计量经济学第四章练习试题和参考解答

合集下载

【VIP专享】计量经济学第四章练习题及参考解答

【VIP专享】计量经济学第四章练习题及参考解答

(2) 3.060 1.657ln() 1.057ln()
(0.337) (0.092) (0.215)0.992 0.991 F 1275.093
GDP CPI R =-+-===进口居民消费价格指数的回归系数的符号不能进行合理的经济意义解释可能数据中有多重共线性。

计算相关系数:
22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)
0.9828 0.9820 1198.698
GDP R R F =-+===ln Y 5.4424 2.6637ln (PI)C =-+
从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,著。

可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5
可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于作为解释变量,很可能会出现严重多重共线性问题。

在本章开始的“引子”提出的“农业的发展反而会减少财政收入吗?
表4.13 1978-2007
财政收入(亿元)CS农业增加值(亿元)NZ工业增加值(亿元)GZ建筑业增加值
1132.31027.51607
1146.41270.21769.7
1159.91371.61996.5
1175.81559.52048.4
(1)根据样本数据得到各解释变量的样本相关系数矩阵如下:样本相关系数矩阵
解释变量之间相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在这显然与第三章对模型的无多重共线性假定不符合。

《计量经济学》习题(第四章)

《计量经济学》习题(第四章)

