交通灯控制电路设计方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交通灯控制电路设计方案1概述
伴随着社会的发展以及人类生活水平的提高,汽车的数量在不断的增加,交通的问题日益突出,单单依靠人力来指挥交通已经不可行了,所以,设计交通灯来完成这个需求就显的越加迫切了。为了确保十字路口的行人和车辆顺利、畅通地通过,往往采用电子控制的交通信号来进行指挥。
交通信号灯作为一个用来指挥车辆顺利、畅通通过十字路口的装置与我们的生活紧密的联系在一起。设计交通灯控制电路的方法有很多种,由于数字电子技术的逻辑性很强,用它来设计交通灯的控制电路非常方便。而且数字电子技术芯片只要在一定的围输入,都能得到稳定的输出,调试简单,电路的工作也比较稳定。
这次我设计的交通灯控制电路就是通过基本的一些数字芯片组合来对十字路口交通灯的六个不同信号灯的控制,另外还加以倒计时直观显示。这个电路的设计看似起来比较复杂,但它也是由一些基本的电路组成。只要将实现整个电路的基本设计思路和方案确定下来,画出方框图再对个功能方框的电路进行设计,一步步突破,最后整理设计出整个电路的原理图来。
在此对电路的详细设计过程总体概括一下:
首先,画出设计的控制电路的方框图。
其次,对各功能电路的实现进行论证介绍。
再次,对各功能电路的设计进行详细的介绍。
至此这次的课程设计也就完成了,但对电子知识和技能的学习与探索将永不停止。
2. 课程设计任务及要求
2.1设计任务
用常用的中、小规模数字集成电路(参见材料清单)设计一个交通灯控制电路。
自行设计,并完成系统功能的检验。
2.2设计要求
(1)要求南北方向(主干道)车道和东西方向(支干道)车道两条交叉道路上的车辆交替运行,主干道每次通行时间都设为30秒、支干道每次通行间为20秒;
(2)东西方向、南北方向车道除了有红、黄、绿灯指示外,每一种灯亮的时间都用显示器进行显示(采用倒计时的方法);
(3)在绿灯转为红灯时,要求黄灯先亮5秒钟,才能变换运行车道;
(4)黄灯亮时,要求每秒闪亮一次;
(5)同步设置人行横道红、绿灯指示。
3.理论设计
3.1方案论证
交通灯控制电路,要求每个方向有三盏灯,分别为红、黄、绿,配以红、黄、绿三组时间到计时显示。一个方向绿灯、黄灯亮时,另一个方向红灯亮。每盏灯顺序点亮,循环往复,每个方向顺序为绿灯、黄灯、红灯。交通灯的运行状态共有四种,分别为:
状态0:东西方向车道的绿灯亮,人行道的绿灯亮;南北方向车道的红灯亮,人行道的红灯亮。
状态1:东西方向车道的黄灯闪,人行道的红灯亮;南北方向车道的红灯亮,人行道的红灯亮;
状态2:东西方向车道的红灯亮,人行道的红灯亮;南北方向车道的绿灯亮,人行道的绿灯亮;
状态3:东西方向车道的红灯亮,人行道的红灯亮;南北方向车道的黄灯闪,人行道的红灯亮;
4种状态循环往复,并且车道红灯的倒计初始值为绿灯的倒计初始值和黄灯的倒计初始值之和。交通灯电路的具体运行状态如表2.1所示:
表3.1 交通灯运行状态
3.2 系统设计
3.2.1结构框图及说明
交通灯控制电路主要由以下几部分构成,如图3.1所示,有脉冲电路、倒计时电、状态控制电路、灯显示电路。
图3.1 交通灯控制电路结构框图
3.2.2系统原理图及工作原理
3.3单元电路设计
3.3.1单元电路工作原理
3.3.1.1脉冲电路
利用555定时器为主组成多谐振荡器,输出1Hz 的矩型方波,实现脉冲电路功能。 组成的脉冲电路如图 3.2所示:
CC
O
μF
图3.2 脉冲电路
参数计算如下:
22ln 20.7pL t R C R C =≈
1212()ln 20.7()pH t R R C R R C =+≈+
R 1
R 2
121 1.43(2)pl ph f t t R R C
=≈
++
取R1=60kW (可调),R2=100 kW ,C=4.7uF 。即可实现调出1Hz 的矩型方波。在输出端接上了一个开关,可以控制系统工作的开始和暂停。
3.3.1.2倒计时电路
十字路口要有数字显示,作为倒计时提示,以便人们更直观地把握时间。具体为:当某方向绿灯亮时,置显示器为某值,然后以每秒减1的计数方式工作,直至减到数为5和0,十字路口绿、黄、红灯变换,一次工作循环结束,而进入下一步某方向的工作循环。根据题目的要求南北方向(主干道)车道和东西方向(支 干道)车道两条交叉道路上的车辆交替运行,主干道每次通行时间都设为30秒、支干道每次通行时间为20秒。也就是一个循环是50秒,如此先显示30秒后显示20秒倒计时,然后再显示30秒倒计时,以此类推。
设计时采用两块74LS193,一块是显示十位,一块是显示个位。个位接成十进制,从9开始倒计时,当到达0时,向高位发出一个借位信号,再继续从9倒计时。一开始使十位数置数为3,二进制为0011,个位数为0,二进制为0000,此时个位产生一个借位信号给十位的脉冲输入端,十位的74LS193芯片倒计时一
次,结合个位的设置,电路从30开始倒计时。当主车道绿灯亮了25秒,倒计时也已经数到了5了,此时,个位显示5,十位显示0,主车道的绿灯熄灭,主车道的黄灯开始倒计时闪亮5秒,当倒计时到0后,个位芯片74LS193发出一个借位信号,向高位借数,但是高位已经是0了,按照要求此时十位应该是从0翻转2,即二进制0010,为了实现这功能,通过研究十位的二进制数发现,十位的二进制是从0011、0010、0001到0000计数完,翻转为二进制0010,然后从0010、0001到0000倒计时,当到0000后就结束一个循环,又从0011开始新的一个循环。从二进制0011和0010两个不同的预置数,发现可以用1个D触发器74LS74接成T触发器并把Q端接至十位倒计时的最低位来完成这个功能。高位产生借位信号时将Q端的信号置入,当这个借位信号(低电平)消失后,产生一个上升沿的脉冲信号,使T触发器翻转然后保持,下一个借位信号来时就把此时的Q值置入(此时Q值为原来的非,即由0变1或由1变0),然后翻转。通过以上置数方式可实现0011和0010的交替置入。另外,通过在特定时刻(倒计时高位由0000变为0010后)对T触发器进行清零,可实现主次干道通行时间的调整。最后将电路的倒计时接到译码器74HC4511,再接到共阴极数码显示管上显示十进制数字。据此画出倒计时电路如图3.3所示: