正交试验设计正交试验及直观分析
正交试验设计(详细)
![正交试验设计(详细)](https://img.taocdn.com/s3/m/c6be14607e21af45b207a804.png)
正交试验设计法正交试验设计法的基本思想正交表正交表试验方案的设计试验数据的直观分析正交试验的方差分析常用正交表1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。
它简单易行,计算表格化,使用者能够迅速掌握。
下边通过一个例子来说明正交试验设计法的基本想法。
[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。
试制定试验方案。
这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。
而定量因子各水平间的距离可以相等,也可以不相等。
这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。
用图表示就是图1 立方体的27个节点。
这种试验法叫做全面试验法。
全面试验对各因子与指标间的关系剖析得比较清楚。
但试验次数太多。
特别是当因子数目多,每个因子的水平数目也多时。
试验量大得惊人。
如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。
如果应用正交实验法,只做25次试验就行了。
而且在某种意义上讲,这25次试验代表了15625次试验。
图1 全面试验法取点..........(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:↗A1B1C1 →A2↘A3 (好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:↗B1A3C1 →B2 (好结果)↘B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:↗C1A3B2→C2 (好结果)↘C3试验结果以C2最好。
正交试验设计和分析方法研究
![正交试验设计和分析方法研究](https://img.taocdn.com/s3/m/48b77a38f342336c1eb91a37f111f18583d00cbb.png)
正交试验设计和分析方法研究一、本文概述正交试验设计是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及社会调查等领域。
通过正交表的正交性、均匀分散性和整齐可比性,正交试验设计能够在众多试验因素中快速找出关键因素,优化试验方案,提高试验效率。
本文旨在深入研究正交试验设计的理论基础,探讨其在实际应用中的优化策略,分析正交试验设计的优缺点,并展望其未来发展趋势。
本文首先介绍正交试验设计的基本原理和常用正交表,然后详细阐述正交试验设计的步骤和方法,接着通过案例分析展示正交试验设计在不同领域的应用实践,最后对正交试验设计的未来发展进行展望,以期为相关领域的研究和实践提供有益的参考和借鉴。
二、正交试验设计基本原理正交试验设计是一种高效、系统的试验设计方法,其核心在于利用正交表来安排试验,通过对试验因素与水平进行全面、均匀的搭配,从而找出最佳的试验方案。
正交试验设计的基本原理主要包括以下几点:正交性原理:正交表具有正交性,即表中的每一行(或列)所代表的因素水平组合都是唯一的,且在整个表中均匀分布。
这种正交性保证了试验点在试验范围内均匀分布,从而能够全面反映试验因素与水平的变化情况。
代表性原理:正交表中的每一行都代表一组试验因素与水平的组合,这些组合在试验范围内具有代表性。
通过选择适当的正交表,可以在较少的试验次数下获得较为全面的试验结果。
综合可比性原理:正交表中的每一列都对应一个试验因素,不同列之间的因素是相互独立的。
这意味着每个因素在不同水平下的效果可以单独进行分析和比较,从而便于找出影响试验结果的主要因素及其最佳水平。
分析简便性原理:正交试验设计的结果分析简便易行,可以通过直观分析或方差分析等方法快速得出结论。
直观分析法可以直接从正交表中观察出各因素在不同水平下的效果,而方差分析法则可以进一步检验各因素对试验结果的影响程度。
正交试验设计通过合理利用正交表的性质,实现了试验的高效、系统和全面。
在实际应用中,只需根据试验需求选择合适的正交表,按照表中的安排进行试验,并对试验结果进行简便的分析,即可得出较为准确的结论。
