交通灯控制电路设计
交通灯控制电路的设计(实验报告)
交通信号灯控制电路的设计一、设计任务与要求1、任务用红、黄、绿三色发光二极管作为信号灯,设计一个甲乙两条交叉道路上的车辆交替运行,且通行时间都为25s的十字路口交通信号灯,并且由绿灯变为红灯时,黄灯先亮5s,黄灯亮时每秒钟闪亮一次。
2、要求画出电路的组成框图,用中、小规模集成电路进行设计与实现用EAD软件对设计的部分逻辑电路进行仿真,并打印出仿真波形图。
对设计的电路进行组装与调试,最后给出完整的电路图,并写出设计性实验报告。
二、设计原理和系统框图(一)设计原理1、分析系统的逻辑功能,画出其框图交通信号灯控制系统的原理框图如图2所示。
它主要由控制器、定时器、译码器和秒脉冲信号发生器等部分组成。
秒脉冲信号发生器是该系统中定时器和该系统中定时器和控制器的标准时钟信号源,译码器输出两组信号灯的控制信号,经驱动电路后驱动信号灯工作,控制器是系统的主要部分,由它控制定时器和译码器的工作。
图1 交通灯控制电路设计框图图中:Tl:表示甲车道或乙车道绿灯亮的时间间隔为25s,即车辆正常通行的时间间隔。
定时时间到,Tl=1,否则,Tl=0.Ty:表示黄灯亮的时间间隔为5s。
定时时间到,Ty=1,否则,Ty=0。
St:表示定时器到了规定的时间后,由控制器发出状态转换信号。
它一方面控制定时器开始下一个工作状态的定时,另一方面控制着交通信号灯状态转换。
2、画出交通信号灯控制器ASM图(1)甲车道绿灯亮,乙车道红灯亮。
表示甲车道上的车辆允许通行,乙车道禁止通行。
绿灯亮足规定的时间隔TL时控制器发出状态信号ST转到下一工作状态。
(2)乙车道黄灯亮乙车道红灯亮。
表示甲车道上未过停车线的车辆停止通行已过停车线的车辆继续通行乙车道禁止通行。
黄灯亮足规定时间间隔TY时控制器发出状态转换信号ST转到下一工作状态。
(3)甲车道红灯亮乙车道绿灯亮。
表示甲车道禁止通行乙车道上的车辆允许通行绿灯亮足规定的时间间隔TL时 控制器发出状态转换信号ST转到下一工作状态。
交通灯控制电路综合设计实验
放风筝小学生二年级作文7篇放风筝是清明时节人们所喜爱的一项活动,此时的气候风向也非常适宜放风筝。
下面是小编为大家整理的放风筝小学生二年级作文7篇,仅供参考,欢迎大家阅读借鉴。
放风筝小学生二年级作文1星期天下午,阳光明媚,微风吹拂,天气格外温暖,我的心情也很好,因为叔叔要带我去放风筝。
我和叔叔一路走一路说笑着,不知不觉就来到了广场。
广场上的人可真多呀!很多人都在放风筝。
天上的风筝一个比一个飞得高,像鸟儿一样在空中自由地盘旋。
看着一个个高高飞起的风筝,我的心痒痒的,已经有些迫不及待了。
我是第一次放风筝,所以需要身为高手的叔叔示范一次。
只见叔叔拉着风筝线边跑边慢慢放线,不一会儿,风筝便高高地飞了起来。
看着叔叔的示范,我觉得我会放风筝了。
于是,我学着叔叔的样子慢慢放线。
因为我总站在原地,风一停,风筝就会掉下来。
这时,叔叔对我喊:“跑,跑起来!”听了这话,我立马在广场上跑起来,风筝果然如叔叔说的那样飞了起来。
但是广场上放风筝的人太多了,我一放开跑,风筝线就和别人的风筝线缠在一起。
叔叔赶紧过来帮我解开风筝线,并教了几种方法避开别的风筝。
我又重新开始放,这次很顺利,风筝飞得很高。
我仰望我的风筝,它像鸟儿一样在湛蓝的天空中飞翔,和其他风筝一起,让这场空中舞会变得热闹非凡。
望着天空飞舞的风筝,我不禁想到,有时我们就像那风筝,总想飞得更高更远,可总被拿着风筝线的父母紧紧拽着,可换个角度想,没有了父母的帮助,我们怎会高高飞起?放风筝小学生二年级作文2星期天下午,秋高气爽,微风习习,我兴高采烈地和妈妈去太子山公园放风筝我的风筝是金鱼形状的,它有一双圆溜溜的眼睛、淡蓝色的鱼鳞、金色的脑袋和金黄色的尾巴,非常惹人喜爱!我们来到太子山公园,看道人们三个一群五个一伙的在放风筝。
天上无颜六色、形态各异的风筝让人眼花缭乱,有展翅高飞的老鹰,有精美别致的脸谱,有喜气洋洋的猪八戒,还有拖着长长尾巴的蜻蜓……我一边欣赏,一边和妈妈找了一个空旷的地方放风筝。
交通灯控制电路设计
交通灯控制电路设计由一条主干道和一条支干道的汇合点形成十字交叉路口,为确保车辆安全、迅速地通行,在交叉路口的每个入口处设置了红、绿、黄三色信号灯。
红灯亮禁止通行;绿灯亮允许通行;黄灯亮则给行驶中的车辆有时间停靠在禁行线外。
实现红、绿灯的自动指挥对城市交通管理现代化有着重要的意义。
一、设计目的1.掌握交通灯控制电路的设计、组装与调试方法。
2.熟悉数字集成电路的设计和使用方法。
二、设计任务与要求1.用红、绿、黄三色发光二极管作信号灯。
2.当主干道允许通行亮绿灯时,支干道亮红灯,而支干道允许亮绿灯时,主干道亮红灯。
3.主支干道交替允许通行,主干道每次放行30s、支干道20s。
设计30s和20s 计时显示电路。
4.在每次由亮绿灯变成亮红灯的转换过程中间,要亮5s的黄灯作为过渡,以使行驶中的车辆有时间停到禁止线以外,设置5s计时显示电路。
三、交通灯控制电路基本原理及电路设计实现上述任务的控制器整体结构如图4-2-4主干道信号灯支干道信号灯译码驱动电路主控制器时传钟感信器号计时器图4-2-4交通灯控制器结构图1(主控制器主控电路是本课题的核心,它的输入信号来自车辆的检测信号和30s、20s、5s 三个定时信号,它的输出一方面经译码后分别控制主干道和支干道的三个信号灯,另一方面控制定时电路启动。
主控电路属于时序逻辑电路,可采用状态机的方法进行设计。
主控电路的输入信号有:主干道有车A,1,无车A,0;支干道有车B,1,无车B,0;主干道有车过30s为L,1,未过30s为L=0;支干道有车过20s为S,1,未过20s为S,0;黄灯亮过5s为P,1,未过5s为P,0。
主干道和支干道各自的三种灯(红、黄、绿),正常工作时,只有4种可能,即4种状态:主绿灯和支红等亮,主干道通行,启动30s定时器,状态为S; 0主黄灯和支红灯亮,主干道停车,启动5s定时器,状态为S; 1主红灯和支绿灯亮,支干道通行,启动20s定时器,状态为S; 2主红灯和支黄灯亮,支干道停车,启动5s定时器,状态为S。
交通灯控制电路设计
交通灯控制电路设计交通灯是城市交通管理的重要组成部分,通过交通灯控制电路来控制交通信号灯的亮灭,可以使交通流畅有序,提高交通效率和安全性。
下面将详细介绍交通灯控制电路的设计。
首先是输入接口部分。
交通灯控制电路可以通过光电传感器或者车辆探测器等装置来获取交通流量信息,并将其转化成电信号输入到控制电路中。
光电传感器一般采用红外线或激光来感应车辆的到来,车辆探测器则通过地感线圈感应车辆进入或离开的情况。
