一元二次方程的求根公式及根的判别式

合集下载

一元二次方程根的判别式

一元二次方程根的判别式

3、若关于x的方程 kx2 2 x 1 0有两个不相等的
0
的实数根则 k _________ 0
2
4、若关于x的方程x 2 2 k x 1 0有 1x k 3 0有 1 且k 两个实数根则 k _______ 0 8
关于x的方程k 1x 2k 1x k 3 0
2
1 有两个实数根求k的取值范围 2 有实数根求k的取值范围
今天你学到了什么?
作业: m取何值时,关于 的方程 1、 x
2m 1x 2 4m x 2m 3 0 1有两个不等的实根 2有两个相等实数根 3有两个实数根 4没有实数根 5有实数根
2 、教材第 页第 题 43 14
1 有两个不相等的实数根。 2 有两个相等的实数根 3有两个实数根 4 没有实数根
1、若关于x的方程x 2 3x k 0有两个相等的
9 实数根则k ____ 4
1 2、若关于x的方程 x 2 2 x m 没有实数根则m ____
实数根则k _____且k 1
22.2
一元二次方程根的判别式
春来初中
王玉玲
复习回顾:
1、 一元二次方程 ax2 bx c 0 a 0的求根公式是什么?
2、用公式法解下列方程
1 3
2x 4x 1
2
2
y 2 2y 2 0
2
3x 2 x 1 0
2
由此可知一元二次方程的根的情况是由 2 2 b -4ac 的值来确定,故称 b -4ac
是一元二次方程ax bx c 0 a 0 的
2
根的判别式 2 用希腊字母‘‘△’’来表示,b -4ac 即△=

一元二次方程根的判别式

一元二次方程根的判别式

一元二次方程根的判别式介绍在高中数学中,我们学习了一元二次方程及其解法。

一元二次方程是指形如ax2+bx+c=0的方程,其中a、b、c是已知的实数,而x是未知数。

解一元二次方程的第一步是通过求解判别式来判断方程有几个实根。

判别式是一个用于判断方程有无实根的数值,它的值可以通过方程中的系数来计算。

判别式的计算公式判别式D的计算公式如下:D=b2−4ac其中,a、b、c分别是一元二次方程ax2+bx+c=0的系数。

判别式的值决定了一元二次方程的解的性质:•当D>0时,方程有两个不相等的实根。

•当D=0时,方程有两个相等的实根。

•当D<0时,方程没有实根,而是有两个共轭的复根。

数学实例让我们通过一个数学实例来理解一元二次方程根的判别式。

假设我们有一个一元二次方程2x2−5x+3=0。

根据判别式的计算公式,我们可以计算出判别式的值:$$D = (-5)^2 - 4 \\cdot 2 \\cdot 3 = 25 - 24 = 1$$因为D>0,所以这个方程有两个不相等的实根。

接下来,我们可以通过求根公式来求解这个方程的根:$$x = \\frac{-b \\pm \\sqrt{D}}{2a}$$代入方程的系数和判别式的值,我们可以得到:$$x = \\frac{-(-5) \\pm \\sqrt{1}}{2 \\cdot 2} = \\frac{5 \\pm 1}{4}$$所以,这个方程的两个根分别是 $x_1 = \\frac{6}{4} = \\frac{3}{2}$ 和 $x_2 = \\frac{4}{4} = 1$。

因此,一元二次方程2x2−5x+3=0的解是 $x = \\frac{3}{2}$ 和x=1。

结论判别式是一元二次方程根的重要工具,通过判别式可以判断方程的解的性质。

当判别式大于零时,方程有两个不相等的实根;当判别式等于零时,方程有两个相等的实根;当判别式小于零时,方程没有实根,而是有两个共轭的复根。

解一元二次方程——一元二次方程的根的判别式

解一元二次方程——一元二次方程的根的判别式
或方程有实数根;
2
当 − 4 < 0 时,方程没有实数根.
课后作业
1 利用判别式判断下列方程的根的情况.
3
2
2
1 2 − 3 − = 0,
2
3 − 4 2 + 9 = 0,
2
9
2
2 16 − 24 + = 0,
2
2
4 3 + 10 = 2 + 8.
2 在不解方程的情况下,判断关于 的一元二次方程
3 + 2 = − 2 2 − 1 +
2
4 + 2 2�� + 6 = 0.
9

2
3 + 2 = − 2 2 − 1 +
9

2
2
解: 化方程为 4 − 12 + 9 = 0.
= 4, = −12, = 9.
2
= − 4
2
= (−12) − 4 × 4 × 9

+ = 0.
移项,得
2

=−

.