《计量经济学》习题(第四章)第四章习题⼀、单选题1、如果回归模型违背了同⽅差假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的2、Goldfeld-Quandt ⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性3、DW 检验⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性4、在异⽅差性情况下,常⽤的估计⽅法是____A .⼀阶差分法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法5、在以下选项中,正确表达了序列⾃相关的是____j i u x Cov D j i x x Cov C ji u u Cov B ji u u Cov A j i j i j i j i ≠≠≠≠≠=≠≠,0),(.,0),(.,0),(.,0),(.6、如果回归模型违背了⽆⾃相关假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的7、在⾃相关情况下,常⽤的估计⽅法____A .普通最⼩⼆乘法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法8、White 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性9、Glejser 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性10、简单相关系数矩阵⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var A12、所谓不完全多重共线性是指存在不全为零的数k λλλ,,,21 ,有____1112211221221122.0.0..k k k k k x x x k k k k A x x x v B x x x C x x x v e D x x x v e v λλλλλλλλλλλλ++++=+++=∑?++++=++++=式中是随机误差项13、设21,x x 为解释变量,则完全多重共线性是____0.(021.0.021.22121121=+=++==+x x e x D v v x x C e x B x x A 为随机误差项)14、⼴义差分法是对____⽤最⼩⼆乘法估计其参数 11211211121121)()1(....-------+-+-=-++=++=++=t t t t t t t t t t t t t t t u u x x y y D u x y C u x y B u x y A ρρβρβρρρβρβρββββ15、在DW 检验中要求有假定条件,在下列条件中不正确的是____A .解释变量为⾮随机的 B.随机误差项为⼀阶⾃回归形式C .线性回归模型中不应含有滞后内⽣变量为解释变量D.线性回归模型为⼀元回归形式16、在下例引起序列⾃相关的原因中,不正确的是____A.经济变量具有惯性作⽤B.经济⾏为的滞后性C.设定偏误D.解释变量之间的共线性17、在DW 检验中,当d 统计量为2时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定18、在DW 检验中,当d 统计量为4时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定19、在DW 检验中,当d 统计量为0时,表明____A.存在完全的正⾃相关C.不存在⾃相关D.不能判定20、在DW 检验中,存在不能判定的区域是____A. 0﹤d ﹤l d ,4-l d ﹤d ﹤4B. u d ﹤d ﹤4-u dC. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l dD. 上述都不对21、在修正序列⾃相关的⽅法中,能修正⾼阶⾃相关的⽅法是____A. 利⽤DW 统计量值求出ρB. Cochrane-Orcutt 法C. Durbin 两步法D. 移动平均法22、在下列多重共线性产⽣的原因中,不正确的是____A.经济本变量⼤多存在共同变化趋势B.模型中⼤量采⽤滞后变量C.由于认识上的局限使得选择变量不当D.解释变量与随机误差项相关23、在DW 检验中,存在正⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d24、逐步回归法既检验⼜修正了____A .异⽅差性 B.⾃相关性 C .随机解释变量 D.多重共线性25、设)()(,2221i i i i i ix f u Var u x y σσββ==++=,则对原模型变换的正确形式为____ )()()()(.)()()()(.)()()()(..212222122121i i i i i i i i i i i i i i i i i i i i i i i i x f u x f x x f x f y D x f u x f x x f x f y C x f u x f x x f x f y B u x y A ++=++=++=++=ββββββββ 26、在修正序列⾃相关的⽅法中,不正确的是____A.⼴义差分法B.普通最⼩⼆乘法C.⼀阶差分法D. Durbin 两步法27、在检验异⽅差的⽅法中,不正确的是____A. Goldfeld-Quandt ⽅法B. spearman 检验法C. White 检验法28、在DW 检验中,存在零⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d29.如果模型中的解释变量存在完全的多重共线性,参数的最⼩⼆乘估计量是()A .⽆偏的 B. 有偏的 C. 不确定 D. 确定的30. 已知模型的形式为u x y 21+β+β=,在⽤实际数据对模型的参数进⾏估计的时候,测得DW 统计量为0.6453,则⼴义差分变量是( )A. 1t t ,1t t x 6453.0x y 6453.0y ----B. 1t t 1t t x 6774.0x ,y 6774.0y ----C. 1t t 1t t x x ,y y ----D. 1t t 1t t x 05.0x ,y 05.0y ----31. 在具体运⽤加权最⼩⼆乘法时,如果变换的结果是x u x x x 1xy 21+β+β=,则Var(u)是下列形式中的哪⼀种?( )A. 2σxB. 2σ2x B. 2σx D. 2σLog(x)32. 在线性回归模型中,若解释变量1x 和2x 的观测值成⽐例,即有i 2i 1kx x =,其中k 为⾮零常数,则表明模型中存在( )A. 异⽅差B. 多重共线性C. 序列⾃相关D. 设定误差33. 已知DW 统计量的值接近于2,则样本回归模型残差的⼀阶⾃相关系数ρ近似等于( ) A. 0 B. –1 C. 1 D. 4⼆、多项选择1、能够检验多重共线性的⽅法有____A.简单相关系数法B. DW检验法C. 判定系数检验法D. ⽅差膨胀因⼦检验E.逐步回归法2、能够修正多重共线性的⽅法有____A.增加样本容量B.岭回归法C.剔除多余变量E.差分模型3、如果模型中存在异⽅差现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的4、能够检验异⽅差的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. spearman检验法E. DW检验法F. Goldfeld-Quandt检验法5、如果模型中存在序列⾃相关现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的6、检验序列⾃相关的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. DW检验法E. Goldfeld-Quandt检验法7、能够修正序列⾃相关的⽅法有____A. 加权最⼩⼆乘法B. Durbin两步法C. ⼴义最⼩⼆乘法D. ⼀阶差分法E. ⼴义差分法8、Goldfeld-Quandt检验法的应⽤条件是____A. 将观测值按解释变量的⼤⼩顺序排列B. 样本容量尽可能⼤C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉9、在DW检验中,存在不能判定的区域是____A. 0﹤d﹤l dB. u d﹤d﹤4-u dC. l d﹤d﹤u dD. 4-u d﹤d﹤4-l dE. 4-l d﹤d﹤4。

计量经济学第四章习题详解word精品

计量经济学第四章习题详解word精品

第四章习题4.1没有进行t 检验,并且调整的可决系数也没有写出来,也就是没有考虑自由度的影响,会使结果存在一研究的目的和要求我们知道,商品进口额与很多因素有关,了解其变化对进出口产品有很大帮助。

为了探究和预测商品 进口额的变化,需要定量地分析影响商品进口额变化的主要因素。

二、模型的设定及其估计经分析,商品进口额可能与国内生产总值、居民消费价格指数有关。

为此,考虑国内生产总值 居民消费价格指数 CPI 为主要因素。

各影响变量与商品进口额呈正相关。

为此,设定如下形式的计量经济 模型:4.3199511048.160793.7302.8+ In+ InCP1996 11557.4 71176.6 327.9 1997 11806.5 78973.0 337.1 1998 11626.1 84402.3 334.4 1999 13736.4 89677.1 329.7 2000 18638.8 99214.6 331.0 2001 20159.2 109655.2 333.3 2002 24430.3 120332.7 330.6 2003 34195.6 135822.8 334.6 2004 46435.8 159878.3 I 347.7 2005 54273.7 183084.8 353.9 2006 63376.9 211923.5 359.2 2007 73284.6 249529.9 376.5 2008 79526.5 314045.4 398.7 2009 68618.4 340902.8 395.9 201094699.3 401512.8 408.9 2011113161.4472881.6431.0GDP 、式中, 为第 年中国商品进口额(亿元);In GDP 为第 年国内生产总值(亿元);In CPI 为居民消费价格 指数(以1985年为100)。