这些输入装置可以将车辆信息转化成电信号,为后续控制提供数据支持。
接下来是逻辑控制部分。
交通灯的控制有固定时间控制和可调控制两种方式,可以根据实际需要选择。
固定时间控制往往采用时序控制器来实现,时序控制器根据预设的时间来控制交通信号灯的亮灭。
可调控制则需要根据交通流量实时情况来动态调整交通信号灯的运行状态,可以采用微处理器或者PLC控制器来实现。
逻辑控制部分会根据输入接口的数据以及预设的控制规则进行相应的处理,控制交通信号灯的转换。
最后是输出接口部分。
输出接口部分主要是将控制信号转化成驱动交通信号灯的电信号。
交通信号灯一般有红、黄、绿三种颜色,分别表示停、警示和行。
通过驱动器来控制交通信号灯的亮灭状态,驱动器一般由继电器、晶体管等元件组成。
输出接口部分将逻辑控制部分产生的控制信号转化成驱动交通信号灯的电信号,实现交通信号灯的亮灭控制。
首先是稳定性。
交通灯控制电路应具有良好的稳定性,能够在各种环境条件下正常工作,不受外界干扰。
稳定性可以通过增加滤波电路和抗干扰设计来实现。
其次是可靠性。
交通灯是城市交通管理的重要设施,因此交通灯控制电路需要具备高可靠性,能够长时间稳定工作,减少故障率和维护成本。
再次是安全性。
交通灯控制电路在设计时需要遵循安全原则,确保交通灯的控制不会产生误操作,保证交通安全。
最后是灵活性。
交通灯控制电路应具备一定的灵活性,能够根据实际需要进行调整和扩展,以适应交通流量的变化和城市的发展。
综上所述,交通灯控制电路设计是一个涉及多个方面的复杂工程,需要根据实际需求和要求进行综合设计。
交通灯控制电路设计与制作
交通灯控制电路设计与制作交通灯控制电路设计与制作随着人口的不断增长和城市化的进程,各种交通工具的数量不断增加,交通技术的创新和发展也越来越受到关注。
交通灯是现代城市交通中非常重要的一种交通设施,它能够有效地控制车辆流量和行人行动,从而提高道路的安全性和交通效率。
交通灯控制电路是交通灯工作的核心系统。
它通过电子元器件将交通灯控制的信号转换成数字控制信号,进而实现交通灯的开关控制和颜色切换。
本文将介绍交通灯控制电路设计和制作的基本原理和步骤。
一、交通灯控制电路设计原理交通灯控制电路主要由以下几部分组成:时钟电路、数字控制电路、继电器控制电路、LED灯管控制电路等。
时钟电路:时钟电路是交通灯控制电路的基础部分,它通过高精度的电子元器件实现系统的节拍同步和计时。
在交通灯控制电路中,时钟电路的作用是控制信号频率和时间周期,为后面的数字控制和继电器控制提供时间基准。
数字控制电路:数字控制电路是交通灯控制电路的核心部分,它是把传统的机械式控制方式转化成数字化控制,实现自动控制的关键部分。
数字控制电路主要采用的是单片机技术,通过熟练掌握单片机编程语言和电路设计原理,可以实现复杂的交通信号控制方案。
继电器控制电路:继电器控制电路是一种实现数字控制信号与物理控制信号相互转换的电路。
它通过将数字控制信号转换成真实的高电平或低电平信号,从而控制车辆和行人信号灯的开关状态,改变交通灯的亮灭状态。
LED灯管控制电路:LED灯管控制电路是一种专门用于LED 灯传输控制信号的电路。
它通过对LED灯管的电流和电压进行调节,实现交通灯颜色的切换和灯管亮度的调节。
以上几个部分组成了一个完整的交通灯控制电路系统。
在实际设计和制作过程中,需要对各部分电路进行精心的设计和调试,以确保系统的可靠性和稳定性。
二、交通灯控制电路制作步骤1.准备材料和测试工具在制作交通灯控制电路时,需要准备一些基本的材料和测试工具。
其中包括电子元器件、电路设计软件、A/D转换器、逻辑单元、控制线缆、继电器、LED灯管、电路板和焊接工具等。
简易交通灯控制电路的设计
简易交通灯控制电路的设计交通灯控制电路是现代城市交通管理的重要组成部分,其设计方案的合理性和可靠性对保障人民出行的安全和畅通至关重要。
在本文中,我将介绍一个简单的交通灯控制电路的设计方案,涉及到所需材料、电路设计、电路连接和电路测试等方面,旨在提供一种可行的设计思路及实现方法。
一、所需材料1. PCB板2. AT89C2051单片机3. LCD12864液晶显示屏4. DS1302时钟模块5. 7段LED数码管6. 红绿黄LED发光二极管7. 继电器8. 12V电源适配器9. 74HC595芯片10. 电容、电阻、连接线等二、电路设计本次交通灯控制电路采用单片机AT89C2051作为控制核心,通过LCD12864液晶显示屏展示交通灯状态,并且控制红绿黄三色LED灯。
还采用DS1302时钟模块来实现交通灯的定时控制,以确保交通灯的安全和准确性。
具体的电路设计如下:1.电源模块本电路采用12V电源适配器作为供电来源,将电源接入100uf电解电容并接入AT89C2051芯片VCC引脚,以确保芯片工作电压稳定。
2.时钟模块DS1302时钟模块通过连接到P1.0、P1.1和P1.2引脚来实现对交通灯的定时控制。
还需将时钟模块的CLK、DIO和RST引脚分别连接到AT89C2051芯片的P1.4、P1.5和P1.6引脚来实现数据传输和控制信号输出。
3.LCD显示模块将LCD显示屏的RS、RW和E引脚连接到AT89C2051芯片的P3.0、P3.2和P3.1引脚,将LCD数据引脚DB0-DB7连接到AT89C2051芯片的P2.0-P2.7引脚,以在交通灯控制过程中显示交通灯状态。
4.7段LED数码管模块将74HC595芯片、CD4511译码器和7段LED数码管连接在一起,将74HC595芯片的SER、SRCLK和RCLK引脚连接到AT89C2051芯片的P1.7、P1.5和P1.6,将CD4511译码器的A、B、C、D和O引脚分别连接到74HC595芯片的Q0-Q3和74HC595芯片的Q4引脚,将7段LED数码管的公阴极连接到CD4511译码器的O引脚,在交通灯控制过程中实现倒计时显示。
毕业设计96交通灯控制电路设计共12页
目录任务书 (2)1、引言 (3)2、总体设计方案 (3)2.1、基本电路组成 (3)2.2、信号灯转换器 (3)3、单元电路设计与原理 (4)3.1.主控电路 (4)3.1.1 原理 (4)3. 1.2 原器件的选择及参数 (5)3.1.3 电路接法 (5)3.2.主干道计时电路 (6)3.2.1 原理 (6)3.2.2 原器件的选择及参数 (6)3.2.3 电路接法 (6)3.3 支干道计时电路 (7)3.3.1 原理 (7)3.3.2 原器件的选择及参数 (7)3.3.3 电路接法 (8)3.3.4 黄灯闪烁控制 (10)4 课程设计总结 (10)5 参考文献 (10)6电路原理图…………………………………………………………(另附)电工电子技术课程设计任务书1. 引言随着社会经济的发展,城市交通问题越来越引起人们的关注。