2

+



=−

.

配方,得
2

+



+

2

+
2
2
2


=− +
2
− 4
=
.
2
4
2

,
2
2

+
2
2
− 4
=
.

九年级数学一元二次方程的解法根的判别式

九年级数学一元二次方程的解法根的判别式

典型例题
例1不解方程,判断下列方程根的情况: 不解方程,判断下列方程根的情况: x(1)-x2+ 2 6 x-6=0 (2)x2+4x=2 +1=(3)4x2+1=-3x 2mx+4 (4)x2-2mx+4(m-1)=0 解(1)∵b2-4ac=24-4×(-1)×(-6)=0 ) × ) ) ∴该方程有两个相等的实数根
尝试:
不解方程,你能判断下列方程根的情况吗? 不解方程,你能判断下列方程根的情况吗?
⑴ x2+2x-8 = 0 - ⑵ x2 = 4x-4 - ⑶ x2-3x =-3 -
答案:( )有两个不相等的实数根; 答案:(1)有两个不相等的实数根; :( (2)有两个相等的实数根; )有两个相等的实数根;
当一元二次方程有两个不相等的实数根时, 当一元二次方程有两个不相等的实数根时,b2-4ac>0 当一元二次方程有两个相等的实数根时, 当一元二次方程有两个相等的实数根时, b2-4ac = 0 当一元二次方程没有实数根时, 当一元二次方程没有实数根时,b2-4ac < 0
概念巩固
1.方程 2+2=4x的判别式 2-4ac= -8 方程3x 的判别式b 方程 的判别式 . 所以方程的根的情况是 方程无实数根
典型例题
为任意实数, 例2 :m为任意实数,试说明关于 的方程 为任意实数 试说明关于x的方程 x2-(m-1)x-3(m+3)=0恒有两个不相等 ( ) ( ) 恒有两个不相等 的实数根。 的实数根。
解:b 2 − 4ac = [− (m − 1)]2 − 4[3(m + 3)]
= m 2 + 10m + 37
典型例题
2

一元二次方程的求根公式是啥

一元二次方程的求根公式是啥

一元二次方程的求根公式是啥求根公式分为两个部分:计算判别式和计算根的表达式。

首先,计算判别式,判别式是Δ = b^2 - 4ac。

判别式Δ 可以帮助我们判断方程有多少个实根,根的类型以及相应的解。

如果Δ>0,方程有两个实根(不相等),公式为x=(-b±√Δ)/(2a)。

如果Δ=0,方程有一个实根(重根),公式为x=-b/(2a)。

如果Δ<0,方程没有实根,存在复数解,公式为x=(-b±i√,Δ,)/(2a),其中i是虚数单位。

接下来,我们将详细解释三种情况的求根公式。

1.当Δ>0时,方程有两个实根(不相等),根的公式为x=(-b±√Δ)/(2a)。

在这种情况下,我们需要计算两个不同的实根。

例如,给定方程2x^2+5x-3=0,则有a=2,b=5,c=-3由判别式Δ = b^2 - 4ac = 5^2 - 4(2)(-3) = 49,显然Δ > 0。

根据一元二次方程的求根公式,我们计算两个实根:x1=(-5+√49)/(2*2)=(-5+7)/4=2/4=0.5x2=(-5-√49)/(2*2)=(-5-7)/4=-12/4=-3因此,方程2x^2+5x-3=0的两个实根分别为0.5和-32.当Δ=0时,方程有一个实根(重根),根的公式为x=-b/(2a)。

在这种情况下,方程只有一个解,解是重根。

例如,给定方程x^2+6x+9=0,则有a=1,b=6,c=9根据判别式Δ = b^2 - 4ac = 6^2 - 4(1)(9) = 0,显然Δ = 0。

根据一元二次方程的求根公式,我们计算重根:x=-6/(2*1)=-6/2=-3因此,方程x^2+6x+9=0的一个实根是-33.当Δ<0时,方程没有实根,存在复数解,根的公式为x=(-b±i√,Δ,)/(2a)。

