南京中考数学专题训练---圆的综合的综合题分类
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD的长度.
详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∴△BFC∽△DGC,△FEC∽△GAC,
∴ = , = ,
∴ = ,
∵G是AD的中点,
∴DG=AG,
∴BF=EF;
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.
【答案】(1)证明见解析;(2)见解析;(3) .
【解析】
【分析】
(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;
(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;
(1)如图1,求证:∠BAD=∠CAD
(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;
(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.
图1图2图3
【答案】(1)见解析(2)见解析(3)
(2)连接AO,AB.
∵BC是圆O的直径,
∴∠BAC=90°,
由(1)得:在Rt△BAE中,F是斜边BE的中点,
∴AF=FB=EF,可得∠FBA=∠FAB,
又∵OA=OB,
∴∠ABO=∠BAO,
∵BE是圆O的切线,
∴∠EBO=90°,
∴∠FBA+∠ABO=90°,
∴∠FAB+∠BAO=90°,
即∠FAO=90°,
【点睛】
本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求wenku.baidu.com:BF=EF:
∵∠AGC是△ABG的外角,∴∠AGC=∠B+∠BAG=60°.
∵OE∥BC,∴∠AEO=∠AGC=60°.
∵OA=OE,∴∠EAO=∠AEO=60°.
(3)∵O是AC中点,∴
,∴ = .
∵AC是直径,∴∠AEC=∠FDC=90°.
∵∠ACE=∠FCD,∴△CDF∽△CEA,∴ = ,∴CF= CA= .
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴ .
2.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.
(1)求证:∠ACE=∠DCE;
(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;
(3)若AC=4, ,求CF的长.
(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB= =26,由相似三角形的性质即可得到结论.
【详解】
(1)连接AD.如图1,设∠BDC=α,∠ADC=β,
则∠CAB=∠BDC=α,
∵点C为弧ABD中点,∴ = ,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,
∵OF=OB-BF,AK=AB-BK,∴AK=2OF.
(3)连接CO并延长交AG于点M,连接BG.设∠GAB= .
∵AC=CG,∴点C在AG的垂直平分线上.∵OA=OG,∴点O在AG的垂直平分线上,
∴CM垂直平分AG,∴AM=GM,∠AGC+∠GCM=90°.
∵AF⊥CG,∴∠AGC+∠GAF=90°,∴∠GAF=∠GCM= .
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
【答案】(1)证明见解析;(2)25°.
【解析】
(3)如图2,连接OC,∴∠COB=2∠CAB,
∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,
∵∠OHC=∠ADB=90°,∴△OCH∽△ABD,∴ ,
∵OH=5,∴BD=10,∴AB= =26,∴AO=13,∴AH=18,
∵△AHE∽△ADB,∴ ,即 = ,∴AE= ,∴DE= .
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是 的直径,PA与 相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴ AD=BC,AB=CD.
∵CE:AE=OF:AO,OF=AO,
∴AE=EC.
连接OD、OC,
∵OD=OC,
∴∠ODC=∠OCD.
∵∠AOD=∠ODC,∠EOC=∠OEC,
∴∠AOC=∠EOC,
∴△AOD≌△EOC,
∴AD=CE.
∴BC=AD=CE=AE.
【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.
∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;
(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,
∵∠CAB=∠CDB,∴∠ACE=∠ADC,
∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为3 ,求BD的长度.
【答案】(1)证明见解析;(2)证明见解析;(3)2
【解析】
分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;
(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;
【解析】
试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB=90°,再证明△ABD≌△ACD即可得到结论;
(2)连接BE.由同弧所对的圆周角相等,得到∠GAB=∠BEG.再证△KFE≌△BFE,得到BF=KF= BK.由OF=OB-BF,AK=AB-BK,即可得到结论.
(3)连接CO并延长交AG于点M,连接BG.设∠GAB= .先证CM垂直平分AG,得到AM=GM,∠AGC+∠GCM=90°.再证∠GAF=∠GCM= .通过证明△AGB≌△CMG,得到BG=GM= AG.再证明∠BGC=∠MCG= .设BF=KF=a, GF=2a,AF=4a.
