液压元件的计算与选择
液压系统设计计算实例
A1=F/(p1-0.5p2)=35511/(4×106-0.5×0.6×106)cm2 ≈96cm2
液压缸内径D就为:D= 4 A= 1 4 ×=9161.06cm
对D圆整,取D=110mm。由dp=0.707Dp,经圆整得 d=80mm。计算出液压缸的有效工作面积A1=95cm2, A2=44.77 cm2。 工进时采用调速阀调速,其最小稳定流量
则液压泵输出压力为2.05MPa。液压泵的总效率ηp=0.8,液压泵流量 40L/min,则液压泵驱动调集所需的功率为:
P=ppqp/ηp=2.05×106×40×10-3W=1708W 据此选用Y112M—6—B5立式电动机,其额定功率为2.2kW,转速为 940r/min,液压泵输出流量为33.84L/min、5.33L/min,仍能满足系统要求 。
1.负载分析与速度分析
1)负载分析
由工作负载Fw =30kN,重力负载FG=0,按启动换向时间和 运动部件重量(F·t=m(v2–v1))计算得到惯性负载Fa=1000N,摩擦 阻力Ff=1960N。
取液压缸机械效率ηm =0.9,则液压缸工作阶段的负载值见表 。
2)速度分析
由快进、快退速度为6m/min,工进速度范围为 20mm/min~120mm/min按上述分析可绘制出负载循环图和速度循环 图(略)。
2.确定参数
1)初选液压缸的工作压力
由最大负载值查教材中表9-3,取液压缸工作压力为4MPa。
2)计算液压缸结构参数
为使液压缸快进与快退速度相等,选用单出杆活塞缸差动连接的方 式实现快进,设液压缸两有效面积为A1和A2,且A1=2 A2,即 d=0.707D。为防止钻通时发生前冲现象,液压缸回油腔背压p2取 0.6MPa,而液压缸快退时背压取0.5MPa。
液压系统设计计算公式
液压系统设计计算举例某厂汽缸加工自动线上要求设计一台卧式单面多轴钻孔组合机床,机床有主轴16根,钻14个φ13.9mm 的孔,2个φ8.5mm 的孔,要求的工作循环是:快速接近工件,然后以工 作速度钻孔,加工完毕后快速退回原始位置,最后自动停止;工件材料:铸铁,硬度HB 为240;假设运动部件重G =9800N ;快进快退速度v1=0.1m/s ;动力滑台采用平导轨,静、动摩擦因数μs =0.2,μd =0.1;往复运动的加速、减速时间为0.2s ;快进行程L1=100mm ;工进行程L2=50mm 。
试设计计算其液压系统。
一、作F —t 与v —t 图1.计算切削阻力钻铸铁孔时,其轴向切削阻力可用以下公式计算:F c =25.5DS 0.8硬度0.6(N)式中:D 为钻头直径(mm);S 为每转进给量(mm/r)。
选择切削用量:钻φ13.9mm 孔时,主轴转速n1=360r/min ,每转进给量S1=0.147mm/r ;钻8.5mm 孔时,主轴转速n2=550r/min ,每转进给量S2=0.096mm/r 。
则F c =14×25.5D 1S 0.81硬度0.6+2×25.5D 2S 0.82硬度0.6=14×25.5×13.9×0.1470.8×2400.6+2×25.5×8.5×0.0960.8×2400.6=30500(N) 2.计算摩擦阻力静摩擦阻力:Fs=f s G=0.2×9800=1960N 动摩擦阻力:F d =f d G=0.1×9800=980N 3.计算惯性阻力4.计算工进速度工进速度可按加工φ13.9的切削用量计算,即:v 2=n 1S 1=360/60×0.147=0.88mm/s=0.88×10-3m/s 5.根据以上分析计算各工况负载如表所示。
液压系统的设计计算2010秋
T 式中:Vi—— 系统在整个周期中第i个阶段内的用油量。 ☼如果液压泵的供油量是按工进工况选取时(如双泵供油方案, 其中小流量泵是供给工进工况流量的)其供油量应考虑溢流阀的最 小溢流量。
qp
k Vi
四、液压元件的计算和选择
1、 液压泵和电机功率
(3) 选择液压泵的规格型号
液压泵的规格型号按计算值在产品样本中选取。
许的范围内. 油液温升验算是计算系统的发热量和散热量,使热平衡后 的温度在允许的范围内。
五、液压系统的性能验算
2、系统发热温升验算 (1)系统发热功率Hi 式中,Pi为液压泵输入功率;Po为液压执行元件的输出功率。 如果已知液压系统的总效率 ,则系统发热功率Hi也可按下式 计算: 系统产生的热量要由油箱散热,由于管道散热与吸热基 本平衡,故可忽略不计。油箱散热功率按下式计算:
负载-位移(F-J)曲线表示,称为负载图;将各执行元件在工作循 环中各动作阶段的速度,用速度-时间(v-t )或速度-位移(v-l) 曲线表示,称为速度图。
从图中可明显看出最大负载和最大速度值及二者所
在的工况。这是确定系统的性能参数和执行元件结构参
数 (结构尺寸)的主要依据。
二、初步拟定液压系统原理图 拟定液压系统原理图是整个液压系统设计中重要的 一步,它涉及到所设计系统的性能和设计方案的经济性、
若验算不能满足要求,则A或q的值就必须进行修改。这些结 构参数最后还必须按GB2347--80和GB/T2348一93圆整成标准值。 确定执行元件的结构参数后,根据负载图和速度图,可以计算 出整个工作循环中各阶段的实际工作压力、流量和功率,并绘出 相应的p-l、Q-l和p-l图或p-t、Q-t和P-f图,称为工况图
沿程压力损失Δp 、局部压力损 Δpξ 有关压力损失公式计算。
液压系统设计计算
液压系统设计计算液压系统设计是指在机械设计中,通过使用液压技术来传递动力和控制目标的设计过程。
液压系统设计需要考虑多个因素,包括流体力学原理、液压元件的选择和配置、系统的工作参数等。
下面将介绍液压系统设计的一些基本计算。
首先,液压系统设计需要确定系统的工作参数,包括工作压力、流量和工作温度等。
工作压力是指系统中液体传递动力时所施加的压力,一般以帕斯卡为单位。