各解释变量前的回归系数预期都大于零。

计量经济学4-7章单选、多选题带答案

计量经济学4-7章单选、多选题带答案

D

5、在以下选项中,正确表达了序列自相关的是(
A.Cov(ui , u j ) 0, i j C.Cov( xi , x j ) 0, i j
A.无偏的,非有效的. C.无偏的,有效的
) A B.Cov(u i , u j ) 0, i j
D.Cov( xi , u j ) 0, i j
自相关性 产生的后果:
Cov(ut , u s ) 0
ts
1、参数估计量无偏,但不满足有效性;
ˆ 2、 2严重低估计总体方差 2
3、参数的显著性检验(t 检验)失效; 4、区间估计和预测区间的精度降低
检验方法: 补救措施: 1、广义差分法
1、图示法;
2、D-W检验
2、一阶差分估计法
3、科克兰内-奥克特法(Cochrane-Orcutt)迭方法
X j f ( X 2 ,, X j 1 , X j 1 ,, X k )
R2 j
补救措施:
1、增加样本容量; 3、数据的结合; 2、利用先验信息改变参数的约束条件 4、利用差分方程(变换模型的形式)
5、逐步回归法
异方差(方差非齐性). 产生的后果:
Var (ui ) i2 2 f ( X )
A. 经济变量的惯性作用 C. 设定偏误 B. 经济行为的滞后作用 D. 解释变量的共线性.
44、
yi 1 2 xi ui ,Var(ui ) f ( xi )
2 i 2
则对原模型变换的正确形式为(
B ) P99
xi ui 1 B. 2 f ( xi ) f ( xi ) f ( xi ) f ( xi ) yi D. yi f ( xi ) 1 f ( xi ) 2 xi f ( xi ) ui f ( xi )

计量经济学第四章练习题及参考解答

计量经济学第四章练习题及参考解答

第四章练习题及参考解答4.1 假设在模型i i i iu X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvarγβαβ==且? 练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。

因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x xx y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i i x x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-=11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-=则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvarγβαβ==且。

因为()()∑-=22322221ˆvarr x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。

计量经济学第四章习题(龚志民)fixed

计量经济学第四章习题(龚志民)fixed

第四章 多元线性回归模型的估计与假设检验问题4.1什么是偏回归系数? 答:在总体回归函数12233k k Y X X X u ββββ=+++++中,系数2,,k ββ被称为斜率系数或偏回归系数。

(多元样本回归函数的系数亦称偏回归系数)4.2什么是完全多重共线性?什么是高度共线性(近似完全共线性)?答:对于解释变量123,,...k X X X X ,如果存在不全为0的数123,,...k λλλλ,使得112233...0k k X X X X λλλλ++++=则称解释变量之间存在着完全的多重共线性。

如果解释变量123,,...k X X X X 之间存在较大的相关性,但又不是完全共线性,则称解释变量之间存在不完全多重共线性。

4.3 多元回归方程中偏回归系数与一元回归方程中回归系数的含义有何差别? 答:相同点:两者都表示当X 每变化一单位时,Y 的均值的变化。

不同点:偏回归系数是表示当其他解释变量不变时,这一解释变量对被解释变量的影响。

而回归系数则不存在其他解释变量,也就不需要对其他变量进行限制。

4.4 几个变量“联合显著”的含义是什么?答:联合显著的含义是,几个变量作为一个集体是显著的。

即在它们的系数同时为0的假设下,统计量超过临界值。

直观的意义是,它们的系数同时为零的可能性很小。

习题4.5下表中的数据23,,Y X X 分别表示每周销售量,每周的广告投入和每周顾客的平均收入(见DATA4-5)(1)估计回归方程12233()E Y X X βββ=++。