正交试验设计及结果分析
![正交试验设计及结果分析](https://img.taocdn.com/s3/m/dba07955c381e53a580216fc700abb68a882ad6b.png)
2.1 试验方案设计 (1) 明确试验目的,确定试验指标
试验设计前必须明确试验目的,即本次试验要解决什么 问题。试验目的确定后,对试验结果如何衡量,即需要确 定出试验指标。试验指标可为定量指标,也可为定性指标。
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素
各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。
根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。
3
上一张 下一张 主 页
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较A因素不同水平时,B因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水 平间具有综合可比性。同样,B、C因素3个水平间亦具有 综合可比性。
3
上一张 下一张 主 页 退 出
如对于上述3因素3水平试验,若不考虑交互作用,可
利用正交表L9(34)安排,试验方案仅包含9个水平组合,就
能反映试验方案包含27个水平组合的全面试验的情况,找 出最佳的生产条件。
1.2 正交试验设计的基本原理
3
上一张 下一张 主 页
正交设计就是从选优区全面试验点(水平组合)中挑3ຫໍສະໝຸດ 上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
正交试验设计
![正交试验设计](https://img.taocdn.com/s3/m/456b82a6760bf78a6529647d27284b73f24236fc.png)
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计
正交试验设计方法(详细步骤)
![正交试验设计方法(详细步骤)](https://img.taocdn.com/s3/m/6ec979d0a1116c175f0e7cd184254b35eefd1a20.png)
A2
(y5+ y7)/2 =(0.472+0.554)/2=0.513 (y6+ y8)/2 =(0.480+0.552)/2=0.516
阐明:
表头设计中旳“混杂”现象(一列安排多种原因或交互作 用)
高级交互作用 ,如A×B× C,一般不考虑 r水平两原因间旳交互作用要占r-1列 ,当r>2时,不宜
(1)选正交表
要求: 原因数≤正交表列数 原因水平数与正交表相应旳水平数一致 选较小旳表
选L9(34)
(2)表头设计
将试验原因安排到所选正交表相应旳列中 因不考虑原因间旳交互作用,一种原因占有一列(能够随
机排列) 空白列(空列):最佳留有至少一种空白列
(3)明确试验方案
(4)按要求旳方案做试验,得出试验成果
(1)等水平正交表: 各原因水平数相等旳正交表 ①记号 :Ln( r m ) L——正交表代号 n——正交表横行数(试验次数) r——原因水平数 m——正交表纵列数(最多能安排旳因数个数)
②等水平正交表特点
表中任一列,不同旳数字出现旳次数相同 表中任意两列,多种同行数字对(或称水平搭配)出现旳
1 n
(
n i 1
yi )2
QP
n
设: Q yi2 i 1
n
T yi i 1
P
1 n
n
(
i 1
yi )2
T2 n
②各原因引起旳离差平方和
第j列所引起旳离差平方和 :
SS j
rr (
n i1
Ki2
)
T2 n
rr (
正交试验设计及其结果的直观分析(单指标 双指标)
![正交试验设计及其结果的直观分析(单指标 双指标)](https://img.taocdn.com/s3/m/9eab94730a4c2e3f5727a5e9856a561252d321a8.png)
综合平衡法
综合平衡法是,先对每个指标分别进行单指标的直观分析,得到 每个指标的影响因素主次顺序和最佳水平组合,然后根据理论知 识和实际经验,对各指标的分析结果进行综合比较和分析,得出 较优方案。