【答案】见解析
【解析】
试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.
【点睛】
本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.
3.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.
(1)求证:∠ABD=2∠BDC;
(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;
7.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
【答案】(1)证明见解析,(2)60°;(3)
【解析】
【分析】
(1)易证∠OEC=∠OCE,∠OEC=∠ECD,从而可知∠OCE=∠ECD,即∠ACE=∠DCE;
(2)延长AE交BC于点G,易证∠AGC=∠B+∠BAG=60°,由于OE∥BC,所以∠AEO=∠AGC=60°,所以∠EAO=∠AEO=60°;
∵tanα=tan∠HAK= ,设KH=m,则AH=2m,∴AK= =6,解得:m= ,∴AH=2m= .在Rt△BFC中, .∵∠BAD+∠ABD=90°,∠FBC+∠BCF=90°,∴∠BCF=∠BAD, ,∴tan∠GAD= = ,∴∠GAD=45°,∴HL=AH,AL= AH= .
6.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线 与大圆交于点B,点D在大圆上,BD与小圆相切于点F,AF的 延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.
试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
∵AB为⊙O的直径,∴∠AGB= 90°,∴∠AGB=∠CMG=90°.
∵AB=AC=CG,∴△AGB≌△CMG,∴BG=GM= AG.
在Rt△AGB中, .
∵∠AMC=∠AGB= 90°,∴BG∥CM,∴∠BGC=∠MCG= .
设BF=KF=a, ,∴GF=2a, ,AF=4a.
∵OK=1,∴OF=a+1,AK=2OF=2(a+1),∴AF=AK+KF=a+2(a+1)=3a+2,∴3a+2=4a,∴a=2,AK=6,∴AF=4a=8,AB=AC=CG=10,GF=2a=4,FC=CG-GF=6.
∴四边形BDHF是矩形,
∴BD=FH,
∵FH∥BC
∴△HFG∽△DCG,
∴ ,
即 ,
∴ ,
∵O的半径长为3 ,
∴BC=6 ,
∴BD= =2 .
点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.
5.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.
由OK=1,得到OF=a+1,AK=2(a+1),AF= 3a+2,得到3a+2=4a,解出a的值,得到AF,AB,GF,FC的值.由tanα=tan∠HAK= ,AK=6,可以求出AH的长.再由 ,利用公式tan∠GAD= ,得到∠GAD=45°,则AL= AH,即可得到结论.
试题解析:解:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADC=90°.
(3)易证 ,由于 ,所以 = ,由圆周角定理可知∠AEC=∠FDC=90°,从而可证明△CDF∽△CEA,利用三角形相似的性质即可求出答案.
【详解】
(1)∵OC=OE,∴∠OEC=∠OCE.
∵OE∥BC,∴∠OEC=∠ECD,∴∠OCE=∠ECD,即∠ACE=∠DCE;
(2)延长AE交BC于点G.
试题解析:
图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.
证明如下:
∵AE是小⊙O的直径,
∴OA=OE.
连接OF,
∵BD与小⊙O相切于点F,
∴OF⊥BD.
∵BD是大圆O的弦,
∴DF=BF.
∵CE⊥BD,
∴CE∥OF,
∴AF=CF.
∴四边形ABCD是平行四边形.
∴PA⊥OA,
∴PA是圆O的切线;
(3)过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC,
由(2),知∠FBA=∠BAF,
∴BF=AF.
∵BF=FG,
∴AF=FG,
∴△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH,
∵DG=AG,
∴DG=2HG.
即 ,
∵FH∥BD,BF∥AD,∠FBD=90°,
∵BD=CD,∠BDA=∠CDA,AD=AD,∴△ABD≌△ACD,∴∠BAD=∠CAD.
(2)连接BE.∵BG=BG,∴∠GAB=∠BEG.
∵CF⊥AB,∴∠KFE=90°.
∵EH⊥AG,∴∠AHE=∠KFE=90°,∠AKH=∠EKF,∴∠HAK=∠KEF=∠BEF.
∵FE=FE,∠KFE=∠BFE=90°,∴△KFE≌△BFE,∴BF=KF= BK.
