山西省晋中市灵石县第二中学2017-2018学年八年级上学期期期末测试数学试题
山西省晋中市八年级(上)期末数学试卷(含解析)
山西省晋中市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.已知|a﹣6|+|b﹣8|+(c﹣10)2=0,则以a,b,c为三边长的三角形是()A.直角三角形B.锐角三角形C.等腰三角形D.钝角三角形2.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间3.在直角坐标中,点P(2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列函数中,不是一次函数的是()A.y=﹣x+4B.y=C.y=D.y=5.方程组的解是()A.B.C.D.6.一次函数y=x﹣2的大致图象是()A.B.C.D.7.“若|a|>1,则a>1”是一个假命题,可以用举反例的方法说明它是假命题,下列选项中恰当的反例是()A.a=5B.a=﹣5C.a=1D.a=﹣18.两组数据16,17,18,19,20和6016,6017,6018,6019,6020的方差和极差情况是()A.都相等B.都不相等C.方差相等,极差不相等D.方差不相等,极差相等9.若直线l1与直线y=3x﹣2关于x轴对称,则直线l1的关系式为()A.y=﹣3x﹣2B.y=﹣3x+2C.y=3x+2D.无法确定10.关于函数y=﹣3x+6下列结论正确的是()A.图象必经过(﹣2,﹣3)B.图象必经过第一、二、三象限C.当x≥2时,y≥0D.与y=﹣3x﹣1的图象无交点二、填空题(每小题3分,共15分)11.的立方根是.12.已知M(﹣2,3),N(3,﹣2),则M,N之间的距离是.13.一次函数y=﹣2x+2向上平移3个单位后的函数关系式为.14.已知∠C=90°,AC=6cm,BC=8cm,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD的长为cm.15.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是.三、解答题(共8个小题共55分)16.(8分)计算:(1);(2)17.解方程组:.18.(7分)如图,直线l1的函数解析式为y=2x﹣2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B,如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积;(4)利用函数图象写出关于x、y的二元一次方程组的解.19.(7分)如图△ABC中,延长BC到D,∠ABC和∠ACD的平分线相交于P.(1)若∠A=60°,则∠P=.(2)请你用数学表达式归纳出∠P与∠A的关系:.(3)请说明你的结论(2)正确的理由.20.(7分)青岛某高中允许高三学生从寄宿、走读两种方式中选择一种就读,今年新高三学生总人数与去年相比增加了6%,其中选择寄宿的学生增加了20%,选择走读的学生减少了15%,若去年高三学生的总数为500人,求今年新高三学生选择寄宿和走读的人数分别是什么?21.(8分)甲、乙两名队员参加射击训练,成绩分别被制成如图两个统计图:根据以上信息,整理分析数据如表:平均成绩/环中位数/环众数/环方差甲a77c乙7b8 4.2 (1)写出表格中a,b,c的值:a=,b=,c=;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?22.(8分)问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.(2)已知△PMN中,PM=,MN=2,NP=.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.23.(7分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中折线表示y与x之间的函数关系,根据图象进行以下探究:信息获取:(1)甲、乙两地之间的距离为km(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求出C点的坐标.(第(3)、(4)问要求写出求解过程).参考答案与试题解析一、选择题(每小题3分,共30分)1.已知|a﹣6|+|b﹣8|+(c﹣10)2=0,则以a,b,c为三边长的三角形是()A.直角三角形B.锐角三角形C.等腰三角形D.钝角三角形【分析】先根据非负数的性质求出a、b、c的长,再根据勾股定理的逆定理进行判断即可.【解答】解:∵|a﹣6|+|b﹣8|+(c﹣10)2=0,∴a=6,b=8,c=10,∵62+82=102,即a2+b2=c2,∴以a、b、c为边长的三角形是直角三角形.故选:A.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】利用二次根式的性质,得出<<,进而得出答案.【解答】解:∵<<,∴6<<7,∴的值在整数6和7之间.故选:C.【点评】此题主要考查了估计无理数的大小,得出<<是解题关键.3.在直角坐标中,点P(2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平面直角坐标系内各象限内点的坐标符号特点,可以确定点P的位置,本题得以解决.【解答】解:∵在直角坐标中,点P(2,﹣3),∴点P在第四象限,故选:D.【点评】本题考查点的坐标,解题的关键是明确直角坐标系中各象限内点的坐标符号.4.下列函数中,不是一次函数的是()A.y=﹣x+4B.y=C.y=D.y=【分析】直接根据一次函数的定义进行判断.【解答】解:y=﹣x+4,y=x,y=﹣3x都是一次函数,而y=为反比例函数.故选:D.【点评】本题考查了一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数叫做一次函数.5.方程组的解是()A.B.C.D.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选:D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.6.一次函数y=x﹣2的大致图象是()A.B.C.D.【分析】先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.【解答】解:∵k=1,b=﹣2,∴函数y=x﹣2的图象经过第一、三、四象限.故选:B.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.“若|a|>1,则a>1”是一个假命题,可以用举反例的方法说明它是假命题,下列选项中恰当的反例是()A.a=5B.a=﹣5C.a=1D.a=﹣1【分析】根据绝对值的性质、假命题的概念解答即可.【解答】解:当a=﹣5时,|﹣5|=5>1,﹣5<1,∴当a=﹣5时,可以说明“若|a|>1,则a>1”是一个假命题,故选:B.【点评】本题考查的是命题和定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.两组数据16,17,18,19,20和6016,6017,6018,6019,6020的方差和极差情况是()A.都相等B.都不相等C.方差相等,极差不相等D.方差不相等,极差相等【分析】根据平均数和方差的概念分别计算出平均数和方差,然后根据极差的概念求出极差即可.【解答】解:第一组数据的平均数=(16+17+18+19+20)÷5=18,方差=[(18﹣16)2+(18﹣17)2+(18﹣18)2+(18﹣19)2+(18﹣20)2]÷5=2;第二组数据的平均数=(6016+6017+6018+6019+6020)÷5=6018,方差=[(6018﹣6016)2+(6018﹣6017)2+(6018﹣6018)2+(6018﹣6019)2+(6018﹣6020)2]÷5=2;第一组数据的极差为:20﹣16=4,第二组数据的极差为:6020﹣6016=4,∴都相等.故选:A.【点评】考查了方差的概念和极差的概念,一般地设n个数据,x1,x2,…x n的平均数为,方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大反之也成立.极差=最大值﹣最小值.9.若直线l1与直线y=3x﹣2关于x轴对称,则直线l1的关系式为()A.y=﹣3x﹣2B.y=﹣3x+2C.y=3x+2D.无法确定【分析】根据直线y=kx+b,(k≠0,且k,b为常数)关于x轴对称的性质求解.【解答】解:∵直线l与直线y=3x﹣2关于x轴对称,∴直线l的解析式为﹣y=3x﹣2,即y=﹣3x+2.故选:B.【点评】本题考查了一次函数图象与几何变换:直线y=kx+b,(k≠0,且k,b为常数)关于x 轴对称,就是x不变,y变成﹣y.10.关于函数y=﹣3x+6下列结论正确的是()A.图象必经过(﹣2,﹣3)B.图象必经过第一、二、三象限C.当x≥2时,y≥0D.