流量是指单位时间内通过液压系统的液体体积,一般以升/分钟为单位。
工作温度是指系统正常工作时液体的温度,一般以摄氏度为单位。
确定了工作参数后,液压系统设计还需要选择适当的液压元件。
液压元件包括液压泵、液压马达、液压阀等。
液压泵负责将机械能转换成液压能,并提供系统的流量和压力。
常用的液压泵有齿轮泵、柱塞泵和螺杆泵等。
液压马达则将液压能转换成机械能,常用的液压马达有齿轮马达、柱塞马达和液压缸等。
液压阀则用于控制液压系统的流量、压力和方向等。
常用的液压阀有溢流阀、换向阀和节流阀等。
功率(千瓦)=流量(升/分钟)x压力(帕)/600液压泵的选型还需要根据系统的工作压力和流量来确定。
一般来说,液压泵的压力和流量应该略大于系统的工作压力和流量,以确保系统正常工作。
液压泵的选择要考虑到工作环境的温度、液体的粘度和成本等因素。
液压缸的选择也需要进行一些计算。
输出力(牛顿)=压力(帕)x断面积(平方米)液压缸的选择要根据所需的输出力和工作压力来确定。
液压缸的密封性能和机械结构等因素也需要考虑。
另外,液压系统设计中还需要考虑管道的设计和安装。
管道的设计要根据系统的工作温度、压力和流量来确定。
管道的材料和尺寸选择要满足系统的需要,并保持良好的连接和密封性能。
综上所述,液压系统设计涉及到多个方面的计算和选择。
通过合理的设计和计算,可以确保液压系统的性能和可靠性。
因此,在液压系统的设计过程中,需要充分考虑各个因素,并进行适当的计算和分析。
液压系统的设计计算举例
作缸的小腔,即从泵的出口到缸小腔之间的压力损失 Δp = 5.5×105 MPa ,于是小泵出
口压力 pp1 = 21.56×105 MPa (小泵的总效率 η 1 = 0.5 ),大泵出口压力 pp2 =
23.06×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率为
P pp1q1 pp2q2 21.56 105 0.167 103 W 23.06 105 0.267 103 W 1 951.5 W
= 0.5 ,大泵出口压力 pp2 = 15.18×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率
为
P1
pp1q1 1
pp 2 q2 2
13.68 105 0.167 103 0.5
W 15.18 105 0.267 103 0.5
W
1 267.5 W
(2)工进
小泵的出口压力 pp1 = p1 +Δp1 = 32.19×105 MPa ,大泵卸载,卸载压力取 pp2 =
液压传动
液压系统的设计计算举例
1.1 分析工况及主机工作要求,拟定液压系统方案 1.2 参数设计 1.3 选择元件 1.4 液压系统性能验算
液压系统的设计计算举例
1.1 液分析工况及主机工作要求,拟定液压系统方案
(一) 确定执行元件类型
(二) 确定执行元件的负载、速度变化范围
Fw 18 000 N
1
2
0.5
0.5
综合比较,快退时所需功率最大。据此查产品样本选用Y112M—6型异步电机,
电机功率2.2 kW,额定转速为940 r/min。
(三) 选择液压阀
根据液压阀在系统中的最高工作压力与通过该阀的最大流量,可选出这些元件的 型号及规格。选定的元件列于表中。
机械设计基础液压与气动元件的选型与应用
机械设计基础液压与气动元件的选型与应用液压与气动系统是机械设计中常用的动力传输和控制系统。
在机械设计中选择合适的液压与气动元件对于确保系统的正常运行至关重要。
本文将就液压与气动元件的选型与应用进行探讨,以帮助机械设计师更好地理解和应用这两种元件。
一、液压元件的选型与应用(1)液压系统的基本构成液压系统主要由液压源、执行元件、控制元件和辅助装置等组成。
液压源可以是液压泵、液压站等;执行元件包括液压缸、液压马达等;控制元件有液控阀、电液比例阀等;辅助装置主要指液压油箱、管路和油位指示器等。
(2)液压元件的选型原则在选择液压元件时,需要考虑以下几个原则:- 承载能力:根据系统的需求来选择具有足够承载能力的液压元件,以确保系统正常运行;- 稳定性:选用具有良好稳定性的液压元件,能够在高负荷和恶劣环境下稳定工作;- 尺寸和重量:要选择尺寸和重量适中的液压元件,以便于系统的安装和维护;- 可靠性:选择可靠性高的液压元件,能够延长系统的使用寿命;- 经济性:在满足系统需求的前提下,选择价格合理的液压元件。
(3)常用液压元件的应用液压系统中常用的液压元件有液压缸、液压泵、液压阀等。
- 液压缸:液压缸通过液压能将液体的压力转换成机械能,广泛应用于各种液压传动系统中;- 液压泵:液压泵是液压系统的动力源,能够将机械能转换成液体压能;- 液压阀:液压阀用于控制液压系统的流量和压力,是液压系统中的关键元件。
二、气动元件的选型与应用(1)气动系统的基本构成气动系统主要由气源、执行元件、控制元件和辅助装置等组成。
气源一般为压缩空气或惰性气体,执行元件有气缸、电磁阀等;控制元件有手动阀、电液比例阀等;辅助装置包括滤清器、压力表等。
(2)气动元件的选型原则在选择气动元件时,需要遵循以下几个原则:- 输出力和速度:根据系统的要求选择适当的输出力和速度的气动元件;- 稳定性:要选择具有良好稳定性的气动元件,以确保系统的稳定运行;- 维护性:选择易于维护和保养的气动元件,以降低系统的维护成本;- 耐用性:选用耐用且寿命较长的气动元件,能够延长系统的使用寿命;- 经济性:在满足系统需求的前提下,选择价格适中的气动元件。
液压油管选型计算公式
液压油管选型计算公式液压系统是工程领域中常见的一种动力传递系统,它通过液压油管传递压力,驱动液压执行元件完成各种动作。
在液压系统中,液压油管的选型是非常重要的,它直接影响到系统的工作性能和安全可靠性。
在进行液压油管选型时,需要考虑到液压系统的工作压力、流量、工作温度等因素,以确保选用的液压油管能够满足系统的工作要求。