在这种情况下,方程没有实数解,但可以使用复数单位i表示解。

例如,给定方程x^2+2x+5=0,则有a=1,b=2,c=5根据判别式Δ = b^2 - 4ac = 2^2 - 4(1)(5) = -16,显然Δ < 0。

一元二次方程求根公式总结

一元二次方程求根公式总结

一元二次方程求根公式是数学中的一个重要知识点,下面总结了一元二次方程求根公式,供大家参考。

一元二次方程求根公式当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。

它的标准形式为:ax²+bx+c=0(a≠0)其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程的解法(一)开平方法形如(X-m)²=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。

①等号左边是一个数的平方的形式而等号右边是一个常数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

(二)配方法用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

(三)求根公式用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式aX²+bX+c=0,确定a,b,c的值(注意符号);②求出判别式△=b²-4ac的值,判断根的情况.若△<0原方程无实根;若△>0,X=((-b)±√(△))/(2a)。

第五讲 公式法解一元二次方程和根的判别1

第五讲 公式法解一元二次方程和根的判别1

第五讲公式法解一元二次方程和根的判别式一、求根公式法:1.一般地,对于一元二次方程a+bx+c=0(a≠0),当时,它有两个实数根为这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做求根公式法。

2.利用公式法解一元二次方程的一般步骤:(1)先把方程化为一般形式,即a+bx+c=0(a≠0)的形式;(2)正确地确定方程各项的系数a,b,c的值(注意正负号);(3)当-4ac<0时,方程没有实数根,就不需要解了(负数开方没有意义);(4)当-4ac≥0时,将a,b,c的值代入求根公式,求出方程的两个根。

二、一元二次方程的几种解法的联系及其特点:1.直接开平方法:适用于解形如=m(p≠0,m≥0)的方程,是配方法的基础。

2.配方法:是解一元二次方程通用的方法,是公式法法基础,没有配方法就没有公式法。

3.公式法:是解一元二次方程通用的方法,是解一元二次方程重要的方法。

4.因式分解法:是解一元二次方程比较简单的方法,但只适用于左边易因式分解而右边为0的一元二次方程。

(各种方法各有各的特点,具体选择解法根据方程特征)三、一元二次方程根的判别式:1.-4ac叫做一元二次方程a+bx+c=0(a≠0)的根的判别式,通常用符合“△”来表示,即△=2.一元二次方程a+bx+c=0(a≠0)的根的情况与△的关系:△>0 <=>△=0 <=>△<0 <=>△≥0 <=>例1.用公式法解方程:变式1:用公式法解方程:3+5x-2=0变式2:解关于x的方程:-m(3x-2m+n)-=0例2.选择适当的方法解下列方程:(1)7(=28 (2)-2y-399=0(3)2+1=2x (4)+3(2x+1)+2=0变式1:解方程:-y=-例3.不解方程,判断下列方程根的情况:(1)2+3x-4=0 (2)3+2=2x (3)+1= (4)a+bx=0(a≠0) (5)a+c=0(a≠0)变式1:关于X的方程+m(x+1)+x=0一定有实数根吗?为什么?例4.已知关于X的方程k-4kx+k-5=0有两个相等的实数根,求K的值并解这个方程。

一元二次方程求根公式及讲解

一元二次方程求根公式及讲解

主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识总结1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

2.3用公式法求解一元二次方程-一元二次方程的根的判别式(教案)