与y=﹣3x﹣1的图象无交点【分析】根据一次函数的性质和一次函数图象的增减性,依次分析各个选项,选出正确的选项即可.【解答】解:A.把x=﹣2代入y=﹣3x+6得:y=12,即A不符合题意;B.函数y=﹣3x+6的图象经过第一、二、四象限,即B不符合题意;C.∵函数y=﹣3x+6与x轴的交点为(2,0),∴当x≥2时,y≤0,即C不符合题意;D.∵直线y=﹣3x+6与直线y=﹣3x﹣1平行,∴与y=﹣3x﹣1的图象无交点,即D符合题意,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数的性质和一次函数图象的增减性是解题的关键.二、填空题(每小题3分,共15分)11.的立方根是2.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵=8,∴的立方根是2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.已知M(﹣2,3),N(3,﹣2),则M,N之间的距离是5.【分析】根据两点间的距离公式解答即可.【解答】解:∵M(﹣2,3),N(3,﹣2),∴M,N之间的距离=,故答案为:5【点评】此题考查两点间的距离,关键是根据两点之间的距离解答.13.一次函数y=﹣2x+2向上平移3个单位后的函数关系式为y=﹣2x+5.【分析】根据平移法则上加下减可得出解析式.【解答】解:由题意得:平移后的解析式为:y=﹣2x+2+3=﹣2x+5.故答案为:y=﹣2x+5.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.14.已知∠C=90°,AC=6cm,BC=8cm,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD的长为3cm.【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长.【解答】解:∵AC=6cm,BC=8cm,∠C=90°∴AB=10cm,∵将AC沿AD折叠,使点C落在斜边AB上的点E处,∴AC=AE=6cm,∴BE=4cm,设CD=x,则在Rt△DEB中,42+x2=(8﹣x)2,∴x=3cm.∴CD=3cm,故答案为:3【点评】本题考查了翻折变换的性质,勾股定理的应用,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.15.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是∠2与∠3.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和分别表示出∠1、∠2、∠3,再根据对顶角相等作出判断即可.【解答】解:如图,由三角形的外角性质得,∠1=∠4+90°,∠2=∠6+90°,∠3=∠5+90°或∠7+90°,∵∠6=∠7(对顶角相等),∠4与∠5互余,不一定相等,∴一定相等的是∠2与∠3.故答案为:∠2与∠3.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,对顶角相等的性质,熟记各性质并准确识图是解题的关键.三、解答题(共8个小题共55分)16.(8分)计算:(1);(2)【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用算术平方根以及立方根的定义分别化简得出答案.【解答】解:(1)原式=10﹣5﹣(3﹣)=10﹣5﹣=;(2)原式=3﹣2+2﹣4=5﹣6.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2,得:6x﹣2y=26 ③,②+③,得:11x=33,解得:x=3,将x=3代入①,得:9﹣y=13,解得:y=﹣4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(7分)如图,直线l1的函数解析式为y=2x﹣2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B,如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积;(4)利用函数图象写出关于x、y的二元一次方程组的解.【分析】(1)利用直线l1的解析式令y=0,求出x的值即可得到点D的坐标;把点C的坐标代入直线l1的解析式求出m的值,即可得解;(2)根据点B、C的坐标,利用待定系数法求一次函数解析式解答;(3)先求出点A的坐标,再求出AD的长,然后利用三角形的面积公式列式进行计算即可得解;(4)根据二元一次方程组的解是两函数图象的交点解答即可.【解答】解:(1)∵点D是直线l1:y=2x﹣2与x轴的交点,∴y=0,0=2x﹣2,x=1,∴D(1,0),∵点C在直线l1:y=2x﹣2上,∴2=2m﹣2,m=2,∴点C的坐标为(2,2);(2)∵点C(2,2)、B(3,1)在直线l2上,∴,解之得:,∴直线l2的解析式为y=﹣x+4;(3)∵点A是直线l2与x轴的交点,∴y=0,即0=﹣x+4,解得x=4,即点A(4,0),所以,AD=4﹣1=3,S=×3×2=3;△ADC(4)由图可知的解为.【点评】本题考查了两直线相交的问题,直线与坐标轴的交点的求解,待定系数法求一次函数解析式,以及一次函数图象与二元一次方程组的关系,都是基础知识,一定要熟练掌握并灵活运用.19.(7分)如图△ABC中,延长BC到D,∠ABC和∠ACD的平分线相交于P.(1)若∠A=60°,则∠P=30°.(2)请你用数学表达式归纳出∠P与∠A的关系:∠P=∠A.(3)请说明你的结论(2)正确的理由∠P=∠A.【分析】(1)PB、PC分别平分∠ABC和∠ACD,得出∠ACD=2∠PCD,∠ABC=2∠PBC,而∠PCD=∠P+∠PBC,∠ACD=∠ABC+∠A,∠A=2∠P,∠P=∠A,由此即可得出结论;(2)(3)根据规律,∠P的度数等于∠A的一半;根据三角形的一个外角等于和它不相邻的两个内角的和表示出∠P,再根据角平分线的定义∠PCD=∠ACD,∠PBC=∠ABC,代入求解即可.【解答】解:(1)∵PB、PC分别平分∠ABC和∠ACD,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∵∠PCD=∠P+∠PBC,∠ACD=∠ABC+∠A,∴∠A=2∠P,即∠P=∠A,∵∠A=60°,∴∠P=30°.故答案为:30°;(2)∠P=∠A,故答案为:∠P=∠A;(3)理由:∵PB,PC是∠ABC和∠ACD的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P=∠PCD﹣∠PBC,=∠ACD﹣∠ABC,=(∠ACD﹣∠ABC),=∠A,即∠P=∠A.故答案为:∠P=∠A.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义,熟练掌握性质和定义是解题的关键.20.(7分)青岛某高中允许高三学生从寄宿、走读两种方式中选择一种就读,今年新高三学生总人数与去年相比增加了6%,其中选择寄宿的学生增加了20%,选择走读的学生减少了15%,若去年高三学生的总数为500人,求今年新高三学生选择寄宿和走读的人数分别是什么?【分析】设去年有寄宿学生人数为x,走读学生人数为y,根据去年学生的人数及今年学生的人数,即可得出关于x,y的二元一次方程组,解出可得去年的人数,再计算今年的人数.【解答】解:设去年有寄宿学生人数为x人,走读学生人数为y人,根据题意得:.解得:,(1+20%)x=1.2×300=360,(1﹣15%)y=0.85×200=170,答:今年新高三学生选择寄宿和走读的人数分别是360人,170人.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.21.(8分)甲、乙两名队员参加射击训练,成绩分别被制成如图两个统计图:根据以上信息,整理分析数据如表:平均成绩/环中位数/环众数/环方差甲a77c乙7b8 4.2 (1)写出表格中a,b,c的值:a=7,b=7.5,c= 1.2;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据甲的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(5﹣7)2+2(6﹣7)2+4(7﹣7)2+2×(8﹣7)2+(9﹣7)2]=1.2(环);故答案为:7,7.5,1.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点评】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.22.(8分)问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC =,AC =.△ABC 的面积是.(2)已知△PMN 中,PM =,MN =2,NP =.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 7 .