例 在用乙醇溶液提取葛根中有效成分的试验中,为了提高葛根 中有效成分的提取率,对提取工艺进行优化试验,需要考察三向 指标:提取物得率(为提取物质量与葛根质量之比)、提取物中 葛根总黄酮含量、总黄酮中葛根素含量,三个指标都是越大越好, 根据前期探索性试验,决定选取3个相对重要的因素:乙醇浓度、 液固比(乙醇溶液与葛根质量之比)和提取剂回流次数进行正交 试验,它们各有3个水平,具体数据如表6-9所示,不考虑因素间 的交互作用,是进行分析,找出较好的提取工艺条件。
综合评分法
综合评分法是根据各个指标的重要程度,对得出的实验结果进行分 析,给每一个实验评出一个分数,作为这个实验的总指标,然后根 据这个总指标(分数),利用单指标试验结果的直观分析法作进一 步的分析,确定较好的实验方案,显然,这个方法的关键是如何评 分,下面介绍几种评分方法:
1.对每好实验结果的各个指标统一权衡,综合评价,直接给出每一号 试验结果的综合分数(依靠试验者或专家的理论知识和实践经验)
度
隶属度
1
1 1 1 1 2.96 65.70
1.00
1
1.00
2
1 2 2 2 2.18 40.36
0
0
0
3
1 3 3 3 2.45 54.31
0.35
0.55 0.47
4
2 1 2 3 2.70 41,09
0.67
0.03 0.29
5
2 2 3 1 2.49 56.29
正交实验的计算步骤
![正交实验的计算步骤](https://img.taocdn.com/s3/m/1ad25cf6770bf78a64295406.png)
正交实验的计算步骤:1.直观分析法该法先将各列相同水平实验组的实测数据进行累加,故得到不同水平时的累加值K1、K2、K3等。
K b =ΣX b然后求得各列K值的极差(R)R=Kmax-Kmin再求得极差的误差值(Re),通常以较小R值或其与空白列R值之和表示。
并求各列R值与R e 之比(G)G=R/R e 若G›1.5时,确认该列因素为主要因素,K b 较大者为较好水平。
2.方差分析法本例N=9,a、b、c分别为因素A、B、C 每个水平实验重复次数,本例为3。
1)CT=全部试验值总和的平方的均数,又称校正值2)三因素同水平指标值和即K值的平方和用Q来表示Q A=(K1a2+ K2a2+K3a2 )/a 计算Q B、Q C、Q空3)组间平方和用S表示S A = Q A―CT 依次类推S空= Q空―CT是误差的估计值,即误差S e4)总平方和的计算S总=W-CTW=各指标值平方后的和5)组内平方和的计算,即误差,用S e 来表示误差一般来自空相,即上面计算的S空来表示计算方法:因为S总=S A+S B+S C+S e故S e=S总-S A-S B-S C6)自由度 df因各因素的自由度等于水平数减1,即为3-1=2。
df T总的平方和的自由度等于实验次数减1,即为9-1=8。
df e误差自由度等于总自由度减去各因素自由度之和,即为8-2-2-2=27)均方的计算用Z表示,Z A= S A/df A 依次类推Z e= S e/df e8)F检验F A= Z A/Z e依次类推F B、F C9)查F检验的临界值F P表为F0。
05(2,2)=19.0 F0。
01(2,2)=99.0F值› F0。
05,则P‹ P0。
05,具有显著性10)最优工艺的选择做完显著性检验后,可以选择最优工艺水平,对显著因素控制,选择K值大的水平组即可。
对于不显著因素则考虑生产实际情况。
正交试验设计直观分析法和方差分析法
![正交试验设计直观分析法和方差分析法](https://img.taocdn.com/s3/m/6f22e10476c66137ee0619d9.png)
正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
第4讲2 正交试验设计(多指标)
![第4讲2 正交试验设计(多指标)](https://img.taocdn.com/s3/m/bab0b4affd0a79563c1e7282.png)
1 2
3 1 2 3
2 3
1 3 1 2
7.0 8.0
18.5 9.0 8.0 13.4
1.1 1.6
15.1 1.1 4.6 20.2
3 2
0 3 2 1
K1
27.0
33.5 30.4 9.0
27.5
20.5 42.9 9.2
38.0
24.9 28.0 12.7
抗 压 强 度
极
K2 K3 k1
k2
先对每个指标分别进行单指标的直观分析 对各指标的分析结果进行综合比较和分析,得出较优方案
例 某厂生产一种化工产品,需要检验 两个指标:核酸纯度和回收率,这两 个指标都是越高越好。有影响的因素 有4个,各有3个水平,具体情况如表。 试通过试验找出较好的方案,使产品 的核酸纯度和回收率都有提高。