液压油管的选型计算公式是液压系统设计中的重要内容,它可以帮助工程师快速准确地选择合适的液压油管。
下面我们将介绍液压油管选型计算公式的相关内容。
液压油管选型计算公式的基本原理是根据液压系统的工作压力和流量来确定液压油管的内径和壁厚。
在液压系统中,液压油管的内径和壁厚直接影响到油管的承压能力和耐腐蚀性能。
因此,在进行液压油管选型时,需要根据液压系统的工作压力和流量来计算出液压油管的内径和壁厚,以确保油管能够承受系统的工作压力并具有良好的耐腐蚀性能。
液压油管选型计算公式的基本形式如下:内径计算公式,d = (Q × 4) / (π× V)。
壁厚计算公式,t = (P × d) / (2 × S)。
其中,d为液压油管的内径,单位为毫米;Q为液压系统的流量,单位为立方米/秒;V为液压油的流速,单位为米/秒;P为液压系统的工作压力,单位为兆帕;t为液压油管的壁厚,单位为毫米;S为液压油管的安全系数。
在进行液压油管选型计算时,首先需要确定液压系统的工作压力和流量。
工作压力是液压系统设计中的重要参数,它直接影响到液压油管的承压能力和安全可靠性。
流量是液压系统传递动力的重要参数,它直接影响到液压油管的内径大小。
根据液压系统的工作压力和流量,可以通过上述公式计算出液压油管的内径和壁厚。
在进行液压油管选型计算时,还需要考虑到液压油管的材料和制造工艺。
液压油管通常采用碳钢、不锈钢等材料制成,不同材料的液压油管具有不同的承压能力和耐腐蚀性能。
在进行液压油管选型时,需要根据液压系统的工作环境和工作要求来选择合适的液压油管材料,以确保油管具有良好的耐腐蚀性能和承压能力。
液压计算(原件选择)
液压元件的选择一、液压泵的确定与所需功率的计算 1.液压泵的确定(1)确定液压泵的最大工作压力。
液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p 1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp ,即p B =p 1+ΣΔp (9-15)ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统 ΣΔp 为(2~5)×105Pa ,用调速阀及管路复杂的系统ΣΔp 为(5~15)×105Pa ,ΣΔp 也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选取。
B B max 的泄漏确定。
①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即q B ≥K(Σq)max (m 3/s) (9-16)式中:K 为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max 为同时动作的液压缸(或马达)的最大总流量(m 3/s)。
②采用差动液压缸回路时,液压泵所需流量为:q B ≥K(A 1-A 2)v max (m 3/s) (9-17)式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m 2);v max 为活塞的最大移动速度(m/s)。
③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即q B =∑=Z1i V i K/T i (9-18)式中:V i 为液压缸在工作周期中的总耗油量(m 3);T i 为机器的工作周期(s);Z 为液压缸的个数。
(3)选择液压泵的规格:根据上面所计算的最大压力p B 和流量q B ,查液压元件产品样本,选择与P B 和q B 相当的液压泵的规格型号。
液压系统计算公式
液压系统计算公式液压系统是一种利用液压传动能量、控制和执行机械运动的系统。
在液压系统中,计算液压元件的尺寸和性能参数是非常重要的,这样可以确保液压系统的正常工作和高效运行。
1.流量公式:液压流量是指液压系统中单位时间内流过管道或液压元件的液体体积。
液体流量通常用升/分钟(L/min)或立方米/分钟(m³/min)表示。
计算液压流量的公式如下:Q=A×v其中,Q表示流量,A表示液压元件的截面面积,v表示流速。
液压元件的截面面积可以根据元件的形状和尺寸进行计算,流速可以根据工作情况和流量要求进行选择。
2.压力公式:液压系统中的压力是指液体在管道或液压元件中的压力。
计算液压系统中的压力,需要考虑液体的密度、重力加速度和液体高度。
液压压力的公式如下:P=γ×h其中,P表示压力,γ表示液体的密度,h表示液体的高度。
液体的密度可以根据液体的种类和温度进行选择,液体的高度可以根据液压系统的工作条件和需求进行确定。
3.功率公式:液压系统中的功率是指液体对外界做功的能力。
液体的功率可以通过液体的流量和压力来计算。
液压系统的功率公式如下:P=Q×ΔP其中,P表示功率,Q表示流量,ΔP表示压力差。
流量可以通过计算液压元件的截面积和流速得到,压力差可以通过液压系统的设计和工作情况来确定。
4.马力公式:液压系统中的马力是指液体对外界产生的功率,常用于表示液压泵的功率大小。
液压系统的马力公式如下:Hp=Q×ΔP/1715其中,Hp表示马力,Q表示流量,ΔP表示压力差。
流量和压力差的计算方式与功率公式相同。
以上是液压系统计算中常用的一些公式,可以帮助工程师和技术人员合理设计和调整液压系统,确保液压系统的正常工作和高效运行。
当然,液压系统设计和计算还需要考虑其他因素,比如液体的黏度、温度、管道的摩擦损失等,因此在实际应用中还需综合考虑各种因素进行计算和调整。
计算液压缸的的尺寸和所需流量