【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积. (2)模仿(1)中方法,画出△PMN ,利用分割法求解即可. 【解答】解:(1)如图1中,AB ===,BC ===,AC ===,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣﹣2=, 故答案为,,,.(2)△PMN 如图所示.S=4×4﹣2﹣3﹣4=7,△PMN故答案为7.【点评】本题考查作图﹣应用与设计,勾股定理,矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(7分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中折线表示y与x之间的函数关系,根据图象进行以下探究:信息获取:(1)甲、乙两地之间的距离为450km(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求出C点的坐标.(第(3)、(4)问要求写出求解过程).【分析】(1)x=0时,y=450,即可求解;(2)B的实际意义甲乙距离为零,即甲乙相遇;(3)点D表示,慢车到达甲地,即可求解;(4)点C表示快车到达终点站,即可求解.【解答】解:(1)x=0时,y=450,故答案为450;(2)B的实际意义甲乙距离为零,即甲乙相遇;(3)点D表示,慢车到达甲地,故慢车的速度为:450÷6=75;甲乙在点B相遇,设快车的速度为:m,则(m+75)×2=450,解得:m=150;故慢车和快车的速度分别为:75和150(km/h);(4)点C表示快车到达终点站,快车用的时间为:450÷150=3,即相遇后走了1小时,共走了3个小时,即3×75=225,故点C(3,225).【点评】本题考查的是一次函数综合运用,此类题目解题的关键是弄懂在A、B、C、D车辆的具体位置状态,即可求解.。
2017-2018学年第一学期期末检测八年级数学试题及参考答案
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
2017-2018学年八年级数学上学期期末检测试题(附答案.)
2017-2018学年八年级上学期期末检测数学试题(时间120分钟 满分120分)一、单选题(共12题:每小题3分,共36分) 1.下列图形中,是轴对称图形的是( )ABCD2.等腰三角形有一个角等于70°,则它的底角是( ) A.70°B.55°C.60°D.70°或55°3.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E.已知PE=3,则点P 到AB的距离是( ) A.3 B.4C.5D.64.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( ) A. ∠BOC=2∠AB. ∠BOC=90°+∠AC. ∠BOC=90°+12∠A D. ∠BOC=90°-12∠A 5.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等; 是真命题的有( )个 A.1B.2C.3D.46.如图,下列条件中,不能证明△ABC ≌△DCB 的是( ) A.AB=DC ,AC=DBB.AB=DC ,∠ABC=∠DCBC.BO=CO ,∠A=∠DD.AB=DC ,∠ACB=∠DBC7.如图,在△ABC 中,AB=AC ,∠A=30°,以C 为圆心,CB 的长为半径作圆弧,交AB 于点D ,连接CD ,则∠ACD 等于( )A.30°B.45°C.60°D.75°8.若关于x 的分式方程223m x x x+=-无解,则m 的值为( ) A.-1.5B.1C.-1.5或2D.-0.5或-1.59.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B落在点B '处,若∠2=40°,则图中∠1的度数为 A.115° B.120° C.130°D.140°10.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图:那么被遮盖的两个数据依次是( ) A.35 2B.36 4C.35 3D.36 311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( ) A.15B.30C.45D.6012.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( ) A.90606x x =- B.90606x x =+ C.90606x x =+ D.90606x x =- 二、填空题(共5小题:每小题3分,共15分)13.如图,C 、D 点在BE 上,∠1=∠2,BD=EC.请补充一个条件:__________,使△ABC≌△FED.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a=__________,b=__________.15.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男生100米自由泳训练,他们成绩的平均数x及其方差S2如下表所示:如果选拨一名学生去参赛,应派__________去.17.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y 轴的正半轴上,以AA1=2为边长画等边△AA2C2;以AA2=4为边长画等边△AA2C3,…,按此规律继续画等边三角形,则点nA的坐标为__________.三、解答题(共8题,共69分)18.(每小题4分,共8分)(1)11322xx x-=---(2)113262xx x-=--19.(7分)先化简,再求值:234441112a aa aa a a-+⎛⎫-+÷+-⎪++-⎝⎭,并从-1,0,2中选一个合适的数作为a的值代入求值.20.(6分)当a=2017,b=2018时,代数式4422222a b b aa ab b a b--⨯-++的值为.21.(8分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.22.(每小问4分,共8分)如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.23.(每小问4分,共8分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵。
山西省晋中市八年级上学期数学期末考试试卷
山西省晋中市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若一个三角形的三条边的长是a,b,c,并且满足恒等式5x2+2cx+3=(ax+b)(x+1),则这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等边三角形2. (2分)在下列实数中,无理数是()A .B . πC .D .3. (2分) (2018八上·秀洲月考) 在平面直角坐标系中,下列各点中在第四象限的是()A . (1,3)B . (0,-3)C . (-3,3)D . (2,-2)4. (2分) (2019八下·温州期中) 使二次根式有意义的a的取值范围是()A .B .C .D .5. (2分)(2018·阜宁模拟) 新阜宁大桥某一周的日均车流量分别为13,14,11,10,12,12,15(单位:千辆),则这组数据的中位数与众数分别为()A . 10 ,12B . 12 ,10C . 12 ,12D . 13 ,126. (2分) (2019七下·新田期中) 二元一次方程组的解为()A .B .C .D .7. (2分) (2018九上·林州期中) 如图,l1与l3交于点P,l2与l3交于点Q,∠1=104°,∠2=87°,要使得l1∥l2 ,下列操作正确的是()A . 将l1绕点P逆时针旋转14°B . 将l1绕点P逆时针旋转17°C . 将l2绕点Q顺时针旋转11°D . 将l2绕点Q顺时针旋转14°8. (2分) (2015七下·杭州期中) 两个角的两边分别平行,其中一个角是60°,则另一个角是()A . 60°B . 120°C . 60°或120°D . 无法确定9. (2分)(2017·石狮模拟) 如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A . 40°B . 50°C . 60°D . 70°10. (2分)若一次函数的函数值随的增大而减小,且图象与轴的负半轴相交,那么对和的符号判断正确的是()A . ,B . ,C . ,D . ,二、填空题 (共6题;共10分)11. (1分) (2017七下·长岭期中) 计算的结果是________.12. (1分) (2019七下·港南期中) 若方程是二元一次方程,则m=________,n=________.13. (5分) (2016九上·九台期末) 如图,点A关于y轴的对称点的坐标是________.14. (1分)有理数a、b在数轴上的位置如图所示,用不等式表示:①a+b________0②│a│________│b│③ab________0④a-b________0.15. (1分)如图,l1表示某产品一天的销售收入y1(万元)与销售量x(件)的关系;l2表示该产品一天的销售成本y2(万元)与销售量x(件)的关系.