4 5
6 7 8 9
2 2
2 3 3 3
1 2
3 1 2 3
2 3
1 3 1 2
7.0 8.0
18.5 9.0 8.0 13.4
1.1 1.6
15.1 1.1 4.6 20.2
3 2
0 3 2 1
K1
11
5 6 3.7
9
8 5 3.0
5
8 9 1.7
裂 纹 度
极
K2 K3 k1
k2
k3 差
1.7
2.0 2.0
第4讲(2) 正交试验设计
4.2 多指标正交试验设计及其结果的直观分析
在实际问题中,需要考虑的指标往往不止 一个,有时是两个、三个,甚至更多,这 都是多指标的问题。解决多指标试验问题 可采用两种方法:综合平衡法和综合评分 法。
正交试验设计及分析(多实现途径)(2024)
![正交试验设计及分析(多实现途径)(2024)](https://img.taocdn.com/s3/m/bdc18cf2fc0a79563c1ec5da50e2524de518d01a.png)
正交试验设计及分析(多实现途径)引言概述:正交试验设计是一种重要的统计方法,用于确定实验中不同因素对结果的影响。
它可以帮助研究者系统地设计实验,降低实验数量和成本,并提供可靠的分析结果。
本文将介绍正交试验设计的概念、原理,以及多种实现途径,以便读者根据自身需求选择合适的方法进行实验。
正文内容:1.正交试验设计的概念和原理:1.1定义:正交试验设计是一种通过系统地变动因素水平来确定因素对结果的影响的方法。
它将多个因素分解为一些离散的水平,以便在有限实验中进行测试。
1.2原理:正交试验设计基于正交矩阵的原理,该矩阵具有特定的数学性质,可以保证不同因素之间的相互独立性,从而减少实验数量。
2.正交试验设计的多实现途径:2.1Taguchi方法:Taguchi方法是一种常用的正交试验设计方法,它通过选择最优的因素水平组合来优化结果的表现。
它能够在较少的实验次数下找到最佳的因素配置。
2.2BoxBehnken设计:BoxBehnken设计是一种常用的三水平正交试验设计方法,适用于3个或更多个因素的试验。
它通过正交矩阵将因素水平组合成三水平,并通过优化方法确定最佳结果。
2.3中心组合设计:中心组合设计是一种将中心点设置为固定因素水平的正交试验设计方法。
该设计方法可以估计因素对结果的线性和二次的影响,适用于连续和离散因素。
2.4贝叶斯优化设计:贝叶斯优化设计是一种基于贝叶斯统计模型的正交试验设计方法。
它能够在先验知识不完全或验证数据有限的情况下,利用概率推论来确定最佳因素配置。
3.正交试验设计的分析方法:3.1方差分析:方差分析是一种常用的正交试验设计分析方法,用于确定各个因素之间的显著性差异。
它通过计算方差的比值来判断因素对结果的影响程度。
3.2回归分析:回归分析是一种统计方法,用于描述和预测因变量与一个或多个自变量之间的关系。
在正交试验设计中,回归分析可以用来确定因素对结果的线性和非线性影响。
3.3主效应图:主效应图是一种简明直观的分析方法,通过图形展示各个因素对结果的平均水平差异。
什么是正交试验(详解)
![什么是正交试验(详解)](https://img.taocdn.com/s3/m/f69f7bc60508763231121235.png)
什么是正交试验设计正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分析因式设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行3^3 = 27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)正交表安排实验,只需作9次,按L18(3)正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
正交表是一整套规则的设计表格,用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(3^4)它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×2),此表的5列中,有1列为4水平,4列为2水平。
编辑本段正交试验设计表正交试验设计表[1]正交试验因素水平表正交试验设计方案及试验结果极差分析表(或指标与因素关系图) 方差分析表(简单分析时可无)正交表的性质(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。
