基于PLC控制的锅炉供热控制系统设计
基于PLC的锅炉电加热控制系统设计
基于PLC的锅炉电加热控制系统设计摘要本文针对锅炉电加热控制系统的实际需求,基于PLC,设计了一种可靠的电加热控制系统。
该系统通过PLC的控制,实现了对电加热器的开启、关闭、电流的调节等功能。
同时,系统还通过人机界面进行了参数设置和异常报警等功能。
实验结果表明,该系统具有高可靠性、稳定性,能够满足锅炉电加热的实际需求。
关键词:PLC、锅炉、电加热、控制系统一、引言锅炉是工业生产中常用的一种设备,其主要作用是将水加热为蒸汽,并通过蒸汽驱动液体或气体来完成工业生产流程。
而锅炉的加热方式一般有煤、油、气、电等多种方式,其中电加热由于其无污染、易控制等优点,被广泛应用于各种工业生产环节中。
然而,锅炉电加热控制系统的设计存在一些问题,如控制精度低、容易出现故障等。
这些问题给锅炉电加热操作带来了很大的不便,因此,需要设计一种基于PLC的锅炉电加热控制系统,以提高其可靠性和稳定性。
二、设计思路和方法1.设计思路基于以上问题,本文设计了一种基于PLC的锅炉电加热控制系统。
该系统采用西门子S7-200 PLC作为主控制器,通过PLC与电加热装置进行连接,实现对电加热装置的开关控制和电流调节。
同时,本文还设计了人机界面,以便进行参数设置和异常报警等功能。
通过该系统,可以实现对电加热的精确控制,从而提高锅炉的加热效率和生产稳定性。
2.设计方法(1)硬件部分设计系统硬件包含主要的PLC、电加热器、人机界面等几个部分。
PLC:采用西门子S7-200 PLC作为主控制器,通过该控制器,实现对电加热设备的精确控制。
电加热器:采用模块化的电加热器,可以根据实际需求进行扩展和修改。
人机界面:设计了触摸屏人机界面,以便进行电加热控制和参数设置等功能。
(2)软件部分设计软件部分主要包含PLC程序和人机界面程序两部分。
PLC程序:由于锅炉电加热主要是控制电加热的开关和电流调节,因此,PLC程序中主要包含电加热开关控制、电流调节等基本功能。
基于PLC控制的加热炉温度控制系统设计
基于PLC控制的加热炉温度控制系统设计概述加热炉是工业生产中常见的设备之一,其主要作用是提供高温环境用于加热物体。
为了确保加热炉的稳定性和安全性,需要设计一个可靠的温度控制系统。
本文将介绍一个基于PLC(可编程逻辑控制器)控制的加热炉温度控制系统设计方案。
系统设计原理在加热炉温度控制系统中,PLC作为核心控制器,通过监测温度传感器的输出信号,根据预设的温度设定值和控制策略,控制加热炉的加热功率,从而实现对加热炉温度的稳定控制。
以下是系统设计的主要步骤:1.硬件设备选择:选择适合的温度传感器和控制元件,如热电偶、温度控制继电器等。
2.PLC选型:根据实际需求,选择合适的PLC型号。
PLC需要具备足够的输入输出点数和计算能力。
3.传感器连接:将温度传感器接入PLC的输入端口,读取实时温度数据。
4.温度控制策略设计:根据加热炉的特性和工艺需求,设计合适的温度控制策略。
常见的控制策略包括比例控制、积分控制和微分控制。
5.控制算法实现:根据温度控制策略,编写PLC程序,在每个采样周期内计算控制算法的输出值。
6.加热功率控制:使用控制继电器或可调功率装置,控制加热炉的加热功率。
7.温度反馈控制:通过监测实际加热炉温度和设定值之间的差异,不断修正加热功率控制,使加热炉温度稳定在设定值附近。
系统硬件设计基于PLC控制的加热炉温度控制系统的硬件设计主要包括以下几个方面:1.温度传感器:常用的温度传感器有热电偶和热敏电阻。
根据加热炉的工艺需求和温度范围,选择适合的温度传感器。
2.PLC:选择适合的PLC型号,根据实际需求确定PLC的输入输出点数和计算能力。
3.控制继电器或可调功率装置:用于控制加热炉的加热功率。
根据加热炉的功率需求和控制方式,选择合适的继电器或可调功率装置。
4.运行指示灯和报警器:用于显示系统的运行状态和报警信息。
PLC程序设计PLC程序是基于PLC的加热炉温度控制系统的关键部分,其主要功能是实现温度控制算法。
基于PLC的锅炉供暖监控系统设计
4、监控界面设计技术
4、监控界面设计技术
在上位机监控界面方面,我们采用了组态软件来设计监控界面。组态软件是 一种广泛使用的工业自动化监控软件开发工具,它支持多种图形元素和控件,可 以方便地实现实时数据展示、报警提示、历史数据查询等功能。我们根据锅炉的 实际运行情况,设计了相应的监控界面,并编写了相关的脚本代码,以实现对锅 炉运行数据的实时展示和报警提示等功能。
2、控制技术
2、控制技术
在控制方面,我们采用了PID(比例-积分-微分)控制算法来实现对锅炉的燃 烧和给水控制。PID控制是一种经典的连续控制系统,它通过比较设定值与实际 值之间的误差来计算控制量,实现对被控对象的精确控制。我们根据锅炉的实际 情况,对PID控制算法进行了相应的调整和优化,以实现对锅炉的燃烧和给水系 统的有效控制。
二、关键技术
1、数据采集技术
1、数据采集技术
在数据采集方面,我们采用了高精度传感器和PLC模拟量输入模块,实现了对 锅炉运行参数的实时监测。传感器包括温度传感器、压力传感器和水位传感器等, 它们将采集到的信号通过变送器转换为标准的电信号,再通过PLC模拟量输入模 块输入到PLC中进行数据处理。
一、系统需求与设计
一、系统需求与设计
锅炉供暖系统的主要任务是维持锅炉中水的温度在设定的范围内,同时也要 确保供暖设备的正常运行。因此,系统的需求主要包括:
一、系统需求与设计
1、实时监测锅炉的水温、压力等参数; 2、通过调节锅炉的燃烧器输出,控制水温; 3、保障供暖设备的稳定运行;
一、系统需求与设计
三、应用效果
3、提高了管理效率。通过远程监控锅炉的运行状态,可以在上位机上实现锅 炉的集中管理和监控,从而提高了管理效率。
谢谢观看
基于PLC的锅炉供热控制系统的设计的开题报告
基于PLC的锅炉供热控制系统的设计的开题报告一、选题背景锅炉供热是现代化社会产生的重要现象之一,锅炉燃烧的煤、天然气等燃料产生的热能,通过管道传送至供暖设施中进行供暖。
而这一过程中,锅炉供热控制是关键之一,影响着供暖设施的温度、舒适度、能耗等问题。
因此,本文选题基于PLC的锅炉供热控制系统设计。
二、研究目的和意义本文的研究目的是设计和实现基于PLC的锅炉供热控制系统,以提高供热系统的自动化程度、减少运行成本、提高供暖设施的温度稳定性、实现省电等效果。
在实际运用中,这样的系统在保障供热设施安全、提高人民生活品质方面具有重要的现实意义。
同时,又能较好地体现PLC控制技术在供热领域中的应用,为相关领域的控制策略优化、工程实施提供参考。
三、主要任务和内容本文基于PLC的锅炉供热控制系统设计的任务包括以下几个方面:系统的功率调节控制、系统的供水温度调节控制、炉体膨胀控制和模拟灰仓检测控制等。
其内容涵盖PLC编程、硬件接线、参数配置、控制算法设计等方面。