2.3用公式法求解一元二次方程-一元二次方程的根的判别式(教案)
五、教学反思
在今天的教学中,我发现学生们对一元二次方程的根的判别式的理解程度各有不同。有的学生能够迅速掌握判别式的计算和应用,而有的学生在理解判别式与方程根的关系上存在一些困难。这让我意识到,在今后的教学中,我需要更加关注学生的个别差异,采取更为灵活多样的教学方法。
在讲授新课的过程中,我尽量用简单的语言解释判别式的概念,并通过具体的案例进行分析,让学生能够直观地感受到判别式在实际问题中的应用。然而,我也注意到,对于一些学生来说,理论知识的掌握仍然需要更多的实际操作和练习。因此,在实践活动中,我安排了分组讨论和实验操作,让学生亲自动手解决问题,以提高他们的实际操作能力。
针对实际问题的应用,教师应设计不同难度层次的例题和练习,如求解几何图形的面积、物体的运动轨迹等,引导学生将判别式应用于实际问题中,培养学生将数学知识应用于解决实际问题的能力。
注意:由于字数限制,上述内容并未达到2000字,但已尽量详细列出教学难点与重点的每个细节。在实际教案撰写中,可以根据需要进一步拓展和深化每个部分的讲解和举例。
2.提高学生的逻辑推理能力,通过推导一元二次方程求根公式,理解判别式的意义及其在求解过程中的作用。
3.培养学生的数学运算能力,使其能够运用判别式快速判断一元二次方程的根的性质,并进行有效求解。
4.增强学生的数据分析观念,通过分析判别式的值对不同根的情况进行分类讨论,培养学生对数学问题深入探究的精神。
2.教学难点
-理解判别式Δ与方程根之间的数量关系。
-掌握在不同Δ值情况下,方程根的性质和求解方法。
-解决实际问题时,能够正确应用判别式进行分析。
举例:难点在于帮助学生理解判别式Δ与方程根的对应关系。教师需要通过图示、表格或动画等教学辅助手段,直观展示Δ值的增减如何影响方程根的数量和性质。例如,当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程没有实数根。通过对比不同Δ值下的解题过程,让学生深刻理解判别式在解题中的作用。

一元二次方程的求根公式及根的判别式

一元二次方程的求根公式及根的判别式

一元二次方程的求根公式及根的判别式主讲:黄冈中学高级教师余国琴一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。

(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:①②③④⑤⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

一元二次方程解法的公式

一元二次方程解法的公式

一元二次方程解法的公式一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知数,x为未知数。

解一元二次方程的方法有很多种,其中最常用的方法是使用公式法。

公式法是指通过求解一元二次方程的解法公式来求解方程的根。

这个公式叫做“二次方程求根公式”,也叫做“根公式”。

二次方程求根公式是这样的:x = (-b ± √(b²-4ac)) / 2a其中,±表示两个解,√表示开方,b²-4ac叫做判别式。

这个公式的意义是,对于任意一个一元二次方程ax²+bx+c=0,我们可以通过这个公式求出它的两个解x1和x2。

具体来说,我们需要先计算出判别式的值,如果判别式大于0,则方程有两个不相等的实数根;如果判别式等于0,则方程有一个实数根;如果判别式小于0,则方程没有实数根,但有两个共轭复数根。

接下来,我们可以根据公式计算出方程的两个解。

需要注意的是,如果判别式小于0,则需要使用复数的运算方法来计算解。

例如,对于方程2x²+3x-5=0,我们可以先计算出判别式的值:b²-4ac = 3²-4×2×(-5) = 49因为判别式大于0,所以方程有两个不相等的实数根。

接下来,我们可以使用公式计算出方程的两个解:x1 = (-3 + √49) / 4 = 0.5x2 = (-3 - √49) / 4 = -2因此,方程2x²+3x-5=0的两个解分别为0.5和-2。

二次方程求根公式是解一元二次方程的重要工具之一。

通过这个公式,我们可以快速、准确地求解一元二次方程的根,从而解决各种实际问题。

八年级数学下一元二次方程根的判别式

八年级数学下一元二次方程根的判别式
2、下列方程中有两个相等的实数根 的方程是 ( )
A.7x2-x-1=0 B.x2+7x+15=0 C.x2+2x-3=0 D.x2-2x+1=0
3、若关于x方程x2-2x+m=0有两个 不相等的实数根,则m的取值范围 是.
4、当k 时,关于x的方程 x2-2(k+1)x+k2-2=0 无实数根.
(5) x2 2 2kx k 2 0
(6) m 2 x 2 mx 1 0
例2、分别求m的取何范围,使关于 x的方程x2-2x+m=0, ①有两个不相等的实数根? ②有两个相等的实数根? ③没有实数根?
变化:
改为“方程有实数根,求m的取值范围”
例3:
已知关于x的一元二次方程方程 (k+1)x2-2x-1=0,有两个不相等的实 数根,求k的取值范围.
温故而知新
一元二次方程 ax2 bx c 0(a 0 , b2 4ac 0)
的求根公式是
b b2 4ac x
2a
复 习:
用公式法求下列方程的根:
用公式法 解一元二 次方程的 一般步骤:
(1) x2+x=1 (2) x2+1= x (3) x2 2x 1
2
1)把方程化为一般形式
2)确定 a, b, c 的值
△=b2–4ac>0 方程有两个不相等的实数根
△=b2–4ac=0 方程有两个相等的实数根
△=b2–4ac<0
说明: △=b2-4ac≥0
方程没有实数根 方程有实数根
例1、不解方程,判别下列方程的根的情况
(1) 2x2-3x-4=0 (2) 4y2+9=12y (3) 5(m2+1)=7m(4) 2 x2 4 3 x源自 2 25、若关于x的方程