计算液压缸的的尺寸和所需流量1液压缸的内径和活塞杆的内径工作压力的确定P=3MPa.2计算液压缸尺寸(1)液压缸的有效面积A1A1=F/P=1000KN/16MPa=62500 mm2D=√4 A1/π=282.16 mm取标准值D=280 mm(2)活塞杆直径取速比系数为ψ=1.46d=√ψ-1/ψ=280√1.46-1/1.46=157.17 mm取标准值d=160 mm3缸径、缸径取标准值后的有效面积无杆腔的有效面积:A1=πD2 /4=πx280 2/4=61544 mm2有杆腔的有效面积:A2=πd2 /4=πx160 2/4=41448 mm24 确定缸所需要的流量无干腔:Q1 = A1 v=61544x10-6 x4=246(L/min)有干腔:Q2= A2v=41448x10-6 x4=167(L/min)液压元件的计算和选择1液压泵和电动机的选择前面选择液压系统的压力为16MPa,因此根据机械手册计算泵的额定压力Pb=(1.25~1.6)P=(1.25~1.6)×25Mpa=20~25.6MPa因此泵的额定压力可取为Pb= 25MPa2系统流量的计算液压缸工作时所需流量为Q= Q1 = A1 v=246(L/min)Q系= KQ=1.2×246 =295.2L/min3泵的选择先取电动机的转速为1500r/min则要求泵的几何流量为q B =1500Q=246/1500= 164 ml/r又因为系统要求压力高且可变流量,故选用柱塞式恒功率变量泵查力士乐设计手册选用泵的型号为A4V180泵。
4电动机的选择泵的输入功率为P=PQ/612X0.9=160x295.2/612/0.9=85.75 KW查机械设计手册得电动机的型号为Y280M-4其输出功率为90kw 转速为1480r/min5油箱容积的计算锻压机械油箱的有效容量一般为泵每分钟流量的5~7倍。
所以泵的排量为Q B =nq B =1500r/min ×295.2ml/r ÷1000=442.8L查机械设计手册得油箱的计算公式为V=(5~7)X442.8L=2214~3099.6L系统取V=2500L因此油箱的长宽高分别取800mm 、620mm 、500mm6管路内径的选择吸油管:d=4.6VQ =4.6√295.2/2=55.8≈56mm 吸油管:d=4.6VQ =4.6√295.2/2.5 =49.9 ≈50mm 根据《机械设计手册》表20-8-2,取公称通径d=65mm,外径75mm 。
液压系统的选型
式中L——液压缸的最大行程;
D——液压缸的内径。
取H=30mm。
活塞的宽度B一般取 ;取
缸盖滑动支承面的长度 ,根据液压缸的内径D而定;
当 ;
。
则 。
为保证最小导向长度H,若过大增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小的导向长度H决定,即
一、(1)
取活塞堵头的直径d=56mm,检测的空气压力为6bar,取液压缸的工作压力为p1=5bar,液压缸的背压为p2=3bar,。
作用在活塞杆上的力F=nPS=0.75 5×105 (56/2)2 10(-6)=923.63N
根据上面的图形来计算液压缸的直径D。
代入数据得;
D=0.0787m=78.7mm
液压泵的最大流量应为:
式中 ——液压泵的最大流量
——同时动作的各执行所需要的流量之和的最大值
——系统泄漏洗漱,一般取 =1.1~1.3,现取 =1.1。
可以选取的液压缸为CX系列薄型液压缸,MCX-SD 。
根据液压缸的直径可以求出面积:
(2)液压缸所需的实际流量计算
①工作液压缸快速空程时所需流量:
——液压缸的工作容积效率,取 =0.96;
——快速空程时的速度,取 =0.06m/s
②工作刚压制时所需要的流量:
取 =0.01m/s
③工作刚回程时所需要的流量:
设计计算过程
(1)缸体与缸盖的连接形式
缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
本次设计中采用法兰连接,如下图所示:
优点:
1结构简单、成本低;
2容易加工、便于装拆;
液压设计需要哪些计算公式
液压设计需要哪些计算公式液压系统是一种利用液体传递能量的动力传动系统,广泛应用于机械工程、航空航天、船舶、汽车等领域。
在液压系统的设计过程中,需要进行各种计算以确保系统的安全可靠性和性能指标的满足。
本文将介绍液压系统设计中常用的计算公式,包括液压缸的推力计算、液压泵的流量计算、液压阀的压降计算等内容。
1. 液压缸的推力计算。
液压缸是液压系统中常用的执行元件,其推力的计算是设计液压系统时的重要参数。
液压缸的推力计算公式为:F = P × A。
其中,F为液压缸的推力,单位为牛顿(N);P为液压缸的工作压力,单位为帕斯卡(Pa);A为液压缸的有效工作面积,单位为平方米(m²)。
2. 液压泵的流量计算。
液压泵是液压系统中的动力源,其流量的计算是设计液压系统时的关键参数。
液压泵的流量计算公式为:Q = V × n。
其中,Q为液压泵的流量,单位为立方米每秒(m³/s);V为液压泵的排量,单位为立方厘米每转(cm³/r);n为液压泵的转速,单位为转每分钟(r/min)。
3. 液压阀的压降计算。
液压阀是液压系统中的控制元件,其压降的计算是设计液压系统时的重要参数。
液压阀的压降计算公式为:ΔP = K × Q²。
其中,ΔP为液压阀的压降,单位为帕斯卡(Pa);K为液压阀的流量系数,是与液压阀的结构和工作原理相关的参数;Q为液压阀的流量,单位为立方米每秒(m³/s)。
4. 液压管路的压力损失计算。
液压管路是液压系统中的传输元件,其压力损失的计算是设计液压系统时的重要参数。
液压管路的压力损失计算公式为:ΔP = f × L × (Q/D)²。
其中,ΔP为液压管路的压力损失,单位为帕斯卡(Pa);f为液压管路的摩阻系数,是与管路材料和管路形状相关的参数;L为液压管路的长度,单位为米(m);Q为液压管路的流量,单位为立方米每秒(m³/s);D为液压管路的直径,单位为米(m)。
液压系统设计与计算
(2)确定执行元件的主要结构参数