写出销售收入y1与销售量之间的函数关系式________ 写出销售成本y2与销售量之间的函数关系式________ ,当一天的销售量超过________ 时,生产该产品才能获利.(利润=收入﹣成本)16. (1分) (2020八上·江汉期末) 如图,,四边形ABCD的顶点A在的内部,B,C两点在OM上(C在B,O之间),且,点D在ON上,若当CD⊥OM时,四边形ABCD的周长最小,则此时AD的长度是________.三、解答题 (共9题;共94分)17. (10分) (2018八上·深圳期末) 计算:二次根式的化简(1)(2)(3)18. (10分)如图:四边形ABCD中,AB=BC= , ,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.19. (5分)(2017·宁德模拟) 小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.20. (6分) (2020九上·大丰期末) 九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.21. (10分)(2017·临沂模拟) 在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.22. (10分) (2016九上·昆明期中) 如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?23. (11分) (2019七下·鼓楼月考) 提出问题:“周长一定的长方形,当邻边长度满足什么条件时面积最大?”探究发现:如图所示,小敏用4个完全相同的、邻边长度分别为a、b的长方形拼成一个边长为(a+b)的正方形(其中a、b的和不变,但a、b的数值及两者的大小关系都可以变化).仔细观察拼图,我们发现,如果右图中间有空白图形F,那么它一定是正方形(1)空白图形F的边长为________;(2)通过计算左右两个图形的面积,我们发现(a+b)2、(a﹣b)2和ab之间存在一个等量关系式.①这个关系式是________;②已知数x、y满足:x+y=6,xy=,则x﹣y=________;问题解决:问题:“周长一定的长方形,当邻边长度满足什么条件时面积最大?”①对于周长一定的长方形,设周长是20,则长a和宽b的和是________面积S=ab的最大值为________,此时a、b的关系是________;②对于周长为L的长方形,面积的最大值为________.活动经验:周长一定的长方形,当邻边长度a、b满足________时面积最大.24. (16分) (2016七上·龙口期末) 如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC 为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.25. (16分)(2019·长春模拟) 已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D 在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共94分) 17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
山西省晋中市灵石县第二中学2017-2018学年八年级上学期期期末测试数学试题
山西省晋中市灵石县第二中学2017-2018学年八年级上学期期期末测试数学试题一、单选题(★★) 1 . 以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.(★★★) 2 . 下列多项式中,能用提取公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2D.x2-xy+y2(★★★) 3 . 不等式组的解集是()A.x>-2B.x<1C.-1<x<2D.-2<x<1(★) 4 . 如图, DC⊥ AC于 C, DE⊥ AB于 E,并且 DE= DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2D.AB=AC(★★★) 5 . 某学校食堂需采购部分餐桌,现有 A、 B两个商家, A商家每张餐桌的售价比 B商家的优惠13元.若该校花费2万元采购款在 B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则 A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元(★★★) 6 . 如图,六边形 ABCDEF的内角都相等,∠ DAB=60°, AB= DE,则下列结论成立的个数是()① AB∥ DE;② EF∥ AD∥ BC;③ AF= CD;④四边形 ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2B.3C.4D.5二、填空题(★★) 7 . 分解因式:2 x 2-8=_______.(★★★) 8 . 当 a=+1, b=-1时,代数式的值是________.(★★) 9 . 如图,将△ ABC绕点 A逆时针旋转至△ ADE处,使点 B落在 BC的延长线上的点 D处,且∠ BDE=80°,则∠ B=________°.(★) 10 . 如图,平行四边形 ABCD中, AC, BD为对角线, BC=6, BC边上的高为4,则阴影部分的面积为________.(★★★) 11 . (题文)如图,在△ ABC中, AB= BC=4, AO= BO, P是射线 CO上的一个动点,∠ AOC=60°,则当△ PAB为直角三角形时, AP的长为________________(提示:直角三角形斜边上的中线等于斜边的一半).三、解答题(★★★) 12 . 若关于的方程的解为正数,求的取值范围.(★★★) 13 . (1)利用因式分解简便运算:2×19 2+4×19×21+2×21 2;(2)解不等式组:(★★★) 14 . 解分式方程:(★★★) 15 . 如图,四边形 ABCD是平行四边形,对角线 AC, BD交于点 O,过点 O作直线 EF 分别交 AD, BC于点 E, F,求证: AE= CF.(★★★) 16 . 已知:正方形ABCD,如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.(★★★) 17 . 如图,△ ABC通过平移得到△ DEF,且 BC分别与 DE, DF相交于点 M, N.连接AD,四边形 ABMD的面积记作 S 1,四边形 ACND的面积记作 S 2,四边形 MNFE的面积记作 S 3.请判断 S 1, S 2, S 3三者间的数量关系,并说明理由.(★★★★) 18 . 如图,在Rt△ ABC的斜边 AB上取两点 D, E,使 AD= AC, BE= BC.当∠ B=60°时,求∠ DCE的度数.(★★★) 19 . 设 A=.(1)化简 A;(2)当 a=3时,记此时 A的值为 f(3);当 a=4时,记此时 A的值为f(4)……解关于 x的不等式:≤ f(3)+ f(4)+…+ f(11),并将解集在数轴上表示出来.(★★★★★) 20 . 定义:如图①,点 M, N把线段 AB分割成 AM, MN和 BN三段,若以 AM,MN, BN为边的三角形是一个直角三角形,则称点 M, N是线段 AB的勾股分割点.请解决下列问题:(1)已知点 M, N是线段 AB的勾股分割点,且 BN> MN> AM.若 AM=2, MN=3,求 BN的长;(2)如图②,若点 F, M, N, G分别是 AB, AD, AE, AC边上的中点,点 D, E是线段 BC的勾股分割点,且 EC> DE> BD,求证:点 M, N是线段 FG的勾股分割点(★★★) 21 . 某种型号油电混合动力汽车,从 A地到 B地燃油行驶需纯燃油费用76元,从 A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从 A地到 B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?(★★★) 22 . (题文)如图,在等腰直角三角形 MNC中, CN= MN=,将△ MNC绕点 C顺时针旋转60°,得到△ ABC,连接 AM, BM, BM交 AC于点 O.(1)∠ NCO的度数为________;(2)求证:△ CAM为等边三角形;(3)连接 AN,求线段 AN的长.(★★★★★) 23 . 如图,在平面直角坐标系中,已知点 A(0,6), B( b,0),且 b<0,点 C, D分别是 OA, AB的中点,△ AOB的外角平分线与 CD的延长线交于点 E.(1)求证:∠ DAO=∠ DOA;(2)①若 b=-8,求 CE的长;②若 CE=+1,则 b=________.(3)是否存在这样的 b值,使得四边形 OBED为平行四边形?若存在,请求出此时四边形 OBED 对角线的交点坐标;若不存在,请说明理由.(4)直线 AE与 x轴交于点 F,请用含 b的式子直接写出点 F的坐标.。