例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。
每种对数出现次数相等。
在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
正交试验设计及数据分析
![正交试验设计及数据分析](https://img.taocdn.com/s3/m/88e6c245df80d4d8d15abe23482fb4daa58d1dac.png)
通过对比各试验结果,直接观察各因素对试验指标的影响。
详细描述
根据正交试验结果,将各因素不同水平下的试验结果进行对比,直接观察各因素对试验指标的影响, 判断哪些因素对试验指标有显著影响。
方差分析法
总结词
通过比较各因素不同水平下的方差,判 断各因素对试验指标的影响程度。
VS
详细描述
利用方差分析法,比较各因素不同水平下 的方差,判断各因素对试验指标的影响程 度,确定哪些因素对试验指标有显著影响 。
验效率。
特点
均匀设计具有试验点均匀分散、 试验次数少、信息量丰富等优点, 适用于多因素、多水平的试验设
计。
应用
在化学、物理、工程等领域中, 均匀设计常用于多因素多水平试 验,以寻找最优的工艺参数或配
方。
拉丁方设计
定义
拉丁方设计是一种试验设计方法,其目的是通过合理地安排试验点,使得每个因素在每 个水平上只出现一次,从而消除顺序效应和边缘效应的影响。
在生产过程中,企业可以使用正交试验设计来优化生产工 艺参数,从而提高产品质量、降低生产成本、减少废品率 。例如,在注塑生产中,通过正交试验确定最佳的注射温 度、压力和冷却时间,以获得最佳的产品质量和产量。
案例二:正交试验在农业种植中的应用
总结词
利用正交试验优化农业种植技术,提高作物产量和品质 。
详细描述
03
利用正交试验设计,研究农作物在不同环境条件下的抗逆性表
现,为抗逆育种提供依据。
医药研究
01
药物筛选
临床试验
02
Байду номын сангаас03
毒理学研究
利用正交试验设计,筛选出具有 最佳疗效的药物成分和剂量组合。
通过正交试验,优化临床试验方 案,提高试验效率和数据可靠性。
一、正交表介绍
![一、正交表介绍](https://img.taocdn.com/s3/m/bd70b7b6fd0a79563c1e72c5.png)
剩余4列中的任意两列.即
因素 列号
A
1
B
2
AB
3
C
4
5
6
D
7
根据上述安排试验,并进行试验记录结果,同时计算 相关数据得到:
列号 试验号
A B AB C
5ห้องสมุดไป่ตู้
6 D
1 2 2 1 1 2 2 1 -5 0 -5 25 1 2 2 1 2 1 1 2 -7 0 -9 81
详情可参见附表8(p347)
正交表的附表-两列间的交互作用列表
例如 L8 (27 )的交互作用表
列号 1 列号
2 (1) 3 (2)
3 4 5 6 7 2 5 4 7 6 1 6 7 4 5 (3) 7 6 5 4 (4) 1 2 3 (5) 3 2 (6) 1 (7)
交互作用列表用于确定任两列的交互作用应占的列 号。如何利用交互作用表?
(3) 水平翻译 安排好表头以后,把排有因素的各列中的数码换 成相应的实际水平,称其为水平翻译.
例如 该实例可以将正交表中的第一列中的1,2,3, 分别换成因素A的第一、第二、第三水平,第二列、 第三列可以类似去做。 (4) 列出试验方案表 经过表头设计以及水平翻译以后,再划去未安排 因素的列,就得到一张试验设计表. 该实例的实验设计方案表如下:
因素
水平
配比A
加温温度B
保温时间C/min
1 2 3
A1 1 : 1 A2 2 : 3 A3 3 : 7
B1 150 B2 165 B3 180
C1 30 C2 35 C3 40
2. 用正交表安排试验 (1) 选用合适的正交表 选用正交表主要根据因素的水平来确定选用几个 水平的正交表,其次根据因素的多少来确定正交表的 大小,一般要求列数大于或等于因素的个数。
正交试验设计—直观分析法(试验设计与数据处理课件)
![正交试验设计—直观分析法(试验设计与数据处理课件)](https://img.taocdn.com/s3/m/01fdb4addbef5ef7ba0d4a7302768e9951e76e1c.png)
(5)计算极差,确定因素的主次顺序
R越大,因素越重要 若空列R较大,可能原因:
➢ 漏掉某重要因素 ➢ 因素之间可能存在不可忽略的交互作用
(6)最优方案的确定
