为2.4m D.碰后红壶所受摩擦力小于蓝壶所受摩擦力
5、两球A、B在光滑水平面上沿同一直线、同一方向运动,mA=1 kg,mB=2 kg,vA=6 m/s,vB=2 m/s。当A追上B并发生碰撞后, 两球A、B速度的可能值是( ) A.vA′=3 m/s,vB′=4 m/s B.vA′=5 m/s,vB′=2.5 m/s C.vA′=2 m/s,vB′=4 m/s D.vA′=-4 m/s,vB′=7 m/s
模型四 “滑块—木板”类模型
12、(2018·海南卷) [多选]如图(a)有一长木板静止于光滑水平桌面上, t=0时,小物块以速度v0滑到长木板上,图(b)为物块与木板运动的v—t 图像,图中t1、v0、v1已知。重力加速度大小为g。由此可求得( )
A.木板的长度 B.物块与木板的质量之比 C.物块与木板之间的动摩擦因数 D.从t=0开始到t1时刻,木板获得的动能
动量守恒定律
一、动量守恒定律的理解和基本应用
1、如图所示,A、B两物体的质量之比为mA:mB=1:2,它们原本静 止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、 B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑。当弹簧 突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车), 则有( ) A.A、B系统动量守恒 B.A、B、C及弹簧组成的系统机械能守恒 C.小车C先向左运动后向右运动 D.小车C一直向右运动直到静止
高中物理选择性必修一 第一章 第三节 第1课时 动量守恒定律
即学即用 1.判断下列说法的正误.
(1)一个系统初、末状态动量大小相等,即动量守恒.( × )
(2)两个做匀速直线运动的物体发生碰撞瞬间,两个物体组成的系统动量
守恒.( √ ) (3)系统动量守恒也就是系统总动量变化量始终为零.( √ ) (4)只要系统内存在摩擦力,动量就一定不守恒.( × )
2.如图2所示,游乐场上,两位同学各驾驶一辆碰碰车迎面相撞,此后, 两车以共同的速度运动.设甲同学和他的车的总质量为120 kg,碰撞前水 平向右运动,速度的大小为5 m/s;乙同学和他的车的总质量为180 kg, 碰撞前水平向左运动,速度的大小为4 m/s.则碰撞后两车共同的运动速 度大小为__0_.4__m_/_s_,方向__水__平__向__左__.
随堂演练 逐点落实
课时 对点练
梳理教材 夯实基础
SHULIJIAOCAI HANGSHIJICHU
一、系统、内力、外力
1.系统:两个(或多个) 相互作用的物体构成的整体叫作一个力学系统,简 称系统. 2.内力: 系统内 物体间的相互作用力. 3.外力:系统 外部 其他物体对系统的作用力.
二、动量守恒定律的推导
如图1所示,质量为m2的B物体追上质量为m1的A物体,并发生碰撞,设A、 B两物体碰前速度分别为v1、v2(v2>v1),碰后速度分别为v1′、v2′,碰 撞时间很短,设为Δt.
根据动量定理:
对A:F1Δt= m1v1′-m1v1
图1
①
对B:F2Δt= m2v2′-m2v2
②
由牛顿第三定律F1= -F2
碰撞后的总动量为p′=(m1+m2)v. 根据动量守恒定律可知p=p′, 代入数据解得v=-0.4 m/s, 即碰撞后两车以0.4 m/s的共同速度运动, 运动方向水平向左.