具体来说,主要包括以下内容:1、系统的框架设计:将传感器控制器、触摸屏、PLC等设备联系起来,构建完整的控制系统,建立控制系统的设计模型。
2、传感器设备的选择:选择在锅炉供热领域中经常应用的控制器,包括温度传感器、压力传感器等各种传感器设备。
3、PLC编程:基于PLC软件平台,采用逻辑控制程序、语言等,设计功率调节控制、供水温度调节控制、炉体膨胀控制等程序代码。
4、参数配置:为PLC编程设定控制参数,包括控制时序和控制范围等关键参数;同时设计参数调节程序,通过丰富参数调节方式,实现定制化控制方案。
5、控制算法设计:从系统的高级控制角度出发,采用现代化控制算法,设计稳态控制、过程控制、最优控制等各种算法,优化系统的整体控制效果。
四、研究成果预期设计出基于PLC的锅炉供热控制系统,掌握了供热领域常用的传感器设备和控制器,建立了一个完整的控制系统。
实验结果也体现出该系统的优异性能,具体体现在系统的控制精度、控制响应速度、稳定性等方面。
基于plc的锅炉控制系统的设计方案
设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。
以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。
-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。
2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。
-压力传感器:监测锅炉的压力情况。
-液位传感器:监测水箱水位,确保水位在安全范围内。
-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。
3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。
-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。
4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。
-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。
5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。
-设置报警系统,当参数超出设定范围时及时警示操作员。
6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。
7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。
-测试程序逻辑,确保系统稳定可靠,符合设计要求。
以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。
在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。
基于PLC的锅炉供热控制系统的设计
基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。
作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。
本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。
文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。
然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。
在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。
通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。
也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。
二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。
该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。
锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。
其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。
锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。
燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。
燃烧器的性能直接影响到锅炉的热效率和污染物排放。
燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。
热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。
热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。
基于PLC控制的电锅炉控制系统
基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。
PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。
本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。
1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。
PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。
2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。
在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。
电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。
3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。
在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。
通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。