人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。
城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。
随着城市机动车量的不断增加,许多大城市如北京、上海、南京等出现了交通超负荷运行的情况,因此,自80年代后期,这些城市纷纷修建城市高速道路,在高速道路建设完成的初期,它们也曾有效地改善了交通状况。
然而,随着交通量的快速增长和缺乏对高速道路的系统研究和控制,高速道路没有充分发挥出预期的作用。
而城市高速道路在构造上的特点,也决定了城市高速道路的交通状况必然受高速道路与普通道路耦合处交通状况的制约。
所以,如何采用合适的控制方法,最大限度利用好耗费巨资修建的城市高速道路,缓解主干道与匝道、城区同周边地区的交通拥堵状况,越来越成为交通运输管理和城市规划部门亟待解决的主要问题。
为此,笔者进行了深入的研究,以下就城乡交通灯控制系统的电路原理、设计计算和实验调试等问题来进行具体分析讨论。
2. 总体设计方案2.1、基本电路组成交通灯控制系统的原理框图如图1-1所示。
《EDA技术及应用》交通灯控制电路的设计
《EDA技术及应用》交通灯控制电路的设计1 系统设计1.1 设计要求1.1.1 设计任务1、用4个八段数码管分别显示道路东西和南北通行和禁止的倒计时时间。
2、能设置道路东西和南北两侧通行和禁止的倒计时时间,最大设置时间为99秒,最小设置时间为1秒。
3、交通灯用红、绿、黄三种发光二极管(LED)显示控制的结果。
4、红、绿、黄灯显示的次序应符合实际交通道路控制的要求。
5、其它功能。
1.1.2性能指标要求设计一个交通控制器,用LED 显示灯表示交通状态,并以8 段数码显示器显示当前状态剩余秒数南北方向绿灯亮时,东西方向红灯亮;反之亦然,二者交替允许通行,南北方向每次放行99s,东西方向每次放行99s,南北红绿灯始终比东西红绿灯快3s。
每次由绿灯变为红灯的过程中,亮光的黄灯作为过渡,黄灯的时间为3s。
因为开发板没有绿黄灯,所以用两组三个led灯替代显示红黄绿灯。
南北方向与东西方向各用两个8位数码管显示倒计时,并且能实现总体清零功能,计数器由初始状态开始计数,对应状态的显示灯亮。
1.2 设计思路及设计框图1.2.1设计思路本次设计是针对十字路口,进行南北和东西直行情况下交通灯控制。
设定东西方向为主干道方向,根据交通灯的亮的规则,在初始状态下两个方向的都为红灯亮启,进入正常工作状态后,当南北方向红绿灯上绿灯亮时,东西方向红绿灯上红灯亮,各方向最后倒计时3s时,南北方向红绿灯和东西方向红绿灯上的代表黄灯的led灯亮启,持续3S后,南北方向红绿灯上红灯亮启,东西方向红绿灯上绿灯亮启持续99s,之后南北方向和东西方向上的黄灯都亮启3s,一个循环完成,循环往复的直行这个过程。
1.2.2总体设计框图根据任务需求,总体设计有:分频器模块、控制器模块、倒计时模块、红绿灯显示模块、码模块和译码显示模块如下图所示:2 各个模块程序的设计led红绿灯显示:module led(clk,led,N,D,cout,zt);input clk;input [6:0] N;input [6:0] D;output reg [5:0] led;output reg [1:0] zt;output reg [6:0] cout;always@(posedge clk)begincout=cout+1;if(cout<N-3)led=6'b100001;//南北绿灯,东西红灯else if(cout>N-3&&cout<N)led=6'b100010;//南北黄灯,东西红灯else if(cout>N&&cout<D+N-3)led=6'b001100;//南北红灯,东西绿灯else if(cout>N+D-3&&cout<N+D)led=6'b010100;//南北红灯,东西黄灯else if(cout==N+D)cout=0;if(cout<N-4)zt=0;else if(cout>N-4&&cout<N-1)zt=1;else if(cout>N-1&&cout<D+N-4)zt=2;else if(cout>D+N-4&&cout<N+D-1)zt=3;endEndmodule分频器:module div(clk,clkout);input clk;output reg clkout;Parameter CNT_MAX =50_000_000;//1s->1hz(50_000_000/1),0.5s->2hz(50_000_000/2=25_000_000) //parameter CNT_MAX = 1; //for simulationreg [25:0] cnt;always @ (posedge clk)if (cnt < CNT_MAX - 1'b1)cnt <= cnt + 1'b1;elsecnt <= 26'd0;always @(posedge clk)if(cnt == CNT_MAX - 1'b1)clkout=1'b1;elseclkout=1'b0; Endmodule调时控制:module ts(s,N,D,mode);input [1:0] s;input mode;output [6:0] N;output [6:0] D;j u1(.s(s[0]),.q(N),.mode(mode));j u2(.s(s[1]),.q(D),.mode(mode));Endmodule倒计时计数:module seg(clk,N,D,cout,zt,fs1,fs2); input clk;input [6:0] N;input [6:0] D;input [6:0] cout;input [1:0] zt;output reg [6:0] fs1;output reg [6:0] fs2;always@(posedge clk)case(zt)2'b00:begin fs1=N-cout-4; fs2=N-cout-1;end2'b01:begin fs1=N+D-cout-1; fs2=N-cout-1;end2'b10:begin fs1=N+D-cout-1; fs2=N+D-4-cout;end2'b11:begin fs1=N+D-cout-1; fs2=2*N+D-cout-1;endendcaseEndmodule计时输出:module j(s,q,mode);input s,mode;output reg [6:0] q;initialq=15;//初始从15开始启动always@(posedge s)if(mode)q=q+1;elseq=q-1;Endmodule数码管调用:// Module Function:数码管的译码模块初始化module segment7 (seg_datin,seg_led,en);input [3:0] seg_datin; //数码管需要显示0~f共16个数字,所以需要4位数据输入端 input en; //数码管使能端output [7:0] seg_led; //在DE10-Standard上控制一个数码管需要7个信号MSB~LSB=DP、G、F、E、D、C、B、Areg [7:0] seg [15:0]; //定义了一个reg型的数组变量,相当于一个16*8的存储器,存储器一共有16个数,每个数有8位宽initial //在过程块中只能给reg型变量赋值,Verilog中有两种过程块always和initial//initial和always不同,其中语句只执行一次beginseg[0] = ~(8'h3f) ; //对存储器中第一个数赋值8'b0011_1111,7段显示数字 0 seg[1] = ~(8'h06); //7段显示数字 1seg[2] = ~(8'h5b); //7段显示数字 2seg[3] = ~(8'h4f); //7段显示数字 3seg[4] = ~(8'h66); //7段显示数字 4seg[5] = ~(8'h6d); //7段显示数字 5seg[6] = ~(8'h7d); //7段显示数字 6seg[7] = ~(8'h07); //7段显示数字 7seg[8] = ~(8'h7f); //7段显示数字 8seg[9] = ~(8'h6f); //7段显示数字 9seg[10] = ~(8'h77); //7段显示数字 aseg[11] = ~(8'h7c); //7段显示数字 bseg[12] = ~(8'h39); //7段显示数字 cseg[13] = ~(8'h5e); //7段显示数字 dseg[14] = ~(8'h79); //7段显示数字 eseg[15] = ~(8'h71); //7段显示数字 fendassign seg_led = en?seg[seg_datin]:8'hff; //连续赋值,输入不同四位数,输出对于译码的8位输出,共阴数码管取反。
交通灯控制电路设计+设计流程图+设计电路图+实物图
交通灯控制电路设计由一条主干道和一条支干道的汇合点形成十字交叉路口,为确保车辆安全、迅速地通行,在交叉路口的每个入口处设置了红、绿、黄三色信号灯。
红灯亮禁止通行;绿灯亮允许通行;黄灯亮则给行驶中的车辆有时间停靠在禁行线内。
实现红、绿灯的自动指挥对城市交通管理现代化有着重要的意义。
1、设计目的1.掌握交通灯控制电路的设计、组装与调试方法。
2.熟悉数字集成电路的设计和使用方法。
2、设计任务与要求1.用红、绿、黄三色发光二极管作信号灯。
2.当主干道允许通行亮绿灯时,支干道亮红灯,而支干道允许亮绿灯时,主干道亮红灯。
3.主支干道交替允许通行,主干道每次放行30s、支干道20s。
设计30s和20s计时显示电路。
4.在每次由亮绿灯变成亮红灯的转换过程中间,要亮5s的黄灯作为过渡,设置5s计时显示电路。
3、原理电路设计(1)设计逻辑流程(2)方案比较及整体电路方案一:根据题目,主支干道红绿灯分时亮可以分成四种状态。
若采用两个JK触发器即可满足。
考虑到主支干道计数的不同,需要从计数器那里产生一个信号,来使JK触发器改变状态。
当然可以通过逻辑推导,然后用各种基本的数字器件,如与非门,来产生一个满足要求的信号。
但是用到的器件比较多,而且布线较复杂。
所以不采用这个方案。
方案二:鉴于方案一,考虑采用中规模集成电路,因此选择使用了数据选择器。
将计数器某个计数到的信号,如5s,接到数据选择器的数据输入端,然后将由JK触发器产生的表明四种状态的信号Q2和Q1接到数据选择器的地址代码端。
这个方案解决了方案一的问题,所以采用了这种设计方法。
方案三:按照JK触发器习惯的接法,由数据输出端来的信号接到J或K,但是若计数器采用置零的方式,信号有效的时间很短,这就要求触发器有较高的扫描频率,但是计数器的频率已经固定是1s,造成同一个频率电路,却需要不同的频率。
因此采用直接接进触发器的使能端。
至此,确定了最后的方案。
(3)单元电路设计及电路的工作原理为了便于分析,把一些单元电路从整体电路中分离出来,同时为了电路的简洁明了,分析电路的逻辑时,还把次要的元件暂时移除.单元电路各部分以及功能如下:控制电路主控电路是本课题的核心,主要产生30s、20s、5s三个定时信号,它的输出一方面经译码后分别控制主干道和支干道的三个信号灯,另一方面控制定时电路启动。
交通灯控制器数字电路的设计及仿真
交通灯控制器数字电路的设计及仿真随着城市化进程的加快,交通量越来越大,如何科学有效地管理交通成为一个重要的问题。
其中,交通灯控制器是一个涉及电子电路技术的重要设备。
基于数字电路的设计和仿真,进一步提高交通灯控制器的精度和稳定性,对于保障交通安全、提高城市交通效率至关重要。
一、设计方案1.计算时序交通灯控制器的每个阶段均有确定的时间,因此需要计算时序以确定各个信号时序是否正确,以及控制灯的开关时间是否正确。
2.设计状态机根据计算好的时序,可以通过 ISE 设计工具绘制状态图,然后再利用 Verilog HDL 语言编写出状态机。
交通灯控制器的每个阶段都有一个对应的状态,状态机会根据输入信号的状态来判断当前处于何种状态,并根据状态判断应该输出什么信号。
3.确定数字电路结构利用 ISE 设计工具,可以采用 Combinational Logic Circuit 来设计灯的开关逻辑电路,时序电路中以时钟触发器为主。
可以通过该工具绘制仿真波形来检测电路的正确性,检查信号间是否存在错误。
二、仿真过程1.绘制输入信号波形首先,需要绘制出输入信号的波形,并且在仿真时要按照相应的频率和占空比输出。
2.对仿真波形进行仿真分析仿真过程中,可以通过 Xilinx 仿真工具,对仿真波形进行分析,检测电路的正确性和稳定性。
同时,可以通过仿真过程中的输出信号波形,判断各阶段信号的状态。
3.检验仿真结果与设计方案借助仿真工具,可以非常直观地验证数字电路的设计方案是否合理、可靠。
此外,还可以通过不同的应用场景,不断优化和调整设计方案,以实现更高的效率与精度。
三、总结数字电路的设计和仿真,可以有效地提高交通灯控制器的精度和稳定性,在城市交通管理中起到关键的作用。