详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∴△BFC∽△DGC,△FEC∽△GAC,
∴ = , = ,
∴ = ,
∵G是AD的中点,
∴DG=AG,
∴BF=EF;
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.
【答案】(1)证明见解析;(2)见解析;(3) .
【解析】
【分析】
(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;
(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;
(1)如图1,求证:∠BAD=∠CAD
(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;
(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.
图1图2图3
【答案】(1)见解析(2)见解析(3)
(2)连接AO,AB.
∵BC是圆O的直径,
∴∠BAC=90°,
由(1)得:在Rt△BAE中,F是斜边BE的中点,
∴AF=FB=EF,可得∠FBA=∠FAB,
又∵OA=OB,
∴∠ABO=∠BAO,
∵BE是圆O的切线,
∴∠EBO=90°,
∴∠FBA+∠ABO=90°,
∴∠FAB+∠BAO=90°,
即∠FAO=90°,
【点睛】
本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求wenku.baidu.com:BF=EF:
∵∠AGC是△ABG的外角,∴∠AGC=∠B+∠BAG=60°.
∵OE∥BC,∴∠AEO=∠AGC=60°.
∵OA=OE,∴∠EAO=∠AEO=60°.
(3)∵O是AC中点,∴
,∴ = .
∵AC是直径,∴∠AEC=∠FDC=90°.
∵∠ACE=∠FCD,∴△CDF∽△CEA,∴ = ,∴CF= CA= .
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴ .
2.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.
(1)求证:∠ACE=∠DCE;
(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;
(3)若AC=4, ,求CF的长.
(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB= =26,由相似三角形的性质即可得到结论.
【详解】
(1)连接AD.如图1,设∠BDC=α,∠ADC=β,
则∠CAB=∠BDC=α,
∵点C为弧ABD中点,∴ = ,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,
∵OF=OB-BF,AK=AB-BK,∴AK=2OF.
(3)连接CO并延长交AG于点M,连接BG.设∠GAB= .
∵AC=CG,∴点C在AG的垂直平分线上.∵OA=OG,∴点O在AG的垂直平分线上,
∴CM垂直平分AG,∴AM=GM,∠AGC+∠GCM=90°.
∵AF⊥CG,∴∠AGC+∠GAF=90°,∴∠GAF=∠GCM= .
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
【答案】(1)证明见解析;(2)25°.
【解析】
(3)如图2,连接OC,∴∠COB=2∠CAB,
∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,
∵∠OHC=∠ADB=90°,∴△OCH∽△ABD,∴ ,
∵OH=5,∴BD=10,∴AB= =26,∴AO=13,∴AH=18,
∵△AHE∽△ADB,∴ ,即 = ,∴AE= ,∴DE= .
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是 的直径,PA与 相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴ AD=BC,AB=CD.
∵CE:AE=OF:AO,OF=AO,
∴AE=EC.
连接OD、OC,
∵OD=OC,
∴∠ODC=∠OCD.
∵∠AOD=∠ODC,∠EOC=∠OEC,
∴∠AOC=∠EOC,
∴△AOD≌△EOC,
∴AD=CE.
∴BC=AD=CE=AE.
【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.
∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;
(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,
∵∠CAB=∠CDB,∴∠ACE=∠ADC,
∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为3 ,求BD的长度.
【答案】(1)证明见解析;(2)证明见解析;(3)2
【解析】
分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;
(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;
【解析】
试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB=90°,再证明△ABD≌△ACD即可得到结论;
(2)连接BE.由同弧所对的圆周角相等,得到∠GAB=∠BEG.再证△KFE≌△BFE,得到BF=KF= BK.由OF=OB-BF,AK=AB-BK,即可得到结论.
(3)连接CO并延长交AG于点M,连接BG.设∠GAB= .先证CM垂直平分AG,得到AM=GM,∠AGC+∠GCM=90°.再证∠GAF=∠GCM= .通过证明△AGB≌△CMG,得到BG=GM= AG.再证明∠BGC=∠MCG= .设BF=KF=a, GF=2a,AF=4a.
【答案】见解析
【解析】
试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.
【点睛】
本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.
3.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.