4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。
5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。
基于PLC的锅炉控制系统
摘要本文设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。
该控制系统由可编程控制器、变频器、鼓风机和水泵电机、传感器等构成。
系统通过变频器控制电动机的启动、运行和调速。
该设计以西门子S7-200系列可编程控制器为核心,一方面通过操作台与PLC 通讯,接收管理者的控制命令。
另一方面与各变频器进行通信,分别对鼓风机、循环泵和补水泵等进行启停控制和电机的转速设定,操作人员也随时可以通过操作台,了解现场每台锅炉的运行状况,对风机、水泵等电机进行启停控制。
控制系统的设计采用比例积分的PID控制。
关键词:锅炉控制,变频器,PLC ,PIDThe design of heating boiler auto control reformation system basedon PLC technologyAbstractIn this Paper,a heating boiler control system based on PLC and variable frequency Speed-regulating technology is designed. The control system is made up of PLC,transducers,electromotor units of Pumps and fans, sensors, etc. It can control electromotor starting,running and timing by means of transducers.The design is based on Siemens S7-200 series programmable controller as the core; on the one hand through the console it can communicate with the PLC, to receive control commands from managers. On the other hand it communicate with the variable frequency Speed-regulating, to fulfilled such as starting and stopping pump motor control and speed settings, the operator at console can find out at the scene of the operation of each boiler to fans, pumps and other motor control to start and stop. at any time.Key words:boiler control, variable frequency Speed-regulating, PLC technology目录1 绪论 (2)2 供暖锅炉改造设计思路 (2)2.1 供暖锅炉改造设计要求 (2)2.2 锅炉系统的结构 (3)2.3 整体方案选择 (3)3 变频调速在供暖锅炉控制中的应用 (4)3.1 变频调速基本原理 (4)3.2 变频调速在供暖锅炉系统中的应用 (5)4 锅炉控制系统总体设计 (5)4.1系统功能分析 (5)4.2 总体设计思路 (6)4.3 系统结构 (6)5 系统硬件设计 (7)5.1 可编程控制器PLC的选型 (7)5.2 PLC配置 (8)5.3 I/O接线 (9)5.4 变频器配置 (9)5.5 传感器与变送器 (11)5.5.1 压力变送器工作原理 (11)5.5.2 压力变送器选型 (11)5.5.3 温度传感器选型 (11)6 系统构成 (13)6.1 补水泵控制系统 (13)6.2 循环泵控制系统 (15)6.3 燃烧控制系统 (16)7 PID控制原理 (17)8 程序设计 (20)8.1 主程序设计 (16)8.2 子程序设计 (16)9 结束语 (26)致谢 (28)参考文献 (28)1 绪论锅炉是供热设备中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。
基于plc的锅炉供热控制系统的设计
基于plc的锅炉供热控制系统的设计工业控制系统中,PLC(可编程逻辑控制器)被广泛应用于各种设备的控制和监控。
本文将重点讨论基于PLC的锅炉供热控制系统的设计。
一、系统概述锅炉供热控制系统是指通过对锅炉进行温度、压力等参数的监测和控制,实现对供热系统的稳定运行和效率优化。
基于PLC的控制系统能够实现自动化控制,节约人力资源,提高系统运行效率。
二、系统组成1. PLC控制器:作为控制系统的核心,PLC负责接收各种传感器采集的数据,并根据预先设定的控制策略执行相应的控制动作。
2. 传感器:用于监测锅炉的各项参数,如温度传感器、压力传感器等。
3. 执行元件:包括电磁阀、泵等执行元件,通过PLC控制输出信号来实现对锅炉操作的控制。
三、系统设计1. 硬件设计:选择适合的PLC型号和合适的IO模块,根据实际需要设计合理的接线和布置。
2. 软件设计:编写PLC程序,包括主控程序和各个子程序,实现对供热系统的全面控制和监控。
四、系统功能1. 温度控制:根据设定的温度范围,实现对锅炉加热的自动控制,确保供热系统温度稳定。
2. 压力保护:设定压力上下限,一旦超过范围即刻停止加热,确保系统安全运行。
3. 水位控制:通过水位传感器监测水位,保持恰当的水位以确保供热效果。
4. 故障诊断:PLC系统能够实时监测各个元件的运行状态,一旦有异常即可及时报警并进行故障诊断。
五、系统优势1. 自动化程度高:基于PLC的供热控制系统可以实现全自动化控制,减少人为干预,节约人力成本。
2. 稳定可靠:系统通过对各项参数的实时监测和控制,确保供热系统的稳定性和可靠性。
3. 灵活性强:PLC程序可以根据实际需要进行定制化设计,满足不同应用场景的需求。
六、总结基于PLC的锅炉供热控制系统的设计,能够实现对供热系统的智能化控制和监测,提高系统的稳定性和效率,减少运行成本,是目前工业控制领域的主流趋势。
希望本文的介绍能够对您有所帮助。
感谢阅读!。
基于PLC的锅炉电加热控制系统设计
基于PLC的锅炉电加热控制系统设计基于PLC的锅炉电加热控制系统设计包括以下几个步骤:1. 系统需求分析:确定锅炉电加热控制系统的功能需求,包括温度控制范围、加热功率调节范围、安全保护要求等。
2. 系统架构设计:根据需求分析结果,设计系统的硬件和软件架构。
硬件部分包括PLC、温度传感器、电加热器、电源等;软件部分包括PLC程序设计和人机界面设计。