山西省晋中市八年级上学期数学期末试卷
山西省晋中市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) 64的立方根等于()A . 4B . -4C . 8D . -82. (2分)下列命题是假命题的是()A . 三角形的中线平分三角形的面积B . 三角形的角平分线交点到三角形各边距离相等C . 三角形的高线至少有两条在三角形内部D . 三角形外心是三边垂直平分线的交点3. (2分)(2020·资兴模拟) 下列计算中,正确的是()A .B .C .D .4. (2分)将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:那么第③组的频率为()A . 14B . 7C . 0.14D . 0.75. (2分) (2020八上·镇海期中) 三角形的两边长分别是5和7,则第三边长不可能是()A . 6B . 8C . 9D . 126. (2分) (2018八下·宝安期末) 下列命题中,错误的是()A . 过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形B . 三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C . 三角形的中线将三角形分成面积相等的两部分D . 一组对边平行另一组对边相等的四边形是平行四边形7. (2分)(2017·深圳模拟) 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A . (2a2+5a)cm2B . (3a+15)cm2C . (6a+9)cm2D . (6a+15)cm28. (2分) (2018八上·栾城期末) 如图,三个正方形围成如图所示的图形,已知两个正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A . 125B . 135C . 144D . 160二、填空题 (共6题;共9分)9. (1分)(2020·河西模拟) 计算: ________.10. (2分)已知,求=________.11. (2分) (2018九上·上虞月考) 如图,点A是抛物线y=x2-4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO’恰好落在抛物线上时,点A的坐标为________.12. (1分) (2017八下·明光期中) 如图,点P是等边△ABC内一点,连接PA,PB,PC,PA:PB:PC=3:4:5,以AC为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是________.(把所有正确答案的序号都填在横线上)13. (2分) (2018八上·江岸期中) 如图,正五边形,连接、、,则图中的等腰三角形共有________个.14. (1分) (2019八上·岐山期中) 如图是一株美丽的勾股树.所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为,则正方形、、、的面积的和是________.三、解答题 (共10题;共72分)15. (1分) (2019七上·翁牛特旗月考) 把下列各数分别填入相应的集合里-4, , , 0, -3.14, 717, -(+5) +1.88,⑴正有理数集合:{________…}⑵负数集合:{________…}⑶整数集合:{________ …}⑷分数集合:{________…}16. (5分) (2019七上·浦东期中) 因式分解:.17. (5分) (2019七下·镇江月考) 化简求值:(1)a3·(-2b3)2+(-ab2)3 ,其中a=0.5,b=2.(2)(x-1)(2x+1)-2(x-5)(x+2)的值,其中 .18. (10分) (2019八上·永登期中) 在中,斜边AB=2,则 ________.19. (10分) (2019八上·南昌期中) 如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE 交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH= BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.20. (2分)(2020·自贡) 某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次调查的学生人数是 ________ 人, = ________ ;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是 ________ ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是 ________.21. (10分) (2020八上·漳州月考) 若a+b=2,则称a与b是关于1的平衡数.(1) 3与________是关于1的平衡数,5﹣与________是关于1的平衡数;(2)若(m+ )×(1﹣)=﹣5+3 ,判断m+ 与5﹣是否是关于1的平衡数,并说明理由.22. (2分)如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.23. (11分) (2016八下·宜昌期中) 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?24. (16分) (2019·枣庄) 如图,在中,,以为直径作,点为上一点,且,连接并延长交的延长线于点.(1)判断直线与的位置关系,并说明理由;(2)若,,求圆的半径及的长.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共9分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共10题;共72分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:。
2017-2018学年度 八年级数学期末测试卷(含答案)
2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。
2017-2018学年八年级上学期期末考试数学试题(20201014181103)
( 1)计算:
3
2 ; ( 2)解方程组: 2
16.(本小题满分 10 分)
如图,方格纸中每个小方格都是长为 1 个单位的正方形,若学校位置坐标为 A( 1, 2),解答以下问
题:
( 1)请在图中建立适当的直角坐标系,并写出图书馆(
B)位置的坐标;
( 2)若体育馆位置坐标为 C(- 3, 3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书
二、解答题 ( 本大题共 3 个小题,共 30 分)
26.( 本小题满分 8 分)
某批发门市销售两种商品,甲种商品每件售价为
300 元,乙种商品每件售价为 80 元. 新年来临之
际,该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款 .
某公司为奖励员工,购买了甲种商品 20 件,乙种商品 x( x≥20)件 .
19.( 本小题满分 8 分)
某校九年级( 1)班所有学生参加 2016 年初中毕业生升学体育测试,根据测试评分标准,将他们的
成绩进行统计后分为 A、 B、C、 D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成)
,
请结合图中所给信息解答下列问题:
( 1)、九年级( 1)班参加体育测试的学生有
式说明怎样购买最实惠 .
27.( 本小题满分 10 分)
如图,在平面直角坐标系 xOy 中,直线 y= 2x+ 2 与 y 轴交于点 A,与 x 轴交于点 B. 直线 l ⊥x轴
负半轴于点 C,点 D 是直线 l 上一点且位于 x 轴上方 . 已知 CO= CD= 4. (1)求经过 A, D 两点的直线的函数关系式和点 B 的坐标; (2)在直线 l 上是否存在点 P 使得△ BDP为等腰三角形, 若存在, 直接写出 P 点坐标, 若不存在,
2017-2018年山西省晋中市灵石县二中八年级上册期末测试卷(含答案)
Ⅰ、第一节:听句子,选出与句子内容相关的图画。并将所选答案的字母代号填入
题前的括号内。每个句子听两遍。 (5 分 )
(
) 1、
A.