高中动量守恒知识点总结
高中动量守恒知识点总结一、动量的概念和计算动量是描述物体运动状态的一种物理量,它是物体质量和速度的乘积。
动量的定义可以用公式表示为:p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
在物理学中,动量是一个矢量量,考虑到其方向,通常用有向线段表示。
在实际问题中,我们可以利用动量的定义和计算方法来解决物体运动过程中的一些问题,比如计算碰撞中物体的速度变化、求解物体的力的作用时间等等。
二、动量守恒定律动量守恒定律指的是在一个封闭系统中,如果没有外力作用,该系统的动量总量在一段时间内保持不变。
也就是说,如果系统内部发生了相互作用,使得某些物体的动量发生了变化,那么这些变化的动量之和必须等于其他物体动量变化的负值,从而使得整个系统的动量总量保持不变。
动量守恒定律的数学表达式为:Σpi=Σpf,即系统在初态和末态的动量之和相等,其中Σpi 表示初态的动量之和,Σpf表示末态的动量之和。
动量守恒定律适用于很多物理现象的描述,比如弹性碰撞、完全非弹性碰撞、爆炸等等。
下面我们来分别讨论这些情况下的动量守恒定律的应用。
1. 弹性碰撞在弹性碰撞中,两个物体相互碰撞后会发生弹性形变,并且碰后两物体之间的相对速度方向和大小会发生变化,但整个碰撞过程中系统的动量总量不发生改变。
即系统在碰撞前后的总动量保持不变。
例如,如果一个质量为m1的小球以速度v1与一个质量为m2的小球以速度v2发生弹性碰撞,那么碰撞后两球的速度分别为v'1和v'2,根据动量守恒定律有:m1v1+m2v2=m1v'1+m2v'2。
2. 完全非弹性碰撞在完全非弹性碰撞中,碰撞发生后两个物体会粘在一起,形成一个整体,整个碰撞过程中动量总量也是守恒的。
在这种情况下,碰撞后整体的速度就是碰撞前两个物体速度的加权平均。
例如,如果一个质量为m1的小球以速度v1与一个质量为m2的小球以速度v2发生完全非弹性碰撞,那么碰撞后整体的速度v'可以表示为:v'=(m1v1+m2v2)/(m1+m2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动 量 定 理 动量 守 恒【重要知识点】 1. 弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 的物体以速度 V 。
与质量为 m 的在水平面上静止的物体发生弹性正碰,则有动 量守恒:mW 。
mN i m 2v 2碰撞前后动能不变: 2 m 1v 02|m 1v 12 卡m i v 2 2m i m 2 2m i所以 V 1m i m 2 V 0V 2m i m 2 V 0(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒 )[讨论]① 当m=m 2时,V 1=0, V 2=v o (速度互换) ② 当m<vm 2时,V 1~-V o , V 2~O (速度反向) ③ 当m>m 2时,V 1>0, V 2>0(同向运动) ④ 当m<m 2时,V 1<O , V 2>0(反向运动) ⑤ 当m>>m 2时,V 1~ V ,V ?Q2\0 (同向运动卜2. 非弹性碰撞用公式表示为: mw 计m 2V 2= m 1V 1‘ +m 2V 2【训练题】1. 竖直上抛一质量为 m 的小球,经t 秒小球重新回到抛出点, 若取向上为正方向, 那么小球的动量变化为[] A. -mgt B.mgt C.0D.-1/2mgt2. 质量为m 的物体做竖直上抛运动,从开始抛出到落回抛出点用时间为 t ,空气阻力大小恒为f 。
规定向下为正方向,在这过程中物体动量的变化量为[]A. (mg+f )tB. mgt C . (mg-f )t D.以上结果全不对3. 质量为m 的物体,在受到与运动方向一致的外力 F 的作用下,经过时间t 后物体的动量由 mv1增大到mv2,若力和作用时间改为,都由mv1开始,下面说法中正确的是 []A. 在力2F 作用下,经过 2t 时间,动量增到 4mv2B. 在力2F 作用下,经过 2t 时间,动量增到 4mv1C. 在力F 作用下,经过2t 时间,动量增到 2mv2-mv1D. 在力F 作用下,经过2t 时间,动量增到 2mv2特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离•动量守恒2机械能的损失:E (2 m 1v 122m 2v 2 ) (4 m 1v 12i m 2V 2 )3. 完全非弹性碰撞特点:碰撞后两物体粘在一起运动, 用公式表示为: 此时动能损失最大m 1v 1+m 2v 2=(m 什m 2)V ,而动量守恒.动能损失:E k (吉 gV 11叫 V 22)孑(g m,)v 24. 一质量为m的小球,从高为H的地方自由落下,与水平地面碰撞后向上弹起。