3. 传感器选择和安装:根据需求分析确定温度传感器的类型和数量,并将其安装在适当的位置上,以便准确测量锅炉的温度。
4. 电加热器选择和安装:根据需求分析确定电加热器的类型、功率和数量,并将其安装在锅炉中,以提供所需的加热功率。
5. PLC程序设计:根据系统需求和硬件架构设计,编写PLC程序来实现温度控制和加热功率调节。
程序需要包括温度测量、温度控制算法、加热功率调节等功能。
6. 人机界面设计:设计一个直观易用的人机界面,用于监视和控制锅炉电加热控制系统。
界面应该显示当前温度、设定温度、加热功率等信息,并提供设定温度和加热功率的调节功能。
7. 安全保护设计:设计系统的安全保护功能,包括过温保护、过电流保护、短路保护等。
这些保护机制可以通过PLC 程序来实现,当检测到异常情况时,系统会自动停止加热并发出警报。
8. 系统测试和调试:在完成系统设计后,进行系统测试和调试,确保系统能够正常工作,并满足设计要求。
总之,基于PLC的锅炉电加热控制系统设计需要考虑到温度控制、加热功率调节、安全保护等方面的需求,并通过合适的传感器、电加热器、PLC程序和人机界面来实现。
在设计过程中,需要进行系统测试和调试,以确保系统能够稳定可靠地工作。
基于PLC的锅炉加热温度控制系统设计
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
基于PLC的锅炉加热温度控制系统设计
基于PLC的锅炉加热温度控制系统设计图书分类号:密级:基于PLC的锅炉加热温度控制系统设计DESIGN OF BOILER TEMPERATURE CONTROL SYSTEM学生学号学生姓名学院名称专业名称指导教师摘要本文主要介绍了工业温度控制的发展前景、S7-200系列PLC的基本知识以及锅炉温度控制系统的工作流程、基本原理和组成结构。
通过对锅炉温度控制系统设计要求的分析,给出锅炉温度控制系统的I/O口分配表和系统原理图并且以可编程控制器(PLC)为核心,根据系统的控制要求利用STEP 7编程软件设计系统的梯形图。
该系统以电热锅炉加热管为被控对象,锅炉水温为被控参数同时兼顾锅炉内压力及水位等条件,以PLC为控制器,锅炉加热管通电时间为控制参数设计了一个温度控制系统。
其中调用了西门子公司PLC中自带的PID模块,以更简洁更方便的方法完成了锅炉温度的自动控制设计。
本文从系统的工作原理、系统硬件选型、系统软件编程以及组态监控画面设计等方面进行阐述。
关键词电热锅炉;温度控制;PLC;PID;固态继电器AbstractThis article focuses on the industrial development prospects of temperature control, basic knowledge of S7-200 series PLC as well as the boiler temperature control system made up of work processes, principles, and structure.Through the analysis of boiler temperature control system design, I/O port allocation table of temperature control system of the boiler,system schematics and a programmable logic controller (PLC) as the core, according to the control system requires the use of STEP 7 programming software system design of ladder diagram.The system to electric boiler heating tubes to a charged object, parameters of boiler water temperature to be controlled both the pressure and the water level in the boiler and other conditions, the PLC controller, boiler heating power parameter design of a temperature control system for control.Which is called the Siemens PLC comes with PID modules,and a more concise and more convenient way to complete the automatic control system design of the boiler temperature.This paper described the working principle of the system, system hardware selection, system software programming and configuration of the monitor screen design.Keywords Electric boiler Temperature control PLC PID Solid State Relays目录1 绪论 (1)1.1 课题背景及意义 (1)1.2 国内外研究现状 (1)1.3 本文研究内容 (2)2 温度控制系统设计 (3)2.1 温度控制系统工作原理 (3)2.2 PID控制及参数整定 (3)PID控制原理 (3)PID参数的整定 (4)3 系统硬件设计 (7)3.1 PLC的产生和特点 (7)PLC的产生与应用 (7)PLC的特点 (7)3.2 PLC控制系统设计的基本原则和步骤 (7)PLC控制系统设计的基本原则 (8)PLC控制系统设计的一般步骤 (8)3.3 系统整体设计方案 (9)3.4 PLC选型 (9)PLC的主机模块 (9)PLC的I/O扩展模块 (10)PLC的选择 (10)3.5 传感器选型 (10)温度传感器选型 (10)PT100温度变送器选型 (11)压力传感器选型 (11)液位传感器选型 (11)3.6 固态继电器 (12)3.6.1 固态继电器的原理分析 (12)3.6.2 固态继电器的组成 (12)固态继电器的优缺点 (13)3.7数码管 (13)3.8 系统工作流程及硬件接线 (14)3.8.1 系统工作流程 (14)3.8.3 系统主电路图 (14)3.8.4 系统控制电路图 (14)3.8.5 PLC硬件连接图 (15)3.8.6 I/O端口分配 (16)4 软件设计 (19)4.1 系统流程图 (19)4.2 