➢ 优方案:在所做的试验范围内,各因素较优的水平组合 ➢ 若指标越大越好 ,应选取使指标大的水平 ➢ 若指标越小越好,应选取使指标小的水平 ➢ 还应考虑:降低消耗、提高效率等
② 例题6-3
水平
(A)乙醇浓度/%
1
80
2
60
3
70
目标:检验三个指标 :
(B)液固比
7 6 8
(C)回流次数
1 2 3
提取物得率
总黄酮含量
葛根素含量
注意:三个指标都是越大越好。
对三个指标分别进行直观分析: ➢ 提取物得率: 因素主次:C A B 优方案:C3A2B2 或C3A2B3 ➢ 总黄酮含量: 因素主次:A C B 优方案:A3C3B3 ➢ 葛根素含量 : 因素主次:C A B 优方案:C3A3B2
110
120 130 温度/℃
2
3
4
时间/h
趋势图
甲
乙
丙
催化剂种类
多指标正交试验设计及其结果 的直观分析
多指标正交试验设计及其结果的直观分析
有两种分析方法: ➢ 综合平衡法 ➢ 综合评分法
(1)综合平衡法
❖ 先对每个指标分别进行单指标的直观分析 ❖ 对各指标的分析结果进行综合比较和分析,得出较优方案
❖ 选 L9(34) 正交表
(2)表头设计
➢ 将试验因素安排到所选正交表相应的列中 ➢ 因不考虑因素间的交互作用,一个因素占有一列(可以随机排列) ➢ 空白列(空列):最好留有至少一个空白列
正交试验设计与直观分析 正交试验直观分析
![正交试验设计与直观分析 正交试验直观分析](https://img.taocdn.com/s3/m/4a71cfefba1aa8114531d98d.png)
正交试验设计与直观分析:正交试验直观分析6.正交实验设计与直观分析一、目的和结论目的:做这个实验是为了什么.结论:从实验分析后得出的结论,相当于总结性的话。
二、结果和指标结果:从实验中得出的数据或现象,记录下来。
指标:用来衡量试验效果的质量指标。
三、因素和水平因素:实验中不同考察条件,比如温度,PH,浓度等。
水平:实验中因素所取的考察点。
四、处理和单位处理:实验中所要操纵的自变量的变化。
五、重复和平行同时做的同一样品试验是平行试验,不同时做的不同样品试验是重复六、试验设计的原则 1、重复:同时做的同一样品试验是平行试验,不同时做的不同样品试验是重复 2、随机化:试验单元随机进入试验中,试验顺序等随机 3、区组化:使试验中对结果有影响但不是重点监测的因素保持一致(局部一致),使试验结果无显著影响。
4、对照:优化实验可以没有对照空白对照、条件对照、方法对照七、试验类型 1、单因素序贯试验设计 2、全面设计 3、正交试验设计正交实验设计:利用正交表科学地安排与分析多因素试验的方法 u 正交表:三种分析方法:直观分析、方差分析、回归分析 1) 等水平正交表:各因素的水平数是相等的。
特点:l 表中任一列,不同的数字出现的次数相同。
l 表中任意两列,各种同行数字对出现的次数相同 2) 混合水平正交表:重点考察的因素可多取一些水平,其他因素的水平数可适当减少。
重要性质:l 表中任一列,不同的数字出现的次数相同。
l 每两列,同行两个数字组成的各种不同的水平搭配出现的次数是相同的,但不同的两列间组成的水平搭配种类及出现次数是不完全相同的。
各因素的水平数不完全相同的正交表:正交表L8(41ⅹ24)实验号列号 1 2 3 4 5 11 1 1 1 12 1 2 2 2 23 2 1 1 2 24 22 2 1 1 53 1 2 1 2 6 3 2 1 2 1 74 1 2 2 1 8 4 2 1 1 2 u 正交实验设计的基本步骤: ²明确实验目的,确定评价指标²挑选因素,确定水平²选正交表,进行表头设计 n 选正交表: 水平数与正交表对应的水平数一致 l 因素数小于等于正交表列数 l 选较小的表 n表头设计:一个因素占有一列;不同因素占不同列(随机排列)²明确设计方案,进行实验,得到结果²对试验结果进行统计分析²进行验证试验,作进一步分析 4、正交试验设计的优点 1) 能均匀地挑选出代表性强的少数试验方案 2) 由少数试验结果,可以退出较优的方案 3) 可以得到试验结果之外的更多信息正交实验设计结果的直观分析法 1)、单指标正交试验设计及结果的直观分析选正交表表头设计明确实验方案按规定的方案做实验,得出试验结果计算极差,确定因素的主次顺序优方案的确定进行验证试验,作进一步的分析 2)、多指标正交试验设计及结果的直观分析 3)、交互作用 4)、混合水平单指标正交试验设计及其结果的直观分析根据试验指标的个数,可把正交试验设计分为单指标试验设计与多指标试验设计。