(2)计算拟合优度。

(3)计算校正拟合优度。

(4)计算2β的置信区间(置信水平为95%)。

(5)检验假设03H :0β=(备择假设13H :0β≠,显著性水平为5%) (6)检验假设03H :0β=(备择假设13H :0β>,显著性水平为5%)(7)检验建设023H :0ββ==(显著性水平为5%)。

答:(1)由eviews6.0输出结果:可知1ˆ109.4β=,23ˆˆ2.835714, 5.125714ββ== 回归方程为:23()109.4 2.835714 5.125714E Y X X =++(2)由输出结果可以得到拟合优度为0.910086。

《计量经济学》习题(第四章)

《计量经济学》习题(第四章)

第四章 习 题一、单选题1、如果回归模型违背了同方差假定,最小二乘估计量____A .无偏的,非有效的 B.有偏的,非有效的C .无偏的,有效的 D.有偏的,有效的2、Goldfeld-Quandt 方法用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性3、DW 检验方法用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性4、在异方差性情况下,常用的估计方法是____A .一阶差分法 B.广义差分法C .工具变量法 D.加权最小二乘法5、在以下选项中,正确表达了序列自相关的是____j i u x Cov D j i x x Cov C ji u u Cov B ji u u Cov A j i j i j i j i ≠≠≠≠≠=≠≠,0),(.,0),(.,0),(.,0),(.6、如果回归模型违背了无自相关假定,最小二乘估计量____A .无偏的,非有效的 B.有偏的,非有效的C .无偏的,有效的 D.有偏的,有效的7、在自相关情况下,常用的估计方法____A .普通最小二乘法 B.广义差分法C .工具变量法 D.加权最小二乘法8、White 检验方法主要用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性9、Glejser 检验方法主要用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性10、简单相关系数矩阵方法主要用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性11、所谓异方差是指____2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var A12、所谓不完全多重共线性是指存在不全为零的数k λλλ,,,21 ,有____1112211221221122.0.0..k k k k k x x x k k k k A x x x v B x x x C x x x v e D x x x v e v λλλλλλλλλλλλ++++=+++=∑⎰++++=++++=式中是随机误差项13、设21,x x 为解释变量,则完全多重共线性是____0.(021.0.021.22121121=+=++==+x x e x D v v x x C e x B x x A 为随机误差项) 14、广义差分法是对____用最小二乘法估计其参数11211211121121)()1(....-------+-+-=-++=++=++=t t t t t t t t t t t t tt t u u x x y y D u x y C u x y B u x y A ρρβρβρρρβρβρββββ15、在DW 检验中要求有假定条件,在下列条件中不正确的是____A .解释变量为非随机的 B.随机误差项为一阶自回归形式C .线性回归模型中不应含有滞后内生变量为解释变量D.线性回归模型为一元回归形式16、在下例引起序列自相关的原因中,不正确的是____A.经济变量具有惯性作用B.经济行为的滞后性C.设定偏误D.解释变量之间的共线性17、在DW 检验中,当d 统计量为2时,表明____A.存在完全的正自相关B.存在完全的负自相关C.不存在自相关D.不能判定18、在DW 检验中,当d 统计量为4时,表明____A.存在完全的正自相关B.存在完全的负自相关C.不存在自相关D.不能判定19、在DW 检验中,当d 统计量为0时,表明____A.存在完全的正自相关B.存在完全的负自相关C.不存在自相关D.不能判定20、在DW 检验中,存在不能判定的区域是____A. 0﹤d ﹤l d ,4-l d ﹤d ﹤4B. u d ﹤d ﹤4-u dC. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l dD. 上述都不对21、在修正序列自相关的方法中,能修正高阶自相关的方法是____A. 利用DW 统计量值求出ρˆ B. Cochrane-Orcutt 法 C. Durbin 两步法 D. 移动平均法22、在下列多重共线性产生的原因中,不正确的是____A.经济本变量大多存在共同变化趋势B.模型中大量采用滞后变量C.由于认识上的局限使得选择变量不当D.解释变量与随机误差项相关23、在DW 检验中,存在正自相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d24、逐步回归法既检验又修正了____A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性25、设)()(,2221i i i i i i x f u Var u x y σσββ==++=,则对原模型变换的正确形式为____ )()()()(.)()()()(.)()()()(..212222122121i i i i i i i i i i i i i i i i i i i i i i i i x f u x f x x f x f y D x f u x f x x f x f y C x f u x f x x f x f y B u x y A ++=++=++=++=ββββββββ26、在修正序列自相关的方法中,不正确的是____A.广义差分法B.普通最小二乘法C.一阶差分法D. Durbin 两步法27、在检验异方差的方法中,不正确的是____A. Goldfeld-Quandt 方法B. spearman 检验法C. White 检验法D. DW 检验法28、在DW 检验中,存在零自相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d29.如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )A .无偏的 B. 有偏的 C. 不确定 D. 确定的30. 已知模型的形式为u x y 21+β+β=,在用实际数据对模型的参数进行估计的时候,测得DW 统计量为0.6453,则广义差分变量是( )A. 1t t ,1t t x 6453.0x y 6453.0y ----B. 1t t 1t t x 6774.0x ,y 6774.0y ----C. 1t t 1t t x x ,y y ----D. 1t t 1t t x 05.0x ,y 05.0y ----31. 在具体运用加权最小二乘法时,如果变换的结果是x u x x x 1xy 21+β+β=,则Var(u)是下列形式中的哪一种?( )A. 2σxB. 2σ2x B. 2σx D. 2σLog(x)32. 在线性回归模型中,若解释变量1x 和2x 的观测值成比例,即有i 2i 1kx x =,其中k 为非零常数,则表明模型中存在( )A. 异方差B. 多重共线性C. 序列自相关D. 设定误差33. 已知DW 统计量的值接近于2,则样本回归模型残差的一阶自相关系数ρˆ近似等于( ) A. 0 B. –1 C. 1 D. 4二、多项选择1、能够检验多重共线性的方法有____A.简单相关系数法B. DW 检验法C. 判定系数检验法D. 方差膨胀因子检验E.逐步回归法3、能够修正多重共线性的方法有____A.增加样本容量B.岭回归法C.剔除多余变量D.逐步回归法E.差分模型3、如果模型中存在异方差现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的4、能够检验异方差的方法是____A. gleiser检验法B. White检验法C. 图形法D. spearman检验法E. DW检验法F. Goldfeld-Quandt检验法5、如果模型中存在序列自相关现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的6、检验序列自相关的方法是____A. gleiser检验法B. White检验法C. 图形法D. DW检验法E. Goldfeld-Quandt检验法7、能够修正序列自相关的方法有____A. 加权最小二乘法B. Durbin两步法C.广义最小二乘法D. 一阶差分法E.广义差分法8、Goldfeld-Quandt检验法的应用条件是____A. 将观测值按解释变量的大小顺序排列B. 样本容量尽可能大C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉9、在DW检验中,存在不能判定的区域是____A. 0﹤d﹤l dB. u d﹤d﹤4-u dC. l d﹤d﹤u dD. 4-u d﹤d﹤4-l dE. 4-l d﹤d﹤4。