当前数字电路技术的不断推进,为实现更加高效安全的交通管理提供了强有力的支持。
交通灯控制电路原理及其设计
根据状态转换表,推出状态方程和转换信号方程:
Qn1 0
Q1n Q0nTL
Q1nQ0n
Q1nQ0nTL
Qn1 1
Q1nQ0nTY
Q1nQ0n
Q1n Q0nTY
ST Q1n Q0nTL Q1nQ0nTY Q1nQ0nTL Q1n Q0nTY
5
交通灯控制电路 位信号,使高位片进行加 1 计数,完成了将 16 进制转换为十进制计数功能。
实现了下列状态转换: Q3Q2Q1Q0 :
在计数器的输出端取状态转换信号 TL、TY。即 TL Q12Q21、TY Q21 实现当绿灯或红灯亮够 25 秒后,TL=1 发出状态转换信号,进入下一个状态;黄 灯亮够 5 秒后 TY=1,进入下一个状态。 3、控制器
交通灯控制电路
摘要:交通信号灯常用于交叉路口,用来控制车辆的流量,提高交叉路口车辆
的通行能力,减少交通事故。本交通灯设计主要由秒脉冲发生器、定时器、控制 器、译码显示电路组成。秒脉冲发生器由 555 构成的多谐振荡器产生秒脉冲, 定时器由 74LS163 实现,控制器由 74LS153 四选一数据选择器和 74LS74 双 D 触 发器组成,译码电路采用 74LS48 和七段数码管来显示,红黄绿灯显示电路由逻 辑组合电路组成。控制器通过 ST 信号对定时器进行控制,从而显示红黄绿灯的 转换。
THR
TRI
CON
GND
C3 0.01µF
555_VIRTUAL
2、定时器 定时器由系统秒脉冲和同步计数器构成,计数器在状态转换信号 ST 作用下
首先清零,然后在时钟脉冲上升沿作用下,计数器从零开始进行加 1 计数,向控 制器提供 5 秒的黄灯定时信号 TY 和 25 秒的红灯或绿灯定时信号 TL
交通灯控制电路原理及其设计
交通灯控制电路原理及其设计
一、交通灯控制电路原理
1、交通灯控制电路控制模式:有时间段控制、地点控制、交叉口可
控性等,一般采用的是时间段控制,即交通灯每隔一段时间切换一次,控
制车辆行驶方向。
2、交通灯控制电路的硬件设备:首先要确定所需要的控制电路,例
如用于时间段控制的时间控制器、用于地点控制的控制器、用于地点控制
的晶振器、用于可控性交叉口的所有控制器等。
3、交通灯控制电路的软件设计:然���要对硬件设备进行软件控制,根据需要制定交通灯控制程序,以实现控制交通灯的颜色和持续时间。
二、交通灯控制电路的设计
1、电路设计原理:首先要确定交通灯控制电路的电路结构和简单原理,设计控制电路硬件电路,包括芯片、电源、电路板、晶振器等,并进
行实际测试。
2、软件编程设计:其次要对硬件电路进行软件编程设计,即根据交
通灯控制系统的要求,编写出控制程序。
实训报告-交通灯控制电路设计
实训报告-交通灯控制电路设计本次实训的主要任务是设计一个基于计数器和电路传输的交通灯控制电路,能够实现红黄绿三种灯的循环切换,并且速度可调。
1. 实验设备1颗10段计数器、1颗555定时器、3颗双极性三极管、3颗17V/0.5W二极管、3颗红色LED、3颗黄色LED、3颗绿色LED、数个电阻和连接器。
2. 实验原理本次实验主要基于计数器和555定时器实现。
计数器累加一次后会触发一次输出信号,通过此信号来控制各个灯的亮灭。
同时,555定时器用于控制红绿灯切换的时间。
当555定时器的输出信号改变时,通过转换电路,控制红绿灯的状态改变。
3. 实验过程首先,将计数器的时钟接入555定时器的输出端。
然后,将所有的LED和二极管连接到一个共同的正极上,并通过三个开关来控制每个LED的反向极。
此时,可以根据需要进行连接。
一般情况下,红色LED与红色线(反向极)相连,黄色LED与黄色线相连,绿色LED与绿色线相连。
接下来,将三个双极性三极管连接到每个LED的反向极上,并通过电阻进行限流。
此时,可以将计数器的输出端连接到三个双极性三极管的基极。
通过转换电路控制三个双极性三极管的导通和截止,从而控制LED的亮灭。
最后,通过调节555定时器的参数,控制红绿灯的切换时间。
可以通过调节电位器改变输出频率,从而达到速度可调的效果。
4. 实验结果在实验环境中,我们可以看到红黄绿三种灯一次次地循环闪烁,速度可调,非常符合实际的交通灯控制需求。
同时,每个灯的亮灭状态也非常清晰,基本没有出现闪烁和误触发等问题。
5. 总结通过本次实验,我们进一步了解了交通灯控制电路的设计原理和实现过程,并通过实际操作掌握了如何基于计数器和555定时器来实现交通灯的循环切换。
此外,我们还学习了如何通过转换电路控制三个双极性三极管的导通和截止,从而实现LED的亮灭控制。
这对于我们今后的电子技术学习和实践都非常有帮助。
交通灯控制电路课程设计
交通灯控制电路课程设计一、课程目标知识目标:1. 让学生掌握交通灯控制电路的基本原理和电路组成;2. 使学生了解并理解红、黄、绿交通信号灯的时序关系及其在交通控制中的作用;3. 帮助学生掌握基本的电子元件及其在交通灯控制电路中的应用。
技能目标:1. 培养学生运用所学知识设计简单的交通灯控制电路的能力;2. 提高学生动手实践能力,学会正确连接和调试交通灯控制电路;3. 培养学生运用图表、流程图等方法分析问题、解决问题的能力。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索科学技术的热情;2. 培养学生的团队协作精神,提高沟通与协作能力;3. 增强学生的交通安全意识,培养他们遵守交通规则的自觉性。
课程性质:本课程属于电子技术实践课程,注重理论联系实际,强调动手实践能力的培养。
学生特点:本课程针对初中年级学生,他们对电子技术有一定的好奇心,动手实践能力强,但理论知识相对薄弱。
教学要求:结合学生特点,采用启发式教学,引导学生主动探究,注重培养学生的实际操作能力。
在教学过程中,将课程目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 交通灯控制电路原理- 交通信号灯的基本知识:红灯、黄灯、绿灯的功能及时序关系- 电路基本组成部分:电源、开关、信号灯、控制器等2. 电子元件及其应用- 常用电子元件:电阻、电容、二极管、三极管等- 元件在交通灯控制电路中的作用和连接方式3. 交通灯控制电路设计- 电路图绘制:学习如何用电路图表示交通灯控制电路- 电路搭建与调试:动手实践,按照设计要求搭建电路,并进行调试4. 教学进度安排- 第一课时:交通灯控制电路原理及基本组成部分学习- 第二课时:常用电子元件的认识及其在电路中的应用- 第三课时:交通灯控制电路设计及电路图绘制- 第四课时:动手实践,搭建和调试交通灯控制电路5. 教材关联内容- 教科书第四章第二节:交通信号灯控制电路的基本原理- 教科书第五章:常用电子元件及其应用- 教科书第六章:电子电路设计与实践教学内容确保科学性和系统性,结合课程目标,按照教学进度安排,有序开展教学活动。