《试验设计与数据处理》讲稿_第6章_正交试验设计
![《试验设计与数据处理》讲稿_第6章_正交试验设计](https://img.taocdn.com/s3/m/348fd975336c1eb91b375d36.png)
第6章正交试验设计主要内容:一、概述二、正交试验设计结果的直观分析法三、正交试验设计结果的方差分析法正交试验法:在优选区内利用正交表科学地安排试验点,通过试验结果的数据分析,缩小优选范围,或者得到较优点的多因素试验方法。
6.1 概述引例—多因素的试验设计问题•指标—收率•因素—(1)原料A的用量 (2)原料B的用量(3)液固比C (4)反应温度D(5)反应压力E (6)催化剂的用量F(7)反应时间G (8)搅拌强度H•水平—8个因素各取3个水平•进行全面搭配的试验次数为: 38=6561 次•科学问题:能否只做其中一小部分试验,通过数据分析来达到全面试验的效果呢?6.1.1 正交表(一)正交表的代号及含义常用正交表的形式为:L(r m)n式中,L ──正交表的符号;n ──要做的试验次数;r ──因素的水平数;m ── 最多允许安排的因素个数。
(27)完全试验次数:128如:L8L(313)完全试验次数:1594323(二)正交表的形式(1)等水平正交表:指各个因素的水平数都相等的正交表。
如L8(27),L27(313)(2)混合水平正交表:指试验中各因素的水平数不相等的正交表如L8(41×24),L24(3×4×24)(三)正交表的特点(1)每一列中,不同的数字出现的次数相等,即对任何一个因素,不同水平的试验次数是一样的。
(2)任意两列中,同一横行的两个数字构成有序数对,每种数对出现的次数是相同,即任何两个因素之间都是交叉分组的全面试验。
(三)正交试验设计的分类6.1.2 正交试验设计的优点①能在所有试验方案中均匀地挑选出代表性强的少数试验方案。
②通过对这些少数试验方案的结果进行统计分析,可以推出较优的方案,而且所得到的较优方案往往不包含在这些少数试验方案中。
③对试验结果作进一步的分析,可以得到试验结果之外的更多信息。
例如,各试验因素对试验结果影响的重要程度、各因素对试验结果的影响趋势等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选用正交表 L9(34)安排例3.1试验
列号
1
2
3
4
试验号 因素
A
(空白)
B
C
1
A1
1
B1
C1
2
A1
2
B2
C2
3
A1
3
B3
C3
4
A2
1
B2
C3
5
A2
2
B3
C1
6
A2
3
B1
C2
7
A3
1
B3
C2
8
A3
2
B1
C3
9
A3
3
B2
C1
正交试验结果
列号
1
2
试验号 因素
T1
(A)
1
840
1
2
840
2
3
840
3
4
850
1
5
850
2
6
850
3
7
860
1
8
860
2
9
860
3
3
4 硬度
T2
t
yj
(B)
(C)
410
40
190
430
60
200
450
80
175
430
80
165
450
40
183
410
60
212
450
60
196
410
80
178
430
40
187
正交试验数据 直观分析
直接观察: A2 B1 C2
淬火温度T1=850 ℃,回火 温度T2=410 ℃,回火时间 t=60min的效果最好,指标硬 度最高
计算的最好条件组合:(sumif函数的应用)
T1
指标和
T2
T3
水平数
k
t1
指标均值 t2
t3
极差
R
A 565 560 561 3 188.33 186.67 187.00 1.67
551 561 574
3 183.67 187.00 191.33
7.67
B 580 552 554 3 193.33 184.00 184.67 9.33
C2
B2
B3
因素轮换法试验点空间分布
●
●
B3
●
B2
●
●
B1 ●
A1
A2
●
C3 C2 A3 C1
● 正交试验法
用正交表来安排试验—L9(34)
列号
1
2
3
4
序号
A
B
C
1
1
1
1ቤተ መጻሕፍቲ ባይዱ
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1
3
2
8
3
2
1
3
9
3
3
2
1
正交表表示方法
L9(34)
正交表列数
一列中出现的数字个数(水平数) 正交表行数(试验次数) 正交表的代号
成本分析
比较少投入13kg碱和减少 5%的采收率,哪一样获利更 高?