以缸为例,主要结构尺寸指缸的内径D和活塞杆的直 径d,计算后按系列标准值确定D和d。
对有低速运动要求的系统,尚需对液压缸有效工作面 积进行验算,即应保证:
式中
A q min v min
(10.8)
:A—液压缸工作腔的有效工作面积;
v m in—控制执行元件速度的流量阀最小稳定流量;
17
1.3.2 选择液压泵
先根据设计要求和系统工况确定泵的类型, 然后根据液压泵的最大供油量和系统工作压力来 选择液压泵的规格。
(1) 液压泵的最高供油压力
ppp pl (10.11)
式中: p—执行元件的最高工作压力;
pl —进油路上总的压力损失。
18
(2)确定液压泵的最大供油量 液压泵的最大供油量为:
khAt (10.15)
式中: A—油箱的散热面积;
t —液压系统的温升;
k h —油箱的散热系数,其值可查阅液压设计手册。
系统的温升为 t kh A
(10.16)
计算温升值如果超过允许值,应采取适当的冷却措施。
27
1.5 绘制正式工作图和编制技术文件
10.1.5.1 绘制正式工作图 正式工作图包括液压系统原理图、液压系统装配图、
30
机床的外形示意图。
1-左主轴头;2-夹具;3-右主轴头;4-床身;5-工件
31
2.1 确定对液压系统的工作要求
根据加工要求,刀具旋转由机械传动来实现;主轴头 沿导轨中心线方向的“快进一工进—快退—停止”工作循环 拟采用液压传动方式来实现。故拟选定液压缸作执行机构。
考虑到车削进给系统传动功率不大,且要求低速稳定 性好,粗加工时负载有较大变化,故拟选用调速阀、变量 泵组成的容积节流调速方式。
液压元件选择标准(5篇范例)
液压元件选择标准(5篇范例)第一篇:液压元件选择标准液压系统元件的选择液压元件的选择液压泵的确定与所需功率的计算 1.液压泵的确定(1)确定液压泵的最大工作压力。
液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即pB=p1+ΣΔp ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照下表选取。
常用中、低压各类阀的压力损失(Δpn)阀名Δpn(×105Pa)阀名Δpn(×105Pa)阀名Δpn(×105Pa)阀名Δpn(×105Pa)单向阀 0.3~0.5 背压阀 3~8 行程阀 1.5~2 转阀 1.5~2 换向阀 1.5~3 节流阀 2~3 顺序阀 1.5~3 调速阀 3~5(2)确定液压泵的流量qB。
泵的流量qB根据执行元件动作循环所需最大流量qmax 和系统的泄漏确定。
①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即qB≥K(Σq)max(m3/s)式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。
②采用差动液压缸回路时,液压泵所需流量为:qB≥K(A1-A2)vmax(m3/s)式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。
液压系统的设计计算
液压系统的设计计算液压系统的设计计算是指根据系统需求和性能要求,对液压系统进行各种参数计算和选择,从而确定系统的组成部分、工作压力、流量、功率等。
液压系统设计计算是液压系统设计的核心内容,它的准确性和合理性直接影响到系统的可靠性和经济性。
1.系统需求分析:根据工程要求和工作条件,确定系统所需实现的功能和性能指标,如工作压力、流量范围、温度要求等。
2.液压元件选择:根据系统需求和性能要求,选择合适的液压元件,如泵、阀、缸等。
选择液压元件时需要考虑其工作压力、流量范围、可靠性和经济性等因素。
3.泵的选择和计算:根据系统流量需求、压力要求和功率要求,选择合适的液压泵,并进行泵的参数计算,如流量、压力、功率等。
4.阀的选择和计算:根据系统的各种控制要求,选择适合的液压控制阀,并进行阀的参数计算和周围功率计算。
5.液压油的选择和计算:根据系统的工作条件和使用要求,选择适合的液压油,并进行液压油的流量、温度等参数计算。
6.缸的选择和计算:根据系统的工作要求和加工条件,选择合适的液压缸,并进行缸的参数计算,如缸的内径、活塞面积、行程等。
根据缸的参数计算结果,还可以进一步计算缸的马达功率。
7.液压管道设计和计算:根据系统的压力和流量要求,设计液压管道的布局和尺寸,并计算管道的流速、压降和功率损失。
8.容积器和油箱的选择和计算:根据系统的工作条件和容积需求,选择适合的液压容积器和油箱,并进行容积的计算和选择。
在对液压系统进行设计计算时,需要结合实际工程情况和系统要求,综合考虑多个因素,并进行相关参数和性能计算。
同时,还需要根据设计计算结果进行系统的调整和优化,以满足系统的实际需求。
总之,液压系统的设计计算是液压系统设计的基础和关键,通过合理的设计计算,可以提高系统的可靠性、经济性和效率,实现系统的最佳工作状态。
液压系统的设计与计算
下午2时22分
18
五、验算液压系统性能
液压系统初步确定后就需对系统的有关性能加以验算,以检测 系统的设计质量,并对液压系统进行完善和改进。根据液压系 统的不同,需要验算的项目也有所不同,但一般的液压系统都 要进行回路压力损失和发热温升的验算。
1. 系统压力损失的验算
p pl p pv
液压系统的压力损失包括沿程、局部损失和阀的局部损失。
液压与液力传动
第九章 液压系统的设计与计算
液压系统的设计与计算是液压机械总设计的一部分, 是对前面各章内容的综合运用。总设计过程为: (1)根据整机的用途、特点和性能,明确对液压系统的 设计任务。 (2)对工况进行分析,确定液压系统的主要参数; (3)拟定出合理的液压系统原理图; (4)计算和选择液压元件的规格 (5)演算液压系统的性能 (6)绘制工作图、编写技术文件。
要求验算液压缸尺寸 即
A qmin