设碰撞时间为t 并为定值,则在碰撞过程中,小球对地面的平均冲力与跳起高度的关系是A. 跳起的最大高度 h 越大,平均冲力就越大B. 跳起的最大高度 h 越大,平均冲力就越小C. 平均冲力的大小与跳起的最大高度 h 无关D.若跳起的最大高度 h 一定,则平均冲力与小球质量正比5. 甲、乙两球在水平光滑轨道上沿同一直线同向运动, 已知它们的动量分别为 P 甲=5kg -m/sP 乙=7kg - m/s,甲从后面追上乙并发生碰撞,碰后乙的动量变为10 kg - m/s ,则两球的质量m 甲与m 乙的关系可能是A.m 乙=口 甲B.m 乙=2m 甲C.m 乙=4m 甲D.m 乙=6m 甲6. 如图2所示,固定斜面上除AB 段粗糙外,其余部分是光滑的,物块与AB 段间的动摩擦因数处处相同。
当物块从斜面顶端滑下后, 经过A 点的速度与经过 C 点的速度相等,且AB=BC 已知物块通过 AB 段和BC 段所用时间分别是t1和t2,动量变化量分别是△ pl 和A p2,则[]A. t1=t2 , A p1 = A p2 B . t1 > t2 , A p1 = A p2 C. t1 > t2 ,A p1vA p2D. t1=t2 , A p1=- A p27. 匀速向东行驶的小车上有两球分别向东、 向西同时抛出,抛出时两球的动量大小相等,则[]A.球抛出后,小车的速度不变 B .球抛出后,小车的速度增加C. 球抛出后,小车的速度减小D. 向西抛出之球的动量变化比向东抛出之球的动量变化大 8.水平抛出在空中飞行的物体,不考虑空气阻力,则[]A. 在相等的时间间隔内动量的变化相同B. 在任何时间内,动量变化的方向都是竖直方向C. 在任何对间内,动量对时间的变化率恒定D. 在刚抛出物体的瞬间,动量对时间的变化率为零 9.如图3所示、质量为 m 的小球以速度v0水平抛出,恰好与倾角为30。
的斜面垂直碰撞,其弹回的速度大小与抛出时相等,则小球与斜面碰撞中受到的冲量大小是 用时间很短)[]A.3mv 0B.2mv 0C.mv 0D. •2 m“10. 某地强风的风速是 20m/s ,空气的密度是 =1.3kg/m 3。
一风力发电机的有效受风面积为2S =20m ,如果风通过风力发电机后风速减为12m/s ,且该风力发电机的效率为 =80%则该风力发电机的电功率多大?11.如图11所示,C 是放在光滑的水平面上的一块木板, 木板的质量为3m,在木板的上面有两块质量均为 m 的小木块A 和B ,它们与木板间的动摩擦因数均为 卩。
最初木板静止,A 、B两木块同时以方向水平向右的初速度V 0和2V 0在木板上滑动,木板足够长,A 、B 始终未滑(设小球与斜面做 SJ z离木板。
求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度。
H [B图1112.如图12所示,在一光滑的水平面上有两块相同的木板B 和C 。
重物A(A 视质点)位于B的右端,A B 、C 的质量相等。
现 A 和B 以同一速度滑向静止的 C ,B 与C 发生正碰。
碰后 B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力。
已知A 滑到C 的右端面未掉下。
试问: 从B 、C 发生正碰到A 刚移动到C 右端期间,C 所走过的距离是 C 板长度的多少倍?图1213.如图13所示,在光滑的水平面上有一长为 L 的木板B ,上表面粗糙,在其左端有一光滑 的1/4圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B C 静止在水平面上。
现有滑块 A 以初速V 。
从右端滑上B,并以1/2 V 0滑离B,确好能到达 C 的最高点。
A B 、C 的质量均为 m 试求:(1)木板B 上表面的动摩擦因素 卩;(2) 1/4圆弧槽C 的半 径R; (3)当A 滑离C 时,C 的速度。
14.如图所示,将质量均为m 厚度不计的两物块 A 、B 用轻质弹簧相连接, 只用手托着B 物块 于H 高处,A 在弹簧弹力的作用下处于静止,将弹簧锁定•现由静止释放A B , B 物块着地时解除弹簧锁定,且 B 物块的速度立即变为 0,在随后的过程中当弹簧恢复到原长时 A 物块运动的速度为 u o ,且B 物块恰能离开地面但不继续上升•已知弹簧具有相同形变量时弹 性势能也相同.(1 )B 物块着地后,A 向上运动过程中合外力为 0时的速度u 1; (2) B 物块着地到B 物块恰能离开地面但不继续上升的过程中,AA 物块运动的位移 △ x ;(3) 第二次用手拿着 A 、B 两物块,使得弹簧竖直并处于原长状 态,此时物块B 离地面的距离也为 H,然后由静止同时释放 A 、B, B 物块着地后速度同样立即变为 0 •求第二次释放A 、B 后,B 刚要离地时A 的速度u 2.图130.51.0t /s15.如图所示,质量为 m= 1kg 的滑块,以u 0= 5m/s 的水平初速度滑上静止在光滑水平面的 平板小车,若小车质量 M = 4kg ,平板小车长L = 3.6m ,滑块在平板小车上滑移1s 后相对小2车静止.