综合分析与撒细网
固定乙催化剂,适量提高A(温 度),减少B(加碱量),找更为 合适的因素水平组合。
验证实验
对找到的A3B2C2或A3B1C2 进行验证实验
… Continue
Hubei Automotive Industries Institute
试验优化设计
主讲:李兵
材料工程系 Department of Materials Engineering
第三章 正交试验设计
一个实例3.1
提高钢质工件硬度的基本生产过程为: 淬火 把840℃左右的工件投入某液态介质, 提高其硬度 回火 冷却后再把工件加温到430℃左右,并 保持约1小时, 再冷却, 释放内应力. 问如何改变工艺参数,以提高硬度指标?
Mean of Means
Main Effects Plot (data means) for Means
淬火温度
回火温度
192
190
188
186
184
840
850
860
410
430
450
保温时间
192
190
188
186
184
40
60
80
验证实验
对因素组合: A1 B1 C2
淬火温度T1=840 ℃,回火温度T2=450 ℃, 回火时间t=40min时进行实际生产,与原生产 工艺对比,看硬度是否有所提高。
运用Minitab和正交助手对 正交试验数据进行直观分析
例3.2:某化工工厂生产一种化工产品,现对采收率进行正 试验设计优化设计。需要考虑的因素及各因素水平如下表:
因素水平表
水平
反应温度
加碱量
催化剂
1
A1=80
B1=35
C1=甲
2
A2=85
B2=48
C2=乙
3
A3=90
B3=55
C3=丙
试验安排及结果
常见正交表
各列水平均为2的常用正交表有: L4(23),L8(27),L12(211), L16(215),L20(219),L32(231)
各列水平数均为3的常用正交表有: L9(34),L27(313)
各列水平数均为4的常用正交表有: L16(45)
正交性
【均衡分散性】: 每一列中所有数字出现的次
数是相等的 【整体可比性】:
任意两列间横向组合的数字 对搭配次数也是相等的
正交试验法试验点空间分布(正交性的直观解释)
●
【均衡分散性】
●
试验点在空间中的分
B3
● ●
布达到最大的均匀度
●
【整齐可比性】
B2
B1 ● A1
● A2
●
● C3 C2 A3 C1
任何一组平行平面, 其他两因素等效出现
用正交表安排试验
试验号
1 2 3 4 5 6 7 8 9
A
1(80) 1(80) 1(80) 2(85) 2(85) 2(85) 3(90) 3(90) 3(90)
B
1(35) 2(48) 3(55)
1 2 3 1 2 3
C
1(甲) 2(乙) 3(丙)
2 3 1 3 1 2
采收率%
51 71 58 82 69 59 77 85 84
C 560 608 518
3 186.67 202.67 172.67 30.00
计算分析结果: A1 B1 C2
淬火温度T1=840 ℃,回火温度T2=450 ℃,回火时间t=40min的效果最好,指标 硬度最高
极差分析表明因素对指标的影响程度依次是:
回火时间 > 回火温度 > 淬火温度
画趋势图
C3
● 完全试验法
C1
A1
B1
C2
C3
27次
C1
A2 ● ●
B2
C2
C3
C1
●●
A3
B3
C2
C3
完全试验法试验点空间分布
● ●
B3 ●
●
●
●
●
●
●
●
●
●
●
●
●
B2 ●
●
●
●
●
● C3
●
B1 ● A1
●
● A2
● A3
C1
C2
● 因素轮换法
C1
A1
B1
C2
97次
A1 C3
B3
C2
A2
B1
A3
A1
指标: 硬度指标, 记作 y.
因素: A 淬火温度 (℃), B 回火温度 (℃), C 回火时间 (分钟).
水平
1 2 3
因素 符号
淬火温度 ℃ T1
840 850 860
回火温度 ℃ T2
410 430 450
回火时间 min t
40 60 80
如何安排试验?
A1
B1
C1
A2
B2
C2
A3
B3