PID控制器的参数整定 (19)4.3 PLC程序梯形图设计 (23)5 人机界面设计 (33)5.1 组态软件基础 (33)组态定义 (33)组态王软件的特点 (34)组态王软件仿真的基本方法 (34)5.2 组态变量的建立及设备连接 (34)新建项目 (34)新建设备 (35)新建变量 (36)变量与PLC的传输 (37)5.3 创建组态画面 (38)新建主画面 (38)新建PID参数设定窗口 (39)新建实时曲线 (39)新建历史曲线 (40)新建报警窗口 (40)6 系统仿真及测试 (42)6.1 系统运行 (42)6.2 运行结果 (42)参数设定画面 (42)实时趋势曲线 (43)历史趋势曲线 (43)报警窗口 (43)结论 (45)致谢.................................................................................................................. 错误!未定义书签。
基于PLC的锅炉控制系统的设计
基于PLC的锅炉控制系统设计是一种常见的工业自动化应用,用于实现对锅炉的自动化控制和监测。
下面是一个简要的锅炉控制系统设计的示例:
系统组成:
PLC(可编程逻辑控制器):作为控制系统的核心,负责接收输入信号、进行逻辑处理和输出控制信号。
传感器:用于测量锅炉的各种参数,如温度、压力、流量等。
执行器:用于执行控制信号,如阀门、泵等。
人机界面(HMI):提供人机交互界面,用于显示锅炉状态、操作控制等。
控制策略:
温度控制:根据锅炉的温度设定值和实际测量值,通过控制执行器来调节燃料供应、水流量等,以维持锅炉温度在设定范围内。
压力控制:根据锅炉的压力设定值和实际测量值,通过控制执行器来调节燃料供应、风量等,以维持锅炉压力在设定范围内。
安全保护:设置各种安全保护措施,如过热保护、低水位保护等,通过监测传感器信号,及时采取相应的控制措施,确保锅炉的安全运行。
编程实现:
使用PLC编程软件,根据控制策略进行逻辑编程,设置输入输出信号的连接关系,编写控制程序。
在编程中考虑异常处理、报警和故障诊断等功能,确保系统的可靠性和稳定性。
人机界面设计:
设计直观友好的人机界面,显示锅炉状态、参数、报警信息等。
提供操作界面,允许操作人员设定参数、监控状态、执行操作等。
在设计过程中,应充分考虑锅炉的特性、运行环境和要求,并遵循相关的安全标准和规范。
此外,进行实施前应进行充分的测试和验证,确保系统的功能和性能符合设计要求。
需要指出的是,以上仅是一个基本的锅炉控制系统设计示例,实际的设计可能会因具体的应用要求而有所差异。
基于PLC锅炉水温控制系统设计
基于PLC锅炉水温控制系统设计1. 引言1.1 背景锅炉是工业生产中常用的热能设备,用于产生蒸汽或热水,供应能量给生产过程中的各个环节。
在锅炉的运行过程中,水温是一个重要的参数,对于保证锅炉运行稳定、安全、高效具有重要意义。
传统的锅炉水温控制方法主要依靠人工操作,存在操作不准确、响应速度慢等问题。
因此,设计基于PLC(可编程逻辑控制器)的锅炉水温控制系统可以提高控制精度和响应速度。
1.2 目的本文旨在设计一个基于PLC锅炉水温控制系统,通过对传感器信号进行采集和处理,并通过PLC进行逻辑判断和控制输出信号,实现对锅炉水温进行精确可靠地控制。
2. 锅炉工作原理及参数2.1 锅炉工作原理锅炉是通过将液体(通常是水)加热至蒸发状态以产生蒸汽或提供加热能量。
其主要部件包括:进水系统、燃烧系统、排烟系统、水循环系统等。
2.2 锅炉水温参数锅炉水温是指锅炉内部循环水的温度,它是锅炉运行稳定性和效率的重要指标。
在正常运行中,锅炉水温应在一定的范围内保持稳定。
过高或过低的水温都会对锅炉运行造成不利影响。
3. PLC控制系统设计3.1 PLC控制原理PLC是一种用于工业自动化控制的电子设备,它能够根据预设的程序和逻辑进行自动化控制。
PLC主要由处理器、输入/输出模块和编程设备等组成。
3.2 PLC应用于锅炉控制系统设计将PLC应用于锅炉控制可以实现自动化程度高、响应速度快等优点。
通过对传感器信号进行采集和处理,PLC可以实时监测并判断锅炉内部参数,并根据预设逻辑进行相应的输出信号,实现对锅炉水温的精确控制。
4. 系统硬件设计4.1 传感器选择选择适合的传感器对于准确获取锅炉水温至关重要。
常用的传感器包括热电偶、热电阻等。
在选择传感器时需要考虑其测量范围、精度和适应环境等因素。
4.2 PLC选型根据锅炉控制系统的需求,选择合适的PLC型号和规格。
需要考虑PLC的输入/输出点数、通信接口、运算速度等因素。
4.3 控制执行机构选型控制执行机构用于实现对锅炉水温的控制,常用的包括电动阀门、变频器等。
基于PLC的锅炉控制系统的设计
基于PLC的锅炉控制系统的设计本文介绍基于PLC的锅炉控制系统的设计的背景和目的。
锅炉控制系统是基于PLC(可编程逻辑控制器)的设计,采用了分布式控制策略。
整体架构包括以下几个组成部分:1.控制器控制器是锅炉控制系统的核心部分,由PLC实现。
PLC具备高速计算能力和强大的输入输出功能,可以对各个设备进行监控和控制。
它接收来自传感器的输入信号,并根据预设的逻辑和算法进行实时处理,向执行器发送输出信号以控制设备运行。
2.传感器传感器负责将锅炉系统的各个参数转化为电信号,并传输给PLC进行处理。
常见的传感器包括温度传感器、压力传感器、流量传感器等。
3.执行器执行器根据PLC的控制信号来执行相应的操作,如调节燃料供给、控制排放阀等。
它们与PLC之间通过信号线或总线进行连接。
4.人机界面人机界面提供给操作员与锅炉控制系统进行交互的界面。
它可以是触摸屏、计算机软件等形式,用于监视系统运行状态、设定参数以及显示报警信息等。
5.通信模块通信模块用于实现锅炉控制系统与外部设备的数据传输和通信。
它可以连接到局域网或远程服务器,实现与其他系统或监控中心的数据交互。
6.电源供应为了保证锅炉控制系统的稳定运行,需要提供可靠的电源供应。
这可以通过备用电源或UPS(不间断电源)来实现。
综上所述,基于PLC的锅炉控制系统采用分布式控制策略,通过控制器、传感器、执行器、人机界面、通信模块和电源供应等组成部分协同工作,实现对锅炉设备的监控和控制。
本文介绍基于PLC的锅炉控制系统所采用的控制策略和算法。
控制策略是指通过采取不同的控制方法和算法,在锅炉运行中实现温度、压力、流量等参数的稳定控制。
基于PLC的锅炉控制系统采用了以下主要的控制策略:PID控制:PID(比例、积分、微分)控制是一种常用的控制方法。
它通过根据控制对象的偏差来调节控制器的输出,使得偏差逐渐趋向于零,从而实现控制目标。
在锅炉控制系统中,PID控制常用于调节温度、压力和流量等参数。
基于PLC的锅炉供热控制系统
第一章绪论1.1锅炉的作用及供热控制系统现状1.1.1 锅炉的作用⑴锅炉及锅炉房是供热系统中热源产生的主要设备。
⑵锅炉是化工、石化、冶金、轻纺、造纸等工矿企业主要动力机供热设备。
⑶锅炉是能源工业发展的主要组成部分。
1.1.2 供热系统现状锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。
它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。
随着工业生产规模的不断扩大,生产设备的不断创新,作为全场动力和热源的锅炉,也向着大容量、高参数、高效率发展。
为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。
随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以理由计算机与组态软件技术队锅炉生产过程进行自动控制有着重要的意义。
其优越主要在于:首先,通过对锅炉燃烧过程进行有效控制,使燃烧在合理的条件下进行,可以提高燃料效率。
由于工业鼓了耗煤量大,燃煤热效率每提高百分之一都会生产巨大的经济效益。
其次,锅炉控制过程的自动化处理以及监控软件良好的人际界面使运行参数在CRT上的集中监测,操作人员在监控计算机上能根据控制效果及时修改运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。
随着计算机控制技术应有的普及、可靠性的提高及交个的小降,工业锅炉的危机控制必将得到更广泛的应用。
锅炉作为重要的动力设备,其控制的基本要求是供给合格的蒸汽,使锅炉蒸发量适应符合的要求。
为此,生产过程的各个主要参数必须严格控制。
锅炉设备是一个多输入、多输出的复杂控制对象,这些输入变量与输出变量之间是相互关联的。
如果蒸汽负荷发生变化,必将引起汽包水位、蒸汽压力和蒸汽温度等的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、蒸汽温度、炉膛负压;给水量的变化不仪影响汽包水位,而且对蒸汽压力、蒸汽温度等亦有影响;所以锅炉设备是多输入,多输出且相互关联的控制对象。
基于PLC设计锅炉供暖系统
机电工程系毕业设计论文题目专业名称学生姓名指导教师毕业时间任务书一、题目二、指导思想和目的要求三、主要技术指标四、进度和要求五、主要参考书及参考资料学生___________ 指导教师___________ 系主任___________摘要随着社会经济的飞速发展,城市建设规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了越来越高的要求。
结合现状,本论文供暖锅炉监控系统,设计了一套基于PLC 和变频调速技术的供暖锅炉控制系统。
该控制系统以两台工业控制机作为上位机,以西门子S7-300可编程控制器为下位机,系统通过变频器控制电动机的启动、运行和调速。
上位机监控软件采用三维力控PCAuto3.6设计,主要完成系统操作界面设计,实现系统启/停控制、参数设定、报警联动、历史数据查询等功能。
下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接收上位机的控制指令以完成风机启/停控制、参数设定、循环泵控制和其余电动机的控制。
本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,系统运行稳定、可靠。
采用锅炉的计算机控制和变频控制不仅可大大节约能源,促进环保,而且可以提高生产自动化水平,具有显著的经济效益和社会效益。
关键词: 锅炉控制;变频调速技术;PLC;组态软件AbstractAlong with social econom y's swift development, the urban construction scale's unceasing expansion, as well as the people living standard's unceasing enhancement, set more and more high request to the cit y life heating's user quantit y and the heating qualit y. The union present situation, the present paper heating boiler supervisory s ystem, ha s designed a set based on P LC and the frequency conversion velocit y modulation technology heating boiler control system.This control system takes the superior machine by two industry cybertrons, west of famil y household S7-300 programmable controller for lower position machine, s ystem through frequency changer control motor's start, movement and velocit y modulation. The superior machine monitoring software uses the three dimensional strength to control the PCAuto3.6 design, mainl y completes the s ystem oper ation contact surface design, realizes the system to open/stops functions and so on control, parameter hypothesis, warning linkage, historical data inquiry. The lower position machine control procedure uses Siemens's STEP7 programming software design, mainl y completes the simulation quantit y signal processing, temperature and pressure signal functions and so on PID control, and receives the superior machine control command to complete the air blower to open/stops the control, the parameter hypothesis, the c irculating pump