(
) 5、
B.
C.
A.
(
) 2、
A.
(
) 3、
A.
(
) 4、
A.
D. at times
(
) 25、Finally drink the milk shake.
A. at first
B. then
C. at last
D. at the end of
Ⅵ、第二节 单项填空 从题中所给的 A、B、C、D 四个选项中选出能填入空白处
的正确选项,并将所选答案的字母代号填入题前的括号内。(共 15 分)
B. Kind C. Dangerous D. different
(
) 40、 There
a book and two pens in the pencil case.
(
) 50、A. run
B. ride
C. swim
D. drive
A. are
B. am
C. is
D. be
Ⅶ、第三节 完形填空 从题中所给的 A、B、C、D 四个选项中选出能填入空白处
C. A cook.
(
) 12、How is the boy going to become a teacher?
A. study hard. B. to learn how to teach children. C. play with children.
2017--2018学年度八年级 (上)数学期末测试卷及答案
A B C D 2017--2018学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=xC 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .124.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 5.如图,C F BE ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 7.已知m 6x =,3n x =,则2m n x-的值为( ) A 、9 B 、 12 C 、 43 D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )A .只有①B . 只有②C . 只有①②D . ①②③ABE CF D O D C A B P A B D CE α γ β A BF E C D10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或2412.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= .14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD 16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a . 18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分) 因式分解:33ab b a -B AC D E A C B F E P (第20题) A D B E C B D E C A (第14题) (第15题) (第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C A B · · · B C NDE MAA D BE FC 25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .A D C B2017--2018学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分)ACACACBBDACD二、填空题(每小题3分,共24分)13.-3.14×610-14.25°15.∠B=∠C16.65a17.918.5019.19cm20.1.5三、解答题(本大题共60分) 21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a 解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明)25.∠A=36°,∠ABC=∠C=72°26.解(1)BD 和BC 相等。
2017-2018学年第一学期期末八年级数学试题(含答案)
2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。
(2021年整理)2017-2018初二数学上册期末考试试题及答案
2017-2018初二数学上册期末考试试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018初二数学上册期末考试试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018初二数学上册期末考试试题及答案的全部内容。
D C A B2018—2018初二数学上册期末考试一、选择题(每小题有且只有一个答案正确,每小题4分,共40分〉1、如图,两直线a∥b,与∠1相等的角的个数为( >A 、1个B 、2个C 、3个D 、4个2、不等式组的解集是( 〉 A 、B 、C 、D 、无解 3、如果,那么下列各式中正确的是( > A 、 B 、 C 、 D 、4、如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的的判定定理的简称是( >lCFILTmT7G A 、AAS B 、ASA C 、SAS D 、SSS5、已知一组数据1,7,10,8,x ,6,0,3,若=5,则x 应等于( >A 、6B 、5C 、4D 、26、下列说法错误的是( 〉A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形;7、△ABC的三边为a 、b 、c ,且,则( >A 、△ABC是锐角三角形;B 、c 边的对角是直角;C 、△ABC是钝角三角形;D 、a 边的对角是直角;1 a b8 8 8 8 44 4 4 x x y y y y O O O O A B C D 8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( >lCFILTmT7G A 、中位数; B 、平均数; C 、众数; D 、加权平均数;9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1,2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( >lCFILTmT7G A 、8 B 、9 C 、10 D 、1110、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1〉若每月每户居民用水不超过4立方M ,则按每立方M2M 计算;(2〉若每月每户居民用水超过4立方M ,则超过部分按每立方M4.5M 计算(不超过部分仍按每立方M2元计算〉。
2017-2018年山西省晋中市灵石县八年级(上)期末数学试卷含参考答案
2017-2018学年山西省晋中市灵石县八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B2.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x 轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)3.(3分)下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数4.(3分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.45.(3分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)若点A(1,a)和点B(4,b)在直线y=﹣2x+m上,则a与b的大小关系是()A.a>b B.a<b C.a=b D.与m的值有关8.(3分)不等式组的最小整数解为()A.﹣1B.0C.1D.49.(3分)甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追击乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.10.(3分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S二、填空题(每题3分,共15分)11.(3分)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为.12.(3分)已知三角形三边长分别是6,8,10,则此三角形的面积为.13.(3分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(3分)已知是二元一次方程组的解,则2n﹣m的平方根是.15.(3分)如图所示,在△ABC中,∠A=80°,延长BC到D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依此类推,∠A4BC 与∠A4CD的平分线相交于A5点,则∠A5的度数是.三、解答题(共75分)16.(8分)计算:(1)﹣|﹣3|+(2)17.(8分)按要求解下列方程组和不等式组:(1)(代入法)(2)(加减法)(3)解不等式:﹣1≤18.(8分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.19.(8分)已知一次函数y=x+2的图象与x轴相交于点A,与y轴相交于点B.(1)求点A,B的坐标,并在如图的坐标系中画出函数y=x+2的图象;(2)若点C(2,m)在函数y=x+2的图象上,求点C到x轴的距离.20.(10分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,(1)在这三次购物中,第次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?21.(10分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?22.(10分)如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.23.(13分)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线ABC表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,求两车的速度分别是多少?(3)在(2)的条件下,若快车从甲地到达乙地所需时间为t,求t的值,并写出C点的坐标;(4)在(2)的条件下,若快车到达乙地后停止行驶,慢车继续行驶到达甲地后停止,请你在图中补全y关于x的函数图象(标注关键点的坐标)2017-2018学年山西省晋中市灵石县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B【解答】解:在计算器上依次按键转化为算式为﹣=;计算可得结果介于﹣2与﹣1之间.故选:A.2.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x 轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.3.