vmin
• 在D和d确定之后,可求得液压缸所需流量为:
q1=vmaxA
下午2时22分
13
3 执行元件工况图
工况图是指液压执行元件结构参数确定之后,根 据主机工作循环,算出不同阶段中的实际工作压力、 流量和功率随时间变化图,如图所示。
工况图反映了液压系统在整个工作循环中,三个参 数的随时间变换情况。
动摩擦因数0.1, 液压执行元件为液压元件。
设计液压缸的面积和确定液压系统控制图
下午2时22分
21
一、负载分析
(1)切削力:
Fe 22.5DS0.8(HB)0.6
式中,Fe为钻削力,N; D为钻头直径,mm;S为每 转进给量,mm; HB为工件硬度。
对于直径为13.9mm的孔,转速n1=360r/min, S1=0.147mm/r; 对于直径为8.5mm的孔,转速n2= 550r/min, S2=0.096mm/r; 带入上式,可得:
第9章液压系统设计与计算-
• 快进时:
差动系统
p F A1 A2
qv快 (A1A2)
非差动系统
p1
F A1
A2 A1
p2
q v快A1
P pq
•工进时:
p1
A2 A1
F pb A1
q v工A1
P p工q工
• 快退
p1
A2 A1
pb
F A1
qv快退A2
P pq
图9-2 组合机床执行元件工况图
Ff f FN
(9-2)
式中 FN——运动部件及外负载对支撑面的正压力; f——摩擦系数,分 静摩擦系数( fS≤0.2~0.3)和动摩擦系数(fd ≤0.05~0.1)。
(3)惯性负载 Fa 惯性负载是运动部件的速度变化时,由其惯性而产生的负
载,可用牛顿第二定律计算:
Fa
ma Gv g t
液压缸推力F(N)
F =( Ffs + FL ± Fg) /ηm F =( Ffd + FL +Fa± Fg) /ηm F =( Ffd + FL± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffd + FL ± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffs + Fa ± Fg) /ηm
来验பைடு நூலகம்,即
A q min v min
(9-5)
qmin—流量阀最小稳定流量。
液压马达:排量的计算式为
2T
V
p Mm
(9-6)
式中 T—液压马达的总负载转矩,N.m; ηMm—液压马达的机械效率; p—液压马达的工作压力,pa; V—所求液压马达的排量,m3/r。
液压系统设计及计算
液压系统设计及计算液压系统设计及计算是指对液压系统进行整体设计和性能计算的过程。
液压系统设计包括液压系统的结构设计、元件选型、管道布置等方面,液压系统计算主要涉及液压系统的流量、压力、功率等参数的计算。
下面将分别介绍液压系统的设计和计算。
1.确定液压系统的功能要求,包括工作行程、工作压力、工作速度、工作负载等参数。
2.根据系统功能要求,选择适当的液压元件,如液压泵、液压马达、液压阀等。
3.根据系统的工作压力和流量要求,计算确定液压泵和液压马达的工作参数,包括流量、压力、速度、功率等参数。
4.根据系统的动力源情况,选择适当的液压泵和液压马达。
5.根据系统的工作压力和工作负载,计算确定液压阀的流量和压力损失。
6.设计液压系统的管道布置,包括管道的截面积、长度、弯头数目等参数。
7.设计液压系统的油箱、过滤器、冷却器等辅助元件。
液压系统计算的基本原理如下:1.流量计算:根据系统的工作行程和工作速度,计算液压系统的流量需求。
流量计算公式为Q=V/t,其中Q为体积流量,V为液压缸的有效工作体积,t为工作行程所需时间。
2.压力计算:根据系统的工作负载和元件的压力损失,计算液压系统的工作压力。
压力计算公式为P=F/A,其中P为压力,F为工作负载,A为液压缸的有效工作面积。
3.功率计算:根据系统的流量和压力,计算液压系统的功率需求。
功率计算公式为P=W/t,其中P为功率,W为工作所需的能量,t为工作所需时间。
4.效率计算:根据液压系统的损失和输出功率,计算液压系统的效率。
效率计算公式为η=(P输出/P输入)×100%,其中η为效率,P输出为输出功率,P输入为输入功率。
总之,液压系统设计和计算是液压技术中非常重要的一部分,通过合理的设计和准确的计算,可以保证液压系统的性能和可靠性。
对于液压系统的设计和计算,需要具备一定的液压原理和工程经验,并且不断学习和更新液压技术,提高设计和计算的水平。
液压元件工作压力的合理选择匹配分析
液压元件工作压力的合理选择匹配分析摘要:液压元件是现代工程中不可或缺的一部分。
在流体传动系统中,液压元件的工作压力是至关重要的。
合理选择和匹配液压元件的工作压力,可以保证系统稳定运行,提高工作效率和经济效益。
本文将介绍液压元件的工作压力选择与匹配的相关知识,包括工作压力的影响因素、选择原则、匹配技巧等,旨在为液压元件的应用提供参考。
关键词:液压元件,工作压力,选择,匹配正文:一、工作压力的影响因素液压元件的工作压力受多种因素影响,主要包括:1.工作条件:工作条件是影响液压元件工作压力的主要因素之一。
不同应用场景的工作条件不同,如温度、压力、湿度、气压等,都会对工作压力的选择和匹配产生影响。
2.液体的特性:液体的粘度、密度、温度等特性,对液压元件的工作压力也有重要影响。
例如,粘度高的液体需要更高的工作压力才能传递相同的功率,密度大的液体工作压力也相对较高。
3.液压元件的结构:液压元件的结构对其工作压力也有一定的影响。
例如,壳体强度、密封性能、材料等都对元件工作压力的选择和匹配产生重要作用。
二、工作压力的选择原则在选择液压元件的工作压力时,应遵循以下原则:1.安全性原则:应根据系统最大允许工作压力和元件自身的承受能力来确定其工作压力,以保证系统的安全性。
2.经济性原则:应考虑元件的价格、维护成本、使用寿命及系统效率等因素,选择最经济的工作压力。