control and other electric motor's control .This article designs the frequency conversion control system has realized the boiler combustion process automatic control, the s ystems operation is stable, is reliable. Uses boiler's computer con trol and the frequency conversion control not only may save the energy greatly, the promotion environmental protection, moreover may raise the production automation level, has the remarkable economic efficiency and the social efficiency.Key word: Boiler control; Frequency conversion velocity modulation technology; PLC; Configuration software目录摘要 (I)Abstract (II)目录 (III)第一章绪论 (1)1.1 项目背景及课题的研究意义 (1)1.2 供暖锅炉控制的国内外研究现状 (2)1.3 本文所做工作 (3)第二章变频调速在供暖锅炉控制中的应用 (4)2.1变频调速基本原理 (4)2.2变频调速在供暖锅炉系统中的应用 (4)2.3变频调速节能分析 (5)第三章锅炉控制系统原理 (7)3.1引言 (7)3.1.1偏差控制方式 (7)3.1.2 PID控制方式 (8)3.2循环流量控制 (10)3.3燃烧过程控制 (11)第四章锅炉控制系统总体设计 (12)4.1系统功能分析 (12)4.2系统方案设计 (12)4.2.1总体设计思路 (12)4.2.2系统结构 (12)4.3系统硬件配置 (14)第五章锅炉控制系统的硬件设计 (16)5.1系统主电路的设计 (16)5.2系统控制电路的设计 (17)5.3系统主要元器件的选择 (18)5.3.1 PLC的选型 (18)5.3.2通信网络配置 (23)5.3.3变频器的选型 (24)5.3.4传感器的选型 (26)5.3.5其他主要元器件的选择 (27)第六章系统软件的设计 (28)6.1 S7-300系列PLC简介 (28)6.1.1 S7-300编程方式简介 (28)6.1.2 S7-300 PLC的存储区 (29)6.2PLC控制程序设计 (30)6.2.1 PLC控制流程图 (31)6.2.2 PLC控制程序 (35)第七章监控组态软件设计...................... 错误!未定义书签。
基于PLC控制的锅炉供热控制系统设计设计说明
基于PLC控制的锅炉供热控制系统设计1 引言1.1 技术综述自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。
目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。
温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。
目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。
成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。
现在,我国在温度等控制仪表业与国外还有着一定的差距。
温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。
另一种是基于单片机进行PID控制,然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能。
因此本设计选用西门子S7-300PLC来控制加热炉的温度。
1.2 系统工作原理加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。
PLC主控系统图1-1 加热炉温度控制系统基本组成加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后 PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮阴工学院毕业设计说明书(论文)第 1 页共 51 页1 引言1.1 技术综述自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。
目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。
温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。
目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。
成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。
现在,我国在温度等控制仪表业与国外还有着一定的差距。
温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。
另一种是基于单片机进行PID控制,然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能。
因此本设计选用西门子S7-300PLC来控制加热炉的温度。
1.2 系统工作原理加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。
图1-1 加热炉温度控制系统基本组成PID控制器D/A固态继电器加热炉A/D温度传感器PLC主控系统SV — PV历史老照片不能说的秘密慈禧军阀明末清初文革晚清淮阴工学院毕业设计说明书(论文)第 2 页共 51 页加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后 PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。
既加热炉温度控制得到实现。
其中PLC主控系统为加热炉温度控制系统的核心部分起着重要作用。
1.3 系统组成本系统的结构框图如图2-3所示。
图1-2系统结构框图由图1-2可知,温度传感器采集到数据后送给S7-300PLC,S7-300PLC通过运算后给固态继电器一个控制信号从而控制加热炉的导通与否。
上位机是编写PLC程序以及监控温度的变化。