(3分)下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数【解答】解:A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.4.(3分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.4【解答】解:A、17是奇数不是偶数,B、16是偶数,并且是8的2倍,C、8是偶数,并且是8的1倍,D、4是偶数,是8的,所以,不是8的倍数,所以可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是4.故选:D.5.(3分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁【解答】解:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,丁的平均数==8.2,丁的方差为[0.04×5+0.64×2+1.44×2+3.24]=0.76∵丙的方差最小,平均成绩最高,∴丙的成绩最好,故选:C.6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选:B.7.(3分)若点A(1,a)和点B(4,b)在直线y=﹣2x+m上,则a与b的大小关系是()A.a>b B.a<b C.a=b D.与m的值有关【解答】解:∵点A(1,a)和点B(4,b)在直线y=﹣2x+m上,∴a=﹣2+m,b=﹣8+m,∵﹣2+m>﹣8+m,∴a>b,故选:A.8.(3分)不等式组的最小整数解为()A.﹣1B.0C.1D.4【解答】解:化简不等式组得,所以不等式组的解集为﹣<x≤4,则符合条件的最小整数解为0.故选:B.9.(3分)甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追击乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.【解答】解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意得:,故选:B.10.(3分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选:C.二、填空题(每题3分,共15分)11.(3分)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为x<2.【解答】解:由图示可看出,从2出发向左画出的线且2处是空心圆,表示x<2;从4出发向左画出的线4处是空心圆,表示x<4,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是x<212.(3分)已知三角形三边长分别是6,8,10,则此三角形的面积为24.【解答】解:∵62+82=102,∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.13.(3分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.14.(3分)已知是二元一次方程组的解,则2n﹣m的平方根是±2.【解答】解:∵是二元一次方程组的解,∴,解得∵2n﹣m=2×3﹣2=4,∴2n﹣m的平方根为±2.故答案为:±2.15.(3分)如图所示,在△ABC中,∠A=80°,延长BC到D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依此类推,∠A4BC 与∠A4CD的平分线相交于A5点,则∠A5的度数是 2.5°.【解答】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.三、解答题(共75分)16.(8分)计算:(1)﹣|﹣3|+(2)【解答】解:(1)原式=2﹣3+1=0;(2)原式=﹣﹣3=2﹣﹣3=2﹣4.17.(8分)按要求解下列方程组和不等式组:(1)(代入法)(2)(加减法)(3)解不等式:﹣1≤【解答】解:(1)①×2+②得:11x=33,解得:x=3,把x=3代入②得:9﹣2y=3,解得:y=3,所以原方程组的解为;(2)①+②×5得:44y=660,解得:y=15,把y=15代入①得:5x﹣15=110,解得:x=25,所以原方程组的解为.(3)去分母得,2(2x﹣1)﹣6≤3(5x+1),去括号得,4x﹣2﹣6≤15x+3,移项得,4x﹣15x≤3+2+6,合并同类项得,﹣11x≤11,把x的系数化为1得,x≥﹣1.18.(8分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.19.(8分)已知一次函数y=x+2的图象与x轴相交于点A,与y轴相交于点B.(1)求点A,B的坐标,并在如图的坐标系中画出函数y=x+2的图象;(2)若点C(2,m)在函数y=x+2的图象上,求点C到x轴的距离.【解答】解:(1)在y=x+2中,令y=0可求得x=﹣4,令x=0可得y=2,∴A(﹣4,0),B(0,2),其图象如图所示;(2)∵点C(2,m)在函数y=x+2的图象上,∴m=×2+2=3,∴点C到x轴的距离为3.20.(10分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,(1)在这三次购物中,第三次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.21.(10分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【解答】解:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.由题意,解得,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m吨,总利润为w元,则粗加工(100﹣m)吨.由m≤3(100﹣m),解得m≤75,利润w=1000m+400(100﹣m)=600m+40000,∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.22.(10分)如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.【解答】证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.23.(13分)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线ABC表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,求两车的速度分别是多少?(3)在(2)的条件下,若快车从甲地到达乙地所需时间为t,求t的值,并写出C点的坐标;(4)在(2)的条件下,若快车到达乙地后停止行驶,慢车继续行驶到达甲地后停止,请你在图中补全y关于x的函数图象(标注关键点的坐标)第21页(共22页)【解答】解:(1)设直线AB 的解析式为y=kx +b .∵直线AB 经过点(1.5,70),(2,0), ∴, 解得.∴直线AB 的解析式为y=﹣140x +280(x ≥0).∵当x=0时,y=280.∴甲乙两地之间的距离为280千米.(2)设快车的速度为m 千米/时,慢车的速度为n 千米/时. 由题意可得, 解得. ∴快车的速度为80千米/时.慢车的速度为60千米/时;(3)∵快车的速度为80千米/时.慢车的速度为60千米/时. ∴当快车到达乙地,所用时间为:=3.5小时,∵快车与慢车相遇时的时间为2小时,∴y=(3.5﹣2)×(80+60)=210,∴C 点坐标为:(3.5,210),(4)此时慢车还没有到达甲地,若要到达甲地,这个过程慢车所用时间为:小时, 当慢车到达甲地,此时快车已经驶往甲地时间为:﹣ 3.5=小时,∵快车到达乙地后停止行驶,∴此时距甲地:280千米,∴D点坐标为:(,280),故图象如图所示:第22页(共22页)。
2017-2018学年度第一学期八年级数学期末试卷(精品)
2017-2018学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1、在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、下列实数中,不属于无理数的是()A.B.C.100πD.3、下列说法不正确的是()A.1的平方根是1 B.﹣1的立方根是﹣1C.的算术平方根是2 D.是最简二次根式4、以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,65、下列正比例函数中,y的值随着x值的增大而减小的是()A.y=()x B.y=x C.y=2x D.y=0.2x6、如图,数轴上点P表示的数可能是()A.B.C.D.7、二元一次方程组的解是()A.B.C.D.8、下列命题中,属于真命题的是()A.同位角相等 B.任意三角形的外角一定大于内角C.多边形的内角和等于180° D.同角或等角的余角相等9、已知正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=kx﹣k的图象可能是()A.B.C.D.10、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3C.∠4=∠5 D.∠2+∠4=180°二、填空题11、已知一组数据为1,2,3,4,5,则这组数据的方差为_____.12、4是_____的算术平方根.13、函数y=kx的图象经过点P(1,﹣3),则k的值为_____.14、点P(2,﹣3)关于x轴的对称点坐标为_____.15、小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为_____米.16、如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是_____.三、解答题17、计算:(+2)×﹣6. 18、解方程组:.19、△ABC在直角坐标系内的位置如图所示.(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称;(2)求△ABC的面积.20、甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:且=8,S乙2=1.8,S甲2=1.2,根据上述信息完成下列问题:(1)乙运动员射击训练成绩的众数是,中位数是.(2)求甲运动员射击成绩的平均数,并判断甲、乙两人在本次射击成绩的稳定性.21、如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22、为方便市民出行,减轻城市中心交通压力,佛山市掀起新一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁2、3号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元;且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3号线外,佛山市政府规划未来五年,还要再建108千米的地铁线网.据预算,这168千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?23、在准备“综合与实践”活动课时,小明关注了佛山移动公司手机资费两种套餐:A套餐:月租0元,市话通话费每分钟0.49元;B套餐:月租费48元,免费市话通话时间48分钟,超出部分每分钟0.25元.设A套餐每月市话话费为y 1(元),B套餐每月市话话费为y2(元),月市话通话时间为x 分钟.(x>48)(1)分别写出y1、y2与x的函数关系式.(2)月市话通话时间为多长时,两种套餐收费一样?(3)小明爸爸每月市话通话时间为200分钟,请说明选择哪种套餐更合算?24、图(1)是我们常见的“箭头图”,其中隐藏着哪些数学知识呢?下面请你解决以下问题:(1)观察如图(1)“箭头图”,试探究∠BDC与∠A、∠B、∠C之间大小的关系,并说明理由;(2)请你直接利用以上结论,回答下列两个问题:①如图(2),把一块三角板XYZ放置在△ABC上,使其两条直角边XY、XZ恰好经过点B、C.若∠A=50°,则∠ABX+∠ACX= ;②如图(3),∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度数.25、如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积;(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.。