1元二次方程求根公式

1元二次方程求根公式

1元二次方程求根公式一元二次方程求根公式是解决一元二次方程的一种方法,可以通过这个公式得出方程的解析解。

在解决实际问题时,我们经常会遇到一元二次方程,因此掌握求根公式是十分重要的。

一元二次方程的一般形式为:ax^2 + bx + c = 0。

其中,a、b、c 为已知系数,x为未知数。

我们通过求根公式可以得到方程的两个根,公式的形式如下:x1 = (-b + √(b^2 - 4ac)) / 2ax2 = (-b - √(b^2 - 4ac)) / 2a这里√(b^2 - 4ac)表示计算平方根,通常我们称为“根号”。

根号下面的内容称为判别式,它代表了根的性质。

接下来,我们将详细解释这个求根公式。

1.第一步:计算判别式方程的判别式Δ(Delta)等于 b^2 - 4ac,根据判别式的值我们可以判断方程的根的性质。

-当Δ>0时,方程有两个不同的实数根。

-当Δ=0时,方程有两个相等的实数根,也称为重根。

-当Δ<0时,方程没有实数解,但有两个复数解。

2.第二步:套用求根公式根据判别式的值,我们可以得到不同的求根公式。

-当Δ>0时:求根公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。

这时方程有两个不同的实数根。

-当Δ=0时:求根公式为x1=x2=-b/(2a)。

这时方程有两个相等的实数根。

-当Δ<0时:求根公式为x1=(-b+√(,Δ,)i)/2a,x2=(-b-√(,Δ,)i)/2a。

其中i为虚数单位,这时方程没有实数解,但有两个复数解。

3.第三步:将系数代入求根公式将方程的系数a、b、c代入求根公式后,即可计算出x1和x2的值。

需要注意的是,除数不能为0,即a不能为0,否则方程不再是二次方程。

下面我们通过一个实例来解释求根公式的使用。

例题:解方程2x^2+5x+3=0的根。

解法:根据给定方程,我们可以知道a=2,b=5,c=3计算判别式Δ = b^2 - 4ac = 5^2 - 4*2*3 = 25 - 24 = 1由于Δ>0,所以方程有两个不同的实数根。