(1)求证:∠ABD=2∠BDC;
(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;
7.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.
【答案】(1)证明见解析,(2)60°;(3)
【解析】
【分析】
(1)易证∠OEC=∠OCE,∠OEC=∠ECD,从而可知∠OCE=∠ECD,即∠ACE=∠DCE;
(2)延长AE交BC于点G,易证∠AGC=∠B+∠BAG=60°,由于OE∥BC,所以∠AEO=∠AGC=60°,所以∠EAO=∠AEO=60°;
∵tanα=tan∠HAK= ,设KH=m,则AH=2m,∴AK= =6,解得:m= ,∴AH=2m= .在Rt△BFC中, .∵∠BAD+∠ABD=90°,∠FBC+∠BCF=90°,∴∠BCF=∠BAD, ,∴tan∠GAD= = ,∴∠GAD=45°,∴HL=AH,AL= AH= .
6.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线 与大圆交于点B,点D在大圆上,BD与小圆相切于点F,AF的 延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.
试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
∵AB为⊙O的直径,∴∠AGB= 90°,∴∠AGB=∠CMG=90°.
∵AB=AC=CG,∴△AGB≌△CMG,∴BG=GM= AG.
在Rt△AGB中, .
∵∠AMC=∠AGB= 90°,∴BG∥CM,∴∠BGC=∠MCG= .
设BF=KF=a, ,∴GF=2a, ,AF=4a.
∵OK=1,∴OF=a+1,AK=2OF=2(a+1),∴AF=AK+KF=a+2(a+1)=3a+2,∴3a+2=4a,∴a=2,AK=6,∴AF=4a=8,AB=AC=CG=10,GF=2a=4,FC=CG-GF=6.
∴四边形BDHF是矩形,
∴BD=FH,
∵FH∥BC
∴△HFG∽△DCG,
∴ ,
即 ,
∴ ,
∵O的半径长为3 ,
∴BC=6 ,
∴BD= =2 .
点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.
5.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.
由OK=1,得到OF=a+1,AK=2(a+1),AF= 3a+2,得到3a+2=4a,解出a的值,得到AF,AB,GF,FC的值.由tanα=tan∠HAK= ,AK=6,可以求出AH的长.再由 ,利用公式tan∠GAD= ,得到∠GAD=45°,则AL= AH,即可得到结论.
试题解析:解:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADC=90°.
(3)易证 ,由于 ,所以 = ,由圆周角定理可知∠AEC=∠FDC=90°,从而可证明△CDF∽△CEA,利用三角形相似的性质即可求出答案.
【详解】
(1)∵OC=OE,∴∠OEC=∠OCE.
∵OE∥BC,∴∠OEC=∠ECD,∴∠OCE=∠ECD,即∠ACE=∠DCE;
(2)延长AE交BC于点G.
试题解析:
图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.
证明如下:
∵AE是小⊙O的直径,
∴OA=OE.
连接OF,
∵BD与小⊙O相切于点F,
∴OF⊥BD.
∵BD是大圆O的弦,
∴DF=BF.
∵CE⊥BD,
∴CE∥OF,
∴AF=CF.
∴四边形ABCD是平行四边形.
∴PA⊥OA,
∴PA是圆O的切线;
(3)过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,
∴FH∥BC,
由(2),知∠FBA=∠BAF,
∴BF=AF.
∵BF=FG,
∴AF=FG,
∴△AFG是等腰三角形.
∵FH⊥AD,
∴AH=GH,
∵DG=AG,
∴DG=2HG.
即 ,
∵FH∥BD,BF∥AD,∠FBD=90°,
∵BD=CD,∠BDA=∠CDA,AD=AD,∴△ABD≌△ACD,∴∠BAD=∠CAD.
(2)连接BE.∵BG=BG,∴∠GAB=∠BEG.
∵CF⊥AB,∴∠KFE=90°.
∵EH⊥AG,∴∠AHE=∠KFE=90°,∠AKH=∠EKF,∴∠HAK=∠KEF=∠BEF.
∵FE=FE,∠KFE=∠BFE=90°,∴△KFE≌△BFE,∴BF=KF= BK.