3.可靠性原则:应根据元件的精度、稳定性、寿命等因素,选择最可靠的工作压力。
4.兼容性原则:在选择元件的工作压力时,应充分考虑不同元件的兼容性,以保证系统的匹配性和稳定性。
三、匹配技巧合理匹配液压元件的工作压力,是保证系统稳定运行的关键。
匹配技巧主要包括以下几个方面:1.流量计算:在匹配液压元件的工作压力时,应准确计算系统的流量,以保证元件的流量要求。
2.流阻计算:在匹配液压元件的工作压力时,应准确计算系统的流阻,以保证元件的稳定性和最佳效率。
3.压力平衡:在匹配液压元件的工作压力时,应保持系统的压力平衡,避免出现压力过高或过低等问题。
液压元件的选择与专用件设计
液压元件的选择与专用件设计4.1 液压泵的选择1)确定液压泵的最大工作压力p pp p≥p1+Σ△p(21)式中 p1——液压缸或液压马达最大工作压力;Σ△p——从液压泵出口到液压缸或液压马达入口之间总的管路损失。
Σ△p 的准确计算要待元件选定并绘出管路图时才能进行,初算时可按经验数据选取:管路简单、流速不大的,取Σ△p=(0.2~0.5)MPa;管路复杂,进口有调阀的,取Σ△p=(0.5~1.5)MPa。
2)确定液压泵的流量Q P多液压缸或液压马达同时工作时,液压泵的输出流量应为Q P≥K(ΣQ max)(22)式中 K——系统泄漏系数,一般取K=1.1~1.3;ΣQ max——同时动作的液压缸或液压马达的最大总流量,可从(Q-t)图上查得。
对于在工作过程中用节流调速的系统,还须加上溢流阀的最小溢流量,一般取0.5×10-4m3/s。
系统使用蓄能器作辅助动力源时式中 K——系统泄漏系数,一般取K=1.2;T t——液压设备工作周期(s);V i——每一个液压缸或液压马达在工作周期中的总耗油量(m3);z——液压缸或液压马达的个数。
3)选择液压泵的规格根据以上求得的p p和Q p值,按系统中拟定的液压泵的形式,从产品样本或本手册中选择相应的液压泵。
为使液压泵有一定的压力储备,所选泵的额定压力一般要比最大工作压力大25%~60%。
4)确定液压泵的驱动功率在工作循环中,如果液压泵的压力和流量比较恒定,即(p-t)、(Q-t)图变化较平缓,则式中 p p——液压泵的最大工作压力(Pa);Q P——液压泵的流量(m3/s);ηP——液压泵的总效率,参考表9选择。
限压式变量叶片泵的驱动功率,可按流量特性曲线拐点处的流量、压力值计算。
一般情况下,可取p P=0.8p Pmax,Q P=Q n,则式中——液压泵的最大工作压力(Pa);——液压泵的额定流量(m3/s)。
在工作循环中,如果液压泵的流量和压力变化较大,即(Q-t),(p-t)曲线起伏变化较大,则须分别计算出各个动作阶段内所需功率,驱动功率取其平均功率式中 t1、t2、…t n——一个循环中每一动作阶段内所需的时间(s);P1、P2、…P n——一个循环中每一动作阶段内所需的功率(W)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节第四节液压元件的计算与选择
一、液压泵
首先依据初选的系统压力选择液压泵的结构类型,一般P<21MPa,选用齿轮泵和叶片泵;P>21MPa,则选择柱塞泵。
然后确定液压泵的最大工作压力和流量。
液压泵的最大工作压力必须等于或超过液压执行元件最大工作压力及进油路上总压力损失这两者之和,液压执行元件的最大工作压力可以从工况图或表中找到;进油路上总压力损失可以通过估算求得,也可以按经验资料估计,见表10-3。
液压泵的流量必须等于或超过几个同时工作的液压执行元件总流量的最大值以及回路中泄漏量这两者之和。
液压执行元件总流量的最大值可以从工况图或表中找到(当系统中备有蓄能器时,此值应为一个工作循环中液压执行元件的平均流量);而回路中泄漏量则可按总流量最大值的10%-30%估算。
在参照产品样本选取液压泵时,泵的额定压力应选得比上述最大工作压力高20%-60%,以便留有压力储备;额定流量则只需选得能满足上述最大流量需要即可。
液压泵在额定压力和额定流量下工作时,其驱动电机的功率一般可以直接从产品样本上查到。
电机功率也可以根据具体工况计算出来,有关的算式和数据见第三章相关部分或液压工程手册。
二、阀类元件
阀类元件的规格按液压系统的最大压力和通过该阀的实际流量从产品样本上选定。
各类液压阀都必须选得使其实际通过流量最多不超过其公称流量的120%,否则会引起发热、噪声和过大的压力损失,使阀的性能下降。
选用液压阀时还应考虑下列问题:阀的结构形式、特性、压力等级、连接方式、集成方式及操纵方式等。
对流量阀应考虑其最小稳定流量;对压力阀应考虑其调压范围;对换向阀应考虑其滑阀机能等。
1.流量阀的选择
选择节流阀和调速阀时还要考虑其最小稳定流量是否符合设计要求,一般中、低压流量阀的最小稳定流量为50ml/min~100ml/min;高压流量阀的最小稳定流量为min~20ml/min。
流量阀对流量进行控制,需要一定的压差,高精度流量阀进、出口约需1MPa的压差。
普通调速阀存在起始流量超调的问题,对要求高的系统可选用带手调补偿器初始开度的调速阀或带外控关闭功能的调速阀。
对于要求油温变化对外负载的运动速度影响小的系统,可选用温度补偿型调速阀。
2.溢流阀的选择
直动式溢流阀响应快,适合作制动阀及流量较小的安全阀,先导式溢流阀的启闭特性好,宜作调压阀,背压阀及流量较大的安全阀用。
先导式溢流阀有二级同心和三级同心之分,二级同心型的泄漏量小,常用于需保压的回路中。
先导式溢流阀的最低调定压力一般只能在~1Mpa范围内。
选择溢流阀时,应按液压泵的最大流量选取,并应注意其许用的最小稳定流量,一般来说,其最小稳定流量应是公称流量的15%以上。
3.单向阀及液控单向阀的选择
选择单向阀时,应注意其开启压力大小,开启压力小作单向阀,开启压力大作背压阀。
液控单向阀有内泄式和外泄式之分,外泄式的控制压力较低,工作可靠,但要多一根泄油油管。