1.4 系统设计目标及技术要求本系统应能够控制在设定值的±5℃的误差范围内并且具有温度上下限报警功能和故障报警功能。
由学校提供,模拟真实锅炉的温度检测和控制模块,可自行将0~10V模拟信号转化为占空比对锅炉进行加热。
输出的模拟信号也是0~10V,锅炉外接24V直流电源。
2 下位机硬件系统设计随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛地应用上位机S7-300PLC控制器固态继电器电阻炉温度传感器淮阴工学院毕业设计说明书(论文)第 3 页共 51 页在所有的工业领域。
现代社会要求制造业对市场需求作出迅速反应,生产出小批量、多品种、多规格、高质量的产品。
为了满足这一要求,生产设备和自动化生产线的控制系统必须具有极高的可靠性和灵活性。
可编程序控制器(Programmable Logic Controller)正是顺应这一要求出现的,它是以微处理器为基础的通用控制装置。
本系统控制软件设计分为PLC的软件和工控机的软件设计两部分,其中下位机使用的软件为siemens公司的step7。
本章主要介绍西门子S7-300系列PLC以及其它硬件的组成与选型。
2.1 硬件接线图硬件接线图如下图2-1。
图2-1 硬件接线图SB1 SB2 SB3 SB5 SB4 SB6 SQ1 SQ224VCPU314-2DP PLCI0.0I0.1 I0.2I0.3I0.4 I0.5 I0.6 I0.7 COM1Q4.0 Q4.1 Q4.2 Q4.3 Q4.4 Q4.5Q4.6COM2Q5.0 Q5.1 Q5.2 Q5.3 Q5.4 Q5.5 Q5.6COM3PQW305comPIW288传感器加热管~220VFU1淮阴工学院毕业设计说明书(论文)第 4 页共 51 页2.2 传感器温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。
温度传感器是最早开发,应用最广的一类传感器。
根据美国仪器学会的调查,1990年,温度传感器的市场份额大大超过了其他的传感器。
从17世纪初伽利略发明温度计开始,人们开始利用温度进行测量。
真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。
50年以后,另一位德国人西门子发明了铂电阻温度计。
在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。
与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
这里我们主要介绍热电阻和热电偶。
2.2.1 热电阻热电阻是中低温区最常用的一种温度测量元件。
热电阻是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
当电阻值变化时,二次仪表便显示出电阻值所对应的温度值。
它的主要特点是测量精度高,性能稳定。
其中铂热电阻的测量精度是最高的。
铂热电阻根据使用场合的不同与使用温度的不同,有云母、陶瓷、簿膜等元件。
作为测温元件,它具有良好的传感输出特性,通常和显示仪、记录仪、调节仪以及其它智能模块或仪表配套使用,为它们提供精确的输入值。
若做成一体化温度变送器,可输出4-20mA标准电流信号或0-10V标准电压信号,使用起来更为方便。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜。
此外,现在已开始采用铬、镍、锰和铑等材料制造热电阻。
根据使用场合的不同,热电阻也有铠装式热电阻、装配式热电阻、隔爆式热电阻等种类,与热电偶类似。
铂电阻的工作原理是,在温度作用下,铂热电阻丝的电阻值随温度变化而变化,且电阻与温度的关系即分度特性符合IEC标准。
分度号Pt100的含义为在0℃时的名义电阻值为100Ω,目前使用的一般都是这种铂热电阻。
此外还有Pt10、Pt200、Pt500和Pt1000等铂热电阻,Cu50、Cu100的铜热电阻等。
2.2.2 热电偶工业热电偶作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中不同范围的温度。
若配接输出4-20mA、0-10V等标准电流、电压信号的温度变送器,使用更加方便、可靠。
对于实验室等短距离的应用场合,可以直接把热电偶信号引入PLC进行测量。
淮阴工学院毕业设计说明书(论文)第 5 页共 51 页热电偶的工作原理是,两种不同成份的导体,两端经焊接,形成回路,直接测量端也叫工作端(热端),接线端子端也叫冷端,当热端和冷端存在温差时,就会在回路里产生热电流,这种现象称为热电效应;接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值,电动势随温度升高而增长。
热电动势的大小只和热电偶的材质以及两端的温度有关,而和热电偶的长短粗细无关。
根据使用场合的不同,热电偶有铠装式热电偶、装配式热电偶、隔爆式热电偶等种类。
装配式热电偶由感温元件(热电偶芯)、不锈钢保护管、接线盒以及各种用途的固定装置组成。
铠装式热电偶比装配式热电偶具有外径小、可任意弯曲、抗震性强等特点,适宜安装在装配式热电偶无法安装的场合,它的外保护管采用不同材料的不锈钢管,可适合不同使用温度的需要,内部充满高密度氧化绝缘体物质,非常适合于环境恶劣的场合。
隔爆式热电偶通常应用于生产现场伴有各种易燃、易爆等化学气体的场合,如果使用普通热电偶极易引起气体爆炸,则在这种场合必须使用隔爆热电偶。
热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。
由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。
也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程,如燃烧和爆炸过程等。
对一般的工业应用来说,为了保护感温元件避免受到腐蚀和磨损,总是装在厚厚的护套里面,外观就显得笨大,对于温度场的反应也就迟缓得多。
使用热电偶的时候,必须消除环境温度的波动对测量带来的影响。
有的把它的自由端放在不变的温度场中,有的使用冷端补偿器抵消这种影响。
当测量点远离仪表时,还需要使用热电势率和热电偶相近的导线来传输信号,这种导线称为补偿导线。
本设计选用镍铬-镍硅N型热电偶,选用其型号为WRM-101。
2.3 PLC的基本概念可编程序控制器简称为PLC,它的应用面广、功能强大、使用方便,已经成为当代工业自动化的主要支柱之一。
PLC已经广泛地应用在各种机械设备和生产过程的自动控制系统中,PLC在其它领域,例如在民用和家庭自动化设备中的应用也得到了迅速的发展。
2.3.1 S7-300简介S7-300是模块化的中小型PLC,适用于中等性能的控制要求。
品种繁多的CPU。