求:(g 取9.8m/s )(1) 滑块与平板小车之间的滑动摩擦系数卩;(2) 若要滑块不滑离小车,滑块的初速度不能超过多少?粗1/16. 如图所示,质量均为 M 的木块 A B 并排放在光滑水平面 上,A 上固定一根轻质细杆,轻杆上端的小钉(质量不计) 0上系一长度为L 的细线,细线的另一端系一质量为 m 的小球C ,现将C 球的细线拉至 水平,由静止释放,求:(1)两木块刚分离时,A 、B 、C 速度各为多大?(2) 两木块分离后,悬挂小球的细线与竖直方向的最大夹角多少?17.如图所示,两个质量均为4m 的小球A 和B 由轻弹簧连接, 置于光滑水平面上. 一颗质量为m 子弹,以水平速度 v o 射入A 球,并在极短时间内嵌在其中•求:在运动过程中 (1 )什么时候弹簧的弹性势能最大,最大值是多少? (2) A 球的最小速度和 B 球的最大速度.18. 质量为M =4.0kg 的平板小车静止在光滑的水平面上,如图所示,当 t =0时,两个质量分 别为m =2kg 、im=1kg 的小物体A 、B 都以大小为V 0=7m/s 。
方向相反的水平速度, 同时从小车 板面上的左右两端相向滑动。
至沱们在小车上停止滑动时,没有相碰,» . 2擦因素 口 =0.2,取g =10m/s ,求: (1)A 在车上刚停止滑动时, A 和车的速度大小(2) A 、B 在车上都停止滑动时车的速度及此时车运动了多长时间。
A 、B 与车间的动摩j | v /ms -1 2.0 ---------------------V 0 B1.51.00.519.如图甲所示,小车 B 静止在光滑水平上,一个质量为 m 的铁块A (可视为质点),以水平速度v o = 4.0m/s 滑上小车B 的左端,然后与小车右挡板碰撞,最后恰好滑到小车的中点, 已知 M 3,小车车面长L = 1叶 设A 与挡板碰撞无机械能损失,碰撞时间可忽略不计,gm2取 10m/s ,求:(1) A 、B 最后速度的大小;(2)铁块A 与小车B 之间的动摩擦因数;(3) 铁块A 与小车B 的挡板相碰撞前后小车 B 的速度, 滑动过程中小车 B 相对地面的速度v - t 图线。
V20. 如图所示,水平传送带 AB 足够长,质量为 姑1kg 的木块随传送带一起以 v i = 2m/s 的速度向左匀速运动(传送带的速度恒定),木块与传送带的摩擦因数 05 ,当木块运动到最 左端A 点时,一颗质量为 m = 20g 的子弹,以V 0 = 300m/s 的水平向右的速度,正对射入木块2并穿出,穿出速度 v = 50m/s ,设子弹射穿木块的时间极短, (g 取10m/s )求:(1)木块遭射击后远离 A 的最大距离;)木块遭击后在传送带上向左运动所经历的时间。
并在图 21.在光滑的水平面上,静止放置着直径相同的小球A 和B,它们的质量分别为 m 和3m,3m B乙坐标中画出 A 、B 相对Bm\ A_M两球之间的距离为L.现用一大小为F的水平恒力始终作用到A球上,A球从静止开始向着B球方向运动,如图所示•设A球与B球相碰的时间极短、碰撞过程没有机械能损失,碰撞后两球仍在同一直线上运动.求:(1)A球第一次碰撞B球之前瞬间的速度.(2)A球到第二次碰撞B球之前,A球通过的总路程S.22.如图所示,光滑轨道的DP段为水平直轨道,PQ段为半径是R的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P点.一轻质弹簧两端分别固定质量为2m的小球A和质量为m的小球B,质量为m的小球C靠在B球的右侧.现用外力作用在A和C上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P端足够远的水平轨道上•若撤去外力,C球恰好可运动到轨道的最高点Q.已知重力加速度为g,求撤去外力前的瞬间,弹簧的弹性势能E是多大?23•如图所示,A、B两物体与一轻质弹簧相连,静止在地面上•有一个小物体C从距A物体h高度处由静止释放,当下落至与A相碰后立即粘在一起向下运动,以后不再分开,当A和C运动到最高点时,物体B对地面恰好无压力•设A、B、C三物体的质量均为m,弹簧的劲度系数为k,不计空气阻力,且弹簧始终处于弹性限度内.若弹簧的弹性势能由劲度系数和形变量决定,求C物体下落时的高度h.hA'--.':--:; B24•质量为M=3kg的平板车放在光滑的水平面上,在平板车的最左端有一小物块(可视为质点),物块的质量为m=1kg,小车左端上方如图所示固定着一障碍物A,初始时, 平板车与物块一起以水平速度v o=2m/s向左运动,当物块运动到障碍物A处时与A发生无机械能损失的碰撞,而小车继续向左运动,取重力加速度g=10m/s2⑴设平板车足够长,求物块与障碍物第一次碰撞后,物块与平板车所能获得的共同速度;⑵设平板车足够长,物块与障碍物第一次碰撞后,物块向右运动对地所能达到的最大距离是s=0.4m,求物块与A第一次碰撞后到第二次碰撞前相对小车滑动的距离。