液控单向阀还有带卸荷小阀芯和不带卸荷小阀芯之分,前者控制压力较低,常用于高压系统,有时还可作为液压机的卸压阀用。
4 换向阀的选择
按通流量选择结构型式,一般通流量在190L/min以上时,宜选用二通插装阀,70L/min 以下可选用电磁换向阀,否则需用电液换向阀。
按换向性能等选择电磁铁类型,由于直流电磁铁尤其是直流湿式电磁铁的寿命长,可靠性高,故应尽量选用直流湿式电磁换向阀。
按系统要求选择滑阀机能,详见第五章第四节有关内容。
对于可靠性要求特别高的系统来说,阀类元件的额定压力应高出其工作压力较多。
5 液压阀的配置形式
液压阀的配置形式有管式配置、板式配置和集成式配置,详见第五章第一节。
目前液压系统多采用集成式配置。
下面简要说明集成块的设计。
(1)(1)块体设计集成块的材料一般为铸铁或锻钢,低压固定设备可用铸铁,高压强振场合要用锻钢。
块体加工成正方体或长方体。
对于较简单的液压系统,其液压阀较少,可安装在同一个集成块上。
如果液压系统复杂,阀件较多,就要采取多个集成块叠积的形式。
相互叠积的集成块上下面一般为叠积接合面,钻有公共压力油孔P,公共回油孔T,泄油孔L和四个用于叠积的螺栓孔。
P孔:液压泵输出的压力油经调压后进入公共的压力油孔P,作为供给各单元回路压力油的公共油源。
T孔:各单元回路的回油均通到公共回油孔T,流回到油箱。
L孔:,各液压阀的泄漏油,统一通过公共泄漏油孔流回油箱。
集成块的其余四个表面,一般后面接通液压执行元件的油管,另三个面用以安装液压阀。
块体内部按系统图的要求,钻有沟通各阀的孔道。
(2)集成块结构尺寸的确定外形尺寸要满足阀件的安装,孔道布置及其它工艺要求。
为减少工艺孔,缩短孔道长度,阀的安装位置要仔细考虑,使相通油孔尽量在同一水平面或同一竖直面上。
对于复杂的液压系统,需要多个集成块叠积时,一定要保证三个公用油孔的坐标相同,使之叠积起来后形成三个主通道。
各油孔的内径要满足允许流速的要求,一般来说,与液压阀直接相通的孔径应等于所装液压阀的油孔通径。
油孔之间的壁厚不能太小,一方面防止使用过程中,由于油的压力而击穿,另一方面避免加工时,因油孔的偏斜而误通。
对于中、低压系统壁厚不得小于5mm,高压系统应更大些。
油管规格的确定和油箱容量的估算见本书的第六章。
二、元件的选择和计算
字体[大][中][小]夹带式提升机机尾拉紧装置的布置如图7-17所示。
1.拉紧力和拉紧行程的计算
取T最大=,已知主带的机尾滚筒拉力S2=,盖带机尾滚筒拉力Y2=,则:
S′2=S2/=
Y′2=Y2/=1454N
图7-17 机尾拉紧装置的布置
F拉1=Y2+Y′2=
F拉2=S2+S′2=
取输送带全长L=40m,则拉紧行程L拉紧为:
L拉紧=~L+
取,则:
L拉紧=×40+=
2.液压缸的选择
按L拉紧及F拉最大查液压产品目录,决定采用DG-J63型液压缸,其大端活塞面积为,小端活塞面积为,机械效率η=,压力为:
P拉1=F拉1×4/ηπ(D2-d2)=
P拉2=F拉2×4/ηπ(D2-d2)=
设活塞杆运动速度为4m/min,则流量为:
Q=υA=min
3.泵和电动机的初选
粗估压损为:△p=,则泵的工作压力为:
p额1=p拉1+△p=
p额2=p拉2+△p=
p泵最大=
泵流量的确定:
Q泵≥KQ=×=min
Q泵取为10L。
查《液压手册》,选择CB-C10C-FL型泵,其额定转速为1800r/min,额定压力为p= 。
该泵的驱动功率为,Q泵=min。
选取电动机机械效率η=,则电动机的功率为:
选用Y100LI-4型电动机,功率为。
4.元件的初选
各阀通过实际量,按系统最高压力初步选取,如表7-10所示。
表7-10 元件初选表
序号元件名称实际液量/L规格
1滤油器10XLI-25×200B
2齿轮泵GB-G1016
3截止阀10Q43NS-40
4单向阀10I10-B
5电接触压力表KF-L81E
6截止阀1043NS-40
7节流阀1~3L10-B
8压力继电器PF-B8H
9安全阀10YF-L10H
10截止阀10Q43NS-40
11油缸DG-J63C
已知最大推力F=20kN,最大拉紧行程L=2m,参考液压元件产品目录,最后确定选用型号为DG-J100C型双作用单活塞杆油缸,其油缸直径为100mm,活塞大端面积为,小端面积为,活塞大端长2000mm。
当压力为时,F拉=;当压力为时,F拉=。
由此确定其额定压力为即可。
系统在F=20kN、机械效率η=时,运行压力为:
设定活塞杆运动速度为4m/min,则其油量为:
Q G=vA=min
5.液压油的选择
经上述计算确定p最大=,由液压元件产品查得选用22号汽轮机油(又名透平油),其运动粘度v50=(20~23)×10-6m2/s,取v50=21×10-6m2/s,其密度为× 103kg/m3则其动力粘度为:
μ=ρv=×10-3×21=·s
6.泵的选择及计算
粗估压损△p=,其工作压力为:
p额1=p1+△p=
p额启=p启+△p=
所以油泵最大工作压力p max=。
油泵泄漏系数K=~取K=,则泵流量为:
Q泵≥KQ=×=min
根据液压元件产品目录选择YB-A26B型单级叶片油泵,其额定转速n=1800r/min,额定流量Q=min,驱动功率为,额定压力为。
7.电动机的选择
取电动机的机械效率为,则电动机的工作功率为:
依目录决定选用Y110M-4型电动机,其功率为4kW。
8.元件的选择
各阀依据通过实际流量及系统最高压力选择,如表7-11所示。
表7-11 元件汇总表
序号元件名称实际流量/L运用规格
1滤油器25CS66-11
2齿轮泵CB-C25C-FL
3截止阀25Q73SA
4单向阀25DIF-L10H
5压力表KF-L81E
6截止阀25Q73SA
7节流阀1~3LB10C
8压力继电器PF-L8C
9安全阀25YF-B10C
10截止阀25Q73-SA
11油缸DG-J100C。