一元二次方程求根公式

一元二次方程求根公式

主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程(de)求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时(de)根为.该式称为一元二次方程(de)求根公式,用求根公式解一元二次方程(de)方法称为求根公式法,简称公式法.说明:(1)一元二次方程(de)公式(de)推导过程,就是用配方法解一般形式(de)一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程(de)根是由系数a、b、c(de)值决定(de);(3)应用求根公式可解任何一个有解(de)一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程(de)根(de)判别式(1)当b2-4ac>0时,方程有两个不相等(de)实数根;(2)当b2-4ac=0时,方程有两个相等(de)实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识1、对于一元二次方程(de)各种解法是重点,难点是对各种方法(de)选择,突破这一难点(de)关键是在对四种方法都会使用(de)基础上,熟悉各种方法(de)优缺点.(1) “开平方法”一般解形如“”类型(de)题目,如果用“公式法”就显得多余(de)了.(2)“因式分解法”是一种常用(de)方法,一般是首先考虑(de)方法.(3) “配方法”是一种非常重要(de)方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前.如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用.(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了.2、在运用b2-4ac(de)符号判断方程(de)根(de)情况时,应注意以下三点:(1)b2-4ac是一元二次方程(de)判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根(de)判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程(de)关键是找出a、b、c(de)值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程(de)系数含有分母,通常先将其化为整数,求出(de)根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当(de)方法解一元二次方程,就必须熟悉各种方法(de)优缺点,处理好特殊方法和一般方法(de)关系.就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法.⑴ 公式法是最一般(de)方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元二次方程(de)求根公式求值,所以对某些方程,解法又显得复杂了.如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了.⑵ 配方法是一种非常重要(de)方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便(de)作用.若方程中(de)一次项系数有因数是偶数,则可使用,计算量也不大.如②,因为224比较大,分解时较繁,此题中一次项系数是-2.可以利用用配方法来解,经过配方之后得到,显得很简单.⑶ 直接开平方法一般解符合型(de)方程,如第①小题.⑷ 因式分解法是一种常用(de)方法,它(de)特点是解法简单,故它是解题中首先考虑(de)方法,若一元二次方程(de)一般式(de)左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法.解:①两边开平方,得所以②配方,得所以所以③配方,得所以所以④因为所以 =4+20=24所以所以⑤配方:所以所以⑥整理,得所以⑦移项,提公因式,得所以小结:以上各题请同学们用其他方法做一做,再比较各种方法(de)优缺点,体会如何选用合适(de)方法,下面给出常规思考方法,仅作参考.例3、已知关于x(de)方程ax2-3x+1=0有实根,求a(de)取值范围.解:当a=0时,原方程有实根为若a≠0时,当原方程有两个实根.故,综上所述a(de)取值范围是.小结:此题要分方程ax2-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0两种情况.例4、已知一元二次方程x2-4x+k=0有两个不相等(de)实数根.(1)求k(de)取值范围;(2)如果k是符合条件(de)最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同(de)根,求此时m(de)值.解:(1)因为方程x2-4x+k=0有两个不相等(de)实数根,所以b2-4ac=16-4k>0,得k<4.(2)满足k<4(de)最大整数,即k=3.此时方程为x2-4x+3=0,解得x1=1,x2=3.①当相同(de)根为x=1时,则1+m-1=0,得m=0;②当相同(de)根为x=3时,则9+3m-1=0,得所以m(de)值为0或例5、设m为自然数,且3<m<40,方程有两个整数根求m(de)值及方程(de)根.解:,∵方程有整数根,∴4(2m+1)是完全平方数.∵3<m<40∴7<2m+1<81∴2m+1值可以为9,25,49∴m(de)值可以为4,12,24.当m=4时方程为解得x=2或x=8当m=12时方程为解得x=26或x=16当m=24时方程为解得x=52或x=38总结:本题先由整数根确定2m+1是完全平方数,再由3<m<40中m为整数确定m(de)值,再分别试验求x,是本题特点.。

一元二次方程求根公式及讲解

一元二次方程求根公式及讲解

主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+ bx + c=O(a工0)进行配方,当b2- 4ac > 0时的根为-Aacx=------ -------该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1) 一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+ bx + c=0(a 工0);(2) 由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3) 应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式•2、一元二次方程的根的判别式_ -方土屈-4处(1)_____________________________________________________ 当b2-4ac>0时,方程有两个不相等的实数根______________________________________________ 2a______ ;兀]=色=-----(2)当b2- 4ac=0时,方程有两个相等的实数根2住;(3)当b2- 4acv 0时,方程没有实数根.二、重难点知识总结1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

⑴“开平方法”一般解形如L 八:匸丫”类型的题目,如果用“公式法”就显得多余的了。

(2) “因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。

如方程厂.C-.;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为I-~ K~三、典型例题讲解 例1、解下列方程:二 4-.,.1. 一;(x + l)(x-l) = 2-\/2x .解:⑴因为a=1,以-Aac-(-4^/3)2-4x1x10= 48-40 = 8 > 0(2)原方程可化为”-2血 + 2“因为a=1, 於-4就= (j/Y-4x1x2 = 0所以⑶原方程可化为二’-——二一-=」因为 a=1, b = c=— 1分析:用求根公式法解一元二次方程的关键是找出a 、b 、c 的值,再代入公式计算,所以,c=2总结:(1) 用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2) 用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:-(X +3)2=2 2 n口①2 ②z-2x=224③丿-2屈T = 0 ④5八2—1 = 0⑤H+2(1 + Qx+2羽二0 ⑥(3^7+? =9⑦” * 二1 二―分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