交通灯逻辑控制电路设计-数字电子技术课程设计
数字电子技术课程设计——交通灯逻辑控制电路设计一、内容摘要:本系统由单片机系统、键盘、LED 显示、交通灯演示系统组成。
系统包括人行道、左转、右转、以及基本的交通灯的功能。
系统除基本交通灯功能外,还具有倒计时、时间设置、紧急情况处理、分时段调整信号灯的点亮时间以及根据具体情况手动控制等功能。
实现对交通灯控制。
交通灯是交通安全的关键,已广泛应用于城乡的十字路口,它的有无作为交通安全检查的重要依据,是交通秩序正常进行的有力保障。
为了确保十字路口的车辆顺利、畅通地通过,往往都采用自动控制信号灯来进行指挥。
其中红灯(R)亮,表示该条道路禁止通行;黄灯(Y)亮表示停车;绿灯(G)亮表示允许通行。
二、实验目的1.了解交通灯管理的基本工作原理。
2.熟悉8253计数器/定时器、8259A中断控制器和8255A并行接口的工作方式及应用编程。
3.掌握多位LED显示的方法。
三、设计任务和要求实验内容:设计一个用于十字路口的交通灯控制器。
基本要求如下:1、满足图2顺序工作流程。
图中设南北方向的红、黄、绿灯分别为NSR、NSY、NSG,东西方向的红、黄、绿灯分别为EWR、EWY、EWG。
它们的工作方式有些必须是并行进行的,即南北方向绿灯亮,东西方向红灯亮;南北方向黄灯亮,东西方向红灯亮;南北方向红灯亮,东西方向绿灯亮;南北方向红灯亮,东西方向黄红灯亮。
图2 交通灯顺序工作流程图2、应满足两个方向的工作时序:即东西方向亮红灯时间应等于南北方向亮黄、绿灯时间之和,南北方向亮红灯时间应等于东西方向亮黄、绿灯时间之和。
时序工作流程图3所示。
图3中,假设每个单位时间为3秒,则南北、东西方向绿、黄、红灯亮时间分别15秒、3秒、18秒,一次循环为36秒。
其中红灯亮的时间为绿灯、黄灯亮的时间之和。
图3 交通灯时序工作流程图3、 十字路口要有数字显示,作为时间提示,以便人们更直观地把握时间。
具体为:当某方向绿灯亮时,置显示器为某值,然后以每秒减1计数方式方式工作,直至减到数为“0”,十字路口红、绿灯交换,一次工作循环结束,进入下一步某方向地工作循环。
基于c51交通灯控制电路设计
基于c51交通灯控制电路设计基于C51交通灯控制电路设计随着城市交通的日益发展,交通信号灯成为城市道路上不可或缺的一部分。
交通灯的控制需要高效准确地实现,以确保交通安全和交通流畅。
本文将介绍一种基于C51的交通灯控制电路设计。
1. 介绍C51单片机C51单片机是一种经典的8位单片机,具有高性能、低功耗和易于编程等特点。
它广泛应用于各种嵌入式系统中,包括交通信号灯控制系统。
2. 电路设计思路交通灯控制电路的设计需要考虑交通信号灯的状态切换、时间控制和灯光显示等因素。
设计思路如下:2.1 状态切换交通灯的状态切换包括红灯、绿灯和黄灯三种状态。
根据交通流量和道路情况,需要合理切换交通灯的状态。
设计中可以使用多个开关来模拟道路上的车辆和行人信号,通过检测开关状态来触发状态切换。
2.2 时间控制交通灯的每个状态需要有固定的时间控制,以确保交通流畅和公平。
设计中可以使用定时器来实现时间控制功能。
定时器可以设置不同的时间段,分别对应红灯、绿灯和黄灯的持续时间。
2.3 灯光显示交通灯的灯光显示需要清晰可见,以便行人和车辆能够准确识别。
设计中可以使用LED灯作为交通信号灯的灯光显示器。
不同颜色的LED灯分别代表红灯、绿灯和黄灯。
3. 电路实现基于C51的交通灯控制电路可以采用以下组件和连接方式进行实现:3.1 C51单片机选择一款适合的C51单片机,具备足够的IO口和定时器功能。
3.2 开关模块选择合适的开关模块,可以使用按钮开关模拟车辆和行人信号。
将开关模块与C51单片机的IO口连接,通过读取IO口状态来触发状态切换。
3.3 定时器模块选择合适的定时器模块,将定时器模块与C51单片机的定时器引脚连接,实现时间控制功能。
可以通过编程设置定时器的工作模式和计数值,以实现不同状态的持续时间控制。
3.4 LED灯模块选择合适的LED灯模块,将LED灯模块与C51单片机的IO口连接,通过控制IO口输出高低电平来控制LED灯的亮灭。
交通灯控制电路课程设计
目录摘要: (3)1.设计任务的基本要求 (4)1.1设计任务 (4)1.2基本要求 (4)2.工作原理 (4)2.1设计要求 (4)2.2 整体工作原理 (4)3.电路设计 (5)3.1秒信号产生器 (5)3.2状态控制器设计 (6)3.3状态译码器 (7)3.4定时系统 (9)5.整体原理图 (10)6.元件功能介绍 (10)6.1 CD4029功能介绍 (10)6.2 74LS245功能介绍 (11)6.3 NE555定时器功能介绍 (11)6.4 74LS47的外引线排列图如图6.4.1所示。
(12)6.5 74LS00与非门 (12)6.6 74LS04反相器功能介绍 (13)6.7 74LS192功能介绍 (13)7.元件清单 (14)8.总结: (14)9 参考文献 (15)10 附加交通灯整体原理图原理图 (16)交通灯控制电路摘要:在现代城市中,人口和汽车日益增长,市区交通也日益拥挤,人们的安全问题也日益重要。
因此,红绿交通信号灯成为交管部门管理交通的重要工具之一。
有了交通灯人们的安全出行有了很大的保障。
自从交通灯诞生以来,其内部的电路控制系统就不断的被改进,设计方法也开始多种多样,从而使交通灯显得更加智能化。
尤其是近几年来,随着电子与计算机技术的飞速发展,电子电路分析和设计方法有了很大的改进,电子设计自动化也已经成为现代电子系统中不可缺少的工具和手段,这些为交通灯控制电路的设计提供了一定的技术基础。
因此,在本次课程设计里,将以传统的设计方法为基础,同时引入了电子设计自动化技术,将模拟信号转化为数字信号,利用了数字逻辑这一强大工具,同时还运用了protel软件和一些数字逻辑器件,来设计了可控制的交通信号灯。
1.设计任务的基本要求1.1设计任务设计一个十字路口交通灯信号控制器,控制车辆安全快速的通过。
1.2基本要求为了确保车辆安全快速的的通行,在十字交叉路口的每个入口处设置红,绿,黄三种信号灯,并安装时间数字时间显示,来达到下列的基本要求:●红灯表示禁止通行,绿灯表示允许通行,黄灯提醒司机把车辆停靠在禁行线以内。
单片机课程设计报告书---交通灯控制电路设计