山西省晋中市八年级上学期数学期末考试试卷
山西省晋中市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017七下·民勤期末) 在下列各数:0.51525354…,,0.2,,,,,中,无理数的个数()A . 2个B . 3个C . 4个D . 5个2. (2分)下列各式:(﹣m)2 ,,, x2+ y2 , 5,,中,分式有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2018八上·定安期末) 6的平方根是()A . 6B . ±3C . 36D . ±4. (2分)下列函数中,自变量的取值范围是的是()A .B .C .D .5. (2分)如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A .B .C .D .6. (2分)用科学记数法方法表示0.0000907得()A .B .C .D .7. (2分)以下各组数分别是三条线段的长度,其中可以构成三角形的是()A . 1,3,4B . 1,2,3C . 6,6,10D . 1,4,68. (2分)不等式<1的正整数解为()A . 1个B . 3个C . 4个D . 5个9. (2分)如图,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,下列四个结论:①∠PCB=15°;②AD∥BC;③直线PC与AB垂直;④四边形ABCD是轴对称图形.其中正确的有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·东河模拟) 已知下列命题:①各边相等的多边形是正多边形;②相等的圆心角所对的弧相等;③若a2=b2 ,则a=b;④若直线y=kx+b经过第一、二、四象限,则k<0,b>0.其中原命题与逆命题都是真命题的个数是()A . 1个B . 2个C . 3个D . 4个11. (2分) (2016八上·仙游期末) A,B两地相距80千米,一辆大汽车从A地开出2小时后,又从A地开出一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B地,求两种汽车每小时各走多少千米.设大汽车的速度为xkm/h,则下面所列方程正确的是()A . =40B . =2.4C .D .12. (2分)(2018·赣州模拟) 已知m,n是一元二次方程x 2 -4x-3=0的两个实数根,则为().A . -1B . -3C . -5D . -7二、填空题 (共6题;共6分)13. (1分) (2016七下·槐荫期中) 若a>0且ax=2,ay=3,则a2x﹣3y的值为________.a3x+2y的值为________.14. (1分)计算:• =________.15. (1分)当x=________ 时,分式的值为零.16. (1分) (2015八上·大石桥期末) 如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为________.17. (1分) (2019七下·南京月考) 如图,△ABC中,点E是BC上的一点,EC=2BE,BD是AC边上的中线,若△ABC的面积S△ABC=24,则S△ADF﹣S△BEF=________.18. (1分)按下图方式摆放餐桌和椅子,则当桌子有10个时,能坐________人.三、解答题 (共8题;共61分)19. (10分) |﹣ |+(π﹣3)0+(﹣)3﹣()﹣2 .20. (5分)求不等式组的正整数解.21. (5分) (2017八上·南漳期末) 解分式方程:﹣1= .22. (5分) (2017·永定模拟) 先化简,再求值:÷(1﹣),其中x=3.23. (5分) (2016八上·桐乡期中) 已知△ABC,用直尺和圆规做下列图形:(保留作图痕迹并写出结论)①AC边上的中线;②角平分线AM.24. (10分) (2016九上·赣州期中) 解答(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF 的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM 绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3 ,求AG,MN的长.25. (10分)(2017·连云港模拟) 大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.26. (11分) (2016八上·顺义期末) 在等边△ABC的外侧作直线BM,点A关于直线BM的对称点为D,连结AD,CD,设CD交直线BM于点E.(1)依题意补全图1,若∠ABM=30°,求∠BCE的度数;(2)如图2,若60°<∠ABM<90°,判断直线BM和CD相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共61分)19-1、20-1、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。
2017—2018学年第一学期期末测试八年级数学试题及答案
2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省晋中市灵石县第二中学2017-2018学年八年级上学期期期末测试数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()
A.B.C.D.
2. 下列多项式中,能用提公因式进行分解因式的是( ) A.B.C.D.
3. 不等式组的解集是( )
A.x>-2 B.x<1
C.-1<x<2 D.-2<x<1
4. 如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是( )
A.DE=DF B.BD=FD C.∠1=∠2D.AB=AC
5. 某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为( )
A.117元B.118元C.119元D.120元
6. 如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论:
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.其中成立的个数是( )
A.2个B.3个C.4个D.5个
二、填空题
7. 分解因式:2x2﹣8=_______
8. 当a=+1,b=-1时,代数式的值是________.
9. 如图,将绕点A逆时针旋转至处,使点B落在BC的延长线上的点D处,且,则______度
10. 如图,平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,
则阴影部分的面积为________.
三、解答题
11. 若关于的方程的解为正数,求的取值范围.
四、填空题
12. 如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,
∠AOC=60°,则当△PAB为直角三角形时,AP的长为_______.
五、解答题
13. (1)利用因式分解简便运算:2×192+4×19×21+2×212;
(2)解不等式组:
14. 解分式方程:
15. 如图,在?ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
16. 已知:正方形ABCD,如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.
17. 如图,△ABC通过平移得到△DEF,且BC分别与DE,DF相交于点M,N.连接AD,四边形ABMD的面积记作S1,四边形ACND的面积记作S2,四边形MNFE
的面积记作S3.请判断S1,S2,S3三者间的数量关系,并说明理
由.
18. 如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.
19. 设A=÷(a﹣)
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为
f(4);…,解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.
20. 定义:如图①,点M,N把线段AB分割成AM,MN和BN三段,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
请解决下列问题:
(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;
(2)如图②,若点F,M,N,G分别是AB,AD,AE,AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点
21. 某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.
(1)求每行驶1千米纯用电的费用;
(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
22. 如图,在等腰直角三角形MNC中,CN=MN=,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.
(1)∠NCO的度数为________;
(2)求证:△CAM为等边三角形;
(3)连接AN,求线段AN的长.
23. 如图,在平面直角坐标系中,已知点A(0,6),B(b,0),且b<0,点C,D分别是OA,AB的中点,△AOB的外角平分线与CD的延长线交于点E.
(1)求证:∠DAO=∠DOA;
(2)①若b=-8,求CE的长;
②若CE=+1,则b=________.
(3)是否存在这样的b值,使得四边形OBED为平行四边形?若存在,请求出此时四边形OBED对角线的交点坐标;若不存在,请说明理由.
(4)直线AE与x轴交于点F,请用含b的式子直接写出点F的坐
标.。