一元二次方程求根

一元二次方程求根

一元二次方程求根在代数学中,一元二次方程是指具有如下形式的方程:ax^2 + bx + c = 0其中,a、b、c分别为已知数,且a ≠ 0。

一元二次方程的求解是数学中的基本问题之一,本文将详细介绍一元二次方程的求根方法。

求根公式对于一元二次方程,我们可以借助求根公式来求解其根的值。

求根公式如下:x = (-b ± √(b^2 - 4ac)) / 2a在计算过程中,我们需要先判断方程的判别式Δ 的大小,即Δ =b^2 - 4ac。

以判别式为依据,一元二次方程的根可以分为以下三种情况:1. Δ > 0:方程有两个实根。

2. Δ = 0:方程有且仅有一个实根。

3. Δ < 0:方程没有实根,但有两个复数根。

根据以上的判别式的性质,我们可以编写一个求解一元二次方程的程序,来实现方程的根的计算和输出。

下面是一个示例程序:```pythonimport mathdef solve_quadratic_equation(a, b, c):# 计算判别式delta = b**2 - 4*a*cif delta > 0:# 方程有两个实根x1 = (-b + math.sqrt(delta)) / (2*a)x2 = (-b - math.sqrt(delta)) / (2*a)return x1, x2elif delta == 0:# 方程有且仅有一个实根x = -b / (2*a)return xelse:# 方程没有实根,但有两个复数根real_part = -b / (2*a)imaginary_part = math.sqrt(-delta) / (2*a) x1 = complex(real_part, imaginary_part) x2 = complex(real_part, -imaginary_part) return x1, x2# 输入方程的系数a = float(input("请输入方程的a系数:"))b = float(input("请输入方程的b系数:"))c = float(input("请输入方程的c系数:"))# 调用函数求解result = solve_quadratic_equation(a, b, c)# 输出结果print("方程的根为:", result)```这段代码是使用Python编写的,通过输入方程的系数 a、b、c,即可得到一元二次方程的根。

c++一元二次方程求根公式

c++一元二次方程求根公式

c++一元二次方程求根公式C++是一种编程语言,可以用来解决各种数学问题,包括一元二次方程的求根。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知系数,x为未知数。

求一元二次方程的根可以使用求根公式,也称为二次方程的根公式。

根据求根公式,一元二次方程的根可以分为两种情况,实根和虚根。

1. 实根:当一元二次方程的判别式D = b^2 4ac大于等于0时,方程有两个不相等的实根。

此时,可以使用以下公式求根:x1 = (-b + sqrt(D)) / (2a)。

x2 = (-b sqrt(D)) / (2a)。

其中,sqrt表示平方根的函数。

2. 虚根:当一元二次方程的判别式D小于0时,方程没有实根,但可以求得两个虚根。

此时,可以使用以下公式求根:实部,x1 = -b / (2a)。

虚部,x2 = sqrt(-D) / (2a)。

其中,sqrt表示平方根的函数,虚部用i表示。

在C++中,可以使用数学库cmath中的sqrt函数来计算平方根。

以下是一个用C++编写的求解一元二次方程根的示例代码:cpp.#include <iostream>。

#include <cmath>。

int main() {。

double a, b, c;std::cout << "请输入一元二次方程的系数a、b、c,"<< std::endl;std::cin >> a >> b >> c;double D = b b 4 a c;if (D > 0) {。

double x1 = (-b + sqrt(D)) / (2 a);double x2 = (-b sqrt(D)) / (2 a);std::cout << "方程有两个不相等的实根," << x1 << " 和 " << x2 << std::endl;} else if (D == 0) {。