交通灯控制电路设计一、选题背景交通灯控制系统是城市道路管理中极为重要的一个环节,其在加强道路交通管理,减少交通事故的发生,提高道路使用效率等方面具有不可替代的作用。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制技术日益更新。
本文将介绍一种用单片机作为系统的主控单元,通过单片机嵌入软件程序来实现交通信号灯的多重控制方式,整个系统以STC89C52RC单片机为核心加以晶振电路、复位电路、电源电路构成系统的控制枢纽,系统状态显示系统采用7段LED数码管进行倒计时的现实,红、黄、绿三色LED灯作为信号指示。
系统除基本的交通灯功能外,还具有倒计时、紧急情况处理等功能,较好的模拟实现了十字路口出现的状况。
本系统性能稳定,功能完善,实用性强。
二、方案论证(设计理念)1.主要内容用单片机系统设计十字路口交通灯控制电路,要求东西方向的红、黄、绿灯和南北方向的红、黄、绿灯按照下面的工作时序进行工作,黄灯亮时应为闪烁状态:(1)南北和东西车辆交替进行,各通行时间 24 秒(2)每次绿灯变红灯时,黄灯先闪烁 4 秒,才可以变换运行方向。
(3)十字路口要有数字显示作为时间提示,以倒计时按照时序要求进行显示;具体为:当某方向绿灯亮时,置显示器为某值,然后以每秒减 1 计数方式工作,直至减到数为“0”,十字路口红、绿等交换,一次工作循环结束,而进入下一步某方向的工作循环。
(4)可以手动调整和自动控制,夜间为黄灯闪耀状态2.教学要求选择适当元器件设计单片机外围电路、由单片机系统完成二十四进制倒计时、四进制倒计时、显示及模式切换逻辑控制等;仿真实现各电路功能;搭建、调试电路实现设计要求的功能;掌握复杂数字电路的一般设计方法,具备初步的独立设计能力;掌握对电子线路进行仿真调试的方法和技能;掌握实现电路的实验方法和电路的调试方法。
3.方案设计与选择3.1交通信号控制原理交通信号控制原理是按照一定的控制程序,在交叉路口的每个方向上通过红、黄、绿三色灯循环显示,指挥交通流,在时间上实施隔离。
交通灯控制电路设计与制作
交通灯控制电路设计与制作交通灯控制电路设计与制作随着城市化进程的加快,交通阻塞问题愈发严重。
为了解决这一难题,设计交通灯控制电路成为了一项重要的工作。
本文将介绍交通灯控制电路的设计思路及其制作过程。
一、电路设计思路交通灯控制电路需要实现的主要功能为按照一定的时间间隔控制交通灯的转换。
首先,需明确借助计时器,获取准确的时间间隔,以及使用开关元件实现交通灯的切换。
其次,对于一些特殊情况,比如紧急停车,电路需要能够做出实时响应。
在实际设计中,要根据实际具体情况确定放置的交通灯种类、交通流量以及灯的切换时间等参数。
设计的目的是为了提高道路的通行能力以及防止出现堵塞情况。
二、电路制作过程制作交通灯控制电路需要准备的材料有:计时器芯片、开关元件、LED灯、电阻器等。
下面是详细的制作过程:1. 首先,在面包板上搭建电路,按照上述设计思路连接各个部分。
需要注意的是,电路板上所连接的元件数量要与需控制的交通灯数量相匹配。
2. 经过初步搭建后,需要进行计时器及开关元件的程序设置。
内部计时器可以使用IC计时器,而开关元件可以采用仿真开关等电子器件,有些情况下还需要在程序设置时进行参数调整。
3. 完成程序和电路的设置后,我们还需要测试电路的真实效果。
此时可以根据实际的交通流量模拟场景,通过手动或自动方式观察道路交通灯切换。
4. 一般情况下,需要将搭建好的电路固定在交通信号灯箱上。
需要注意的是,电路板要稳定且不易被干扰。
5. 最后,需要根据不同情况对电路进行维护和调整,确保能够稳定运行。
三、安全提示在进行交通灯控制电路制作过程中,需要注意一些安全事项。
具体的有:1. 在连接电路时,要确保电路板中的元器件符合电流大小,以避免出现火灾等事故。
2. 在进行参数调整时,必须进行试运行,同时不要频繁调整参数,以避免影响系统的正常工作。
3. 安装时须将电路固定好,保证可靠性和稳定性,避免电路板意外摇晃或受到人为干扰。
总结交通灯控制电路是现代城市化的重要设备之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答辩情况记录摘要随着社会经济的发展,城市交通问题越来越引起人们的关注。
人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。
城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。
本次设计是基于单片机AT89C51单片机为控制核心的交通控制系统,它可以实现对车辆、行人的有效导引。
设计中我们选用红、绿、黄三种不同LED发光管作为车辆的指示(换而言之,就是用红、绿、黄三种不同LED交通灯指示),简化了设计,形象直观;不仅如此,我们还结合了KeilC51、Proteus进行编程、仿真。
当出现紧急情况时,交警可将系统设置成手动,让某路口车辆通行,此路口行人禁行,紧急情况结束后再转成自动状态。
本次设计并对系统物理结构进行了优化,很有城市交通道口的“模型”味。
关键词:单片机;AT89C51;交通灯;控制系统;LED目录摘要 (I)目录 (II)第1章绪论 (1)1.1引言 (1)1.2 交通灯的背景及意义 (1)1.3单片机的意义和本设计特点 (2)第2章系统设计 (3)2.1系统总设计结构图 (3)2.2芯片AT89C51单片机的简介 (3)2.2.1主要的特性 (3)2.2.2 特性描述 (4)2.2.3 管脚说明 (4)2.2.4 振荡器特性 (6)2.3 LED的简介 (6)2.3.1 LED发光原理 (6)2.3.2 LED主要参数 (7)2.3.3 LED的特点 (7)第3章系统硬件设计 (8)3.1 系统电路设计 (8)3.2 时钟电路设计 (8)3.3 复位电路设计 (8)3.4 电源 (9)3.5 LED显示电路设计 (9)3.6 Proteus电路图和Protel原理图的绘制 (9)第4章软件设计 (12)4.1 系统软件设计整体思路 (12)4.2 系统软件设计流程图 (12)4.2.1 交通灯控制电路设计分析 (12)4.2.2 软件总体流程图 (13)4.2.3 紧急状态子程序流程图 (13)4.2.4 正常指示程序流程图 (14)第5章程序与仿真编写 (15)5.1 程序调试用到的软件及工具 (15)5.2 Keil C51简介 (15)5.3 Proteus简介 (15)5.4 仿真过程 (16)第6章结束语 (17)参考文献 (18)致谢 (19)附录 (20)第1章绪论1.1 引言随着社会和城市交通的快速发展,近几年机动车辆数字急剧增加,道路超负荷承载道路现象严重,致使交通事故逐年增加。
交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
俗话说“要想富、先修路”,但路修好了如果在交通控制方面做不好道路还是无法保障畅通安全。
作为交通控制的重要组成部份的交通信号灯也应国际化。
随着社会经济的发展,城市交通问题越来越引起人们的关注。
人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。
城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。
自80年代后期,一些大城市纷纷修建城市高速道路,在高速道路建设完成的初期,它们也曾有效地改善了交通状况。
然而,随着交通量的快速增长和缺乏对高速道路的系统研究和控制,高速道路没有充分发挥出预期的作用。
而城市高速道路在构造上的特点,也决定了城市高速道路的交通状况必然受高速道路与普通道路耦合处交通状况的制约。
所以,如何采用合适的控制方法,最大限度利用好耗费巨资修建的城市高速道路,缓解主干道与匝道、城区同周边地区的交通拥堵状况,越来越成为交通运输管理和城市规划部门亟待解决的主要问题。
可见交通灯是城市交通有序、安全、快速运行的重要保障,因此解决好公路交通信号灯控制问题也成了保障交通有序、安全、快速运行的重要环节。
1.2 交通灯的背景及意义交通是城市经济活动的命脉,对城市经济发展、人民生活水平的提高起着十分重要的作用。
城市交通问题自人类进入21世纪以来,道路交通一直是困扰城市发展、制约城市经济建设的重要因素。
而使用合理的交通灯可以合理的规划城市交通,从而为城市的快速运输和发展提供最优化的交通解决方案。
可以肯定的说,城市道路增长的有限与车辆增加的无限这一对矛盾是导致城市交通拥挤的根本原因。
对于减轻交通拥塞及其副作用特别是对于大的交通网络而言,仍然缺乏一种真正的交通响应控制策略。
计算机硬件能力与控制软件能力很不相符,由此造成的影响是很多交通控制策略根本不能实现。
在少数几个例子中,一些新的控制策略确实能得以实现,但他们却没能对早期的控制策略进行改进。
由于缺乏能提高交通状况、特别是缺乏拥塞网络交通状况的实时控制策略,几乎可以说真正成熟的控制策略仍然不存在.智能化和集成化是城市交通信号控制系统的发展趋势和研究前沿,而针对交通系统规模复杂性特征的控制结构和针对城市交通瓶颈问题并代表智能决策的阻塞处理则是智能交通控制优化管理的关键和突破口。
车辆的不断增多,表明车辆对道路容量的要求仍然很高,短期内还不可能改变。
自从开始使用计算机控制系统后,不管在控制硬件里取得什么样的实际进展,交通控制领域的控制逻辑方面始终没能取得重大突破。
因此,研究基于智能集成的城市交通信号控制系统具有相当的学术价值和实用价值。
把智能控制引入到城市交通控制系统中,未来的城市交通控制系统才能适应城市交通的发展。
从长远来看该研究具有巨大的现实意义。
1.3 单片机的意义和本设计特点单片机,亦称单片微电脑或单片微型计算机。
它是把中央处理器--CPU(运算、控制)、随机存取存储器--RAM(数据存储)、只读存储器--ROM(程序存储)、输入/输出端口--I/0(列如串行口、并行口等)、定时器/计数器、A/D、D/A等都集成在一块集成电路芯片中形成的微处理器。
虽然计算机的产生加快了人类改造世界的步伐,但是它毕竟体积大。
微计算机(单片机)在这种情况下诞生了,它为我们改变了什么?目前,单片机已渗透到人们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
例如:从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC 卡、电子宠物等,这些都离不开单片机。
由此可见,单片机在工商、金融、科研、教育、航空、航天等领域都有着十分广泛的用途。
以前没有单片机时,这些东西也能做,但是只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。
在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。
这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了,且容易升级改善。
本设计通过采用单片机AT89C51来作为交通灯电路的控制器,单片机运算能力强,软件编程灵活,稳定可靠。
本设计采用KeilC51软件编写控制程序、proteus仿真其结果以及使用Protel99SE软件画出交通灯控制电路的PCB板,然后只需将各个元件按照仿真内电路焊接实物即可。
第2章 系统设计2.1系统总设计结构图其系统总设计结构控制框图如下图2-1所示:图2-1 控制框图本设计由主控芯片51单片机,单片机时钟电路,复位电路,电源电路,LED ,水位高度监测电路组成。
单片负责控制整个系统的执行过程。
2.2 芯片AT89C51单片机的简介AT89C51是一种带4K 字节FLASH 存储器( FPEROM —Flash Programmable and Erasable Read Only Memory )的低电压、高性能CMOS 8位微处理器,俗称单片机。
AT89C2051是一种带2K 字节闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本,AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如下图2-2所示:2.2.1 主要的特性.与MCS-51 兼容.4K 字节可编程FLASH 存储器 ·寿命:1000写/擦循环·数据保留时间:10年.全静态工作:0Hz-24MHz·三级程序存储器锁定·128×8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式2.2.2 特性描述AT89C51 提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
2.2.3 管脚说明VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P0口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为低八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。