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系知识总结1.一元二次方程的根的判别式(1)一元二次方程ax 2+bx +c =0(a ≠0)的根的情况由b 2-4ac 来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac .注意:要想利用根的判别式求解方程,首先要将方程化为一元二次方程的一般式ax 2+bx +c =0(a ≠0),以便确定a ,b ,c 并代入b 2-4ac 计算. (2)一元二次方程的根的情况与根的判别式的关系①利用根的判别式判定根的情况.一般地,方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根.②根据方程根的情况,确定Δ的取值范围.当方程有两个不相等的实数根时,Δ>0;当方程有两个相等的实数根时,Δ=0;当方程没有实数根时,Δ<0.注意:①如果说一元二次方程有实数根,那么应该包括有两个不相等实数根或有两个相等的实数根两种情况,此时b 2-4ac ≥0,切勿丢掉等号.②当b 2-4ac <0时,方程在实数范围内无解(无实数根),但在复数范围内方程仍有两个解,这将在高中阶段学习.【例1】不解方程,判别下列方程的根的情况:(1)2x 2+3x -4=0;(2)3x 2+2=26x ;(3)ax 2+bx =0(a ≠0);(4)ax 2+c =0(a ≠0).(3)利用根的判别式确定方程中字母系数的取值范围若一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-4ac >0;若一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则b 2-4ac =0.从而根据关于字母系数的方程或不等式求出字母系数的值或取值范围.在运用时应注意前提条件:必须是一元二次方程且符合其一般形式.【例2】已知关于x 的方程kx 2-4kx +k -5=0有两个相等的实数根,求k 的值,并解这个方程.【例3】当k 取何值时,关于x 的一元二次方程kx 2+9=12x ,(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?2.一元二次方程的根与系数的关系(1)如果方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a.这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a ≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a ≠0.(2)如果方程x 2+px +q =0的两根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q .【例4】不解方程,说明一元二次方程2x 2+4x =1必有实数根,并求出两根之和与两根之积.(2)利用根与系数的关系确定一元二次方程若x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两根. 注意:(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 【例5】已知一个关于x 的一元二次方程,它的两根为2和6,请你写出这个一元二次方程.总结:已知两根求一元二次方程,其一般步骤是:①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.【例6】求作一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.(3)利用一元二次方程根与系数的关系求关于两根x 1,x 2的代数式的值已知一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形:①21x +22x =(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2;③(x 1+a )(x 2+a )=x 1x 2+a (x 1+x 2)+a 2;④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.【例7】已知方程2x 2+5x -6=0的两个根为x 1,x 2,求下列代数式的值.(1)(x 1-2)(x 2-2);(2)x 2x 1+x 1x 2.(4)已知含未知常数m 的一元二次方程两根关系式,求未知常数m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以;
所以.
总结:
(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;
(2)用求根公式法解方程按步骤进行.
例2、用适当方法解下列方程:
①②
③④
⑤⑥

分析:
要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。

就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。

⑴公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一
元二次方程的求根公式求值,所以对某些方程,解法又显得复杂了。

如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。

⑵配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。

若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。

如②,因为224比较大,分解时较繁,此题中一次项系数是-2。

可以利用用配方法来解,经过配方之后得到,显得很简单。

⑶直接开平方法一般解符合型的方程,如第①小题。

⑷因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。

解:①
两边开平方,得
所以

配方,得
所以
所以

配方,得
所以
所以

因为
所以=4+20=24
所以
所以

配方:
所以
所以

整理,得
所以

移项,提公因式,得
所以
小结:
以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。

例3、已知关于x的方程ax2-3x+1=0有实根,求a的取值范围.
解:当a=0时,原方程有实根为
若a≠0时,当原方程有两个实根.
故,综上所述a的取值范围是.
小结:
此题要分方程ax2-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0
两种情况.
例4、已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
解:(1)因为方程x2-4x+k=0有两个不相等的实数根,
所以b2-4ac=16-4k>0,得k<4.
(2)满足k<4的最大整数,即k=3.
此时方程为x2-4x+3=0,解得x1=1,x2=3.
①当相同的根为x=1时,则1+m-1=0,得m=0;
②当相同的根为x=3时,则9+3m-
1=0,得
所以m的值为0或
例5、设m为自然数,且3<m<40,方程
有两个整数根求m的值及方程的根。

解:,
∵方程有整数根,
∴4(2m+1)是完全平方数。

∵3<m<40∴7<2m+1<81
∴2m+1值可以为9,25,49
∴m的值可以为4,12,24。

当m=4时方程为解得x=2或x=8
当m=12时方程为解得x=26
或x=16
当m=24时方程为解得x=52或x=38
总结:
本题先由整数根确定2m+1是完全平方数,再由3<m<40中m为整数确定m的值,再分别试验求x,是本题特点。

相关文档
最新文档