计量经济学课后答案第四、五章(内容参考)

计量经济学课后答案第四、五章(内容参考)

计量经济学课后答案第四、五章(内容参考)第四章随机解释变量问题1. 随机解释变量的来源有哪些?答:随机解释变量的来源有:经济变量的不可控,使得解释变量观测值具有随机性;由于随机干扰项中包括了模型略去的解释变量,而略去的解释变量与模型中的解释变量往往是相关的;模型中含有被解释变量的滞后项,而被解释变量本身就是随机的。

2.随机解释变量有几种情形? 分情形说明随机解释变量对最小二乘估计的影响与后果?答:随机解释变量有三种情形,不同情形下最小二乘估计的影响和后果也不同。

(1)解释变量是随机的,但与随机干扰项不相关;这时采用OLS估计得到的参数估计量仍为无偏估计量;(2)解释变量与随机干扰项同期无关、不同期相关;这时OLS估计得到的参数估计量是有偏但一致的估计量;(3)解释变量与随机干扰项同期相关;这时OLS估计得到的参数估计量是有偏且非一致的估计量。

3. 选择作为工具变量的变量必须满足那些条件?答:选择作为工具变量的变量需满足以下三个条件:(1)与所替代的随机解释变量高度相关;(2)与随机干扰项不相关;(3)与模型中其他解释变量不相关,以避免出现多重共线性。

4.对模型Y t =β+β1X1t+β2X2t+β3Yt-1+μt假设Yt-1与μt相关。

为了消除该相关性,采用工具变量法:先求Y t关于X1t与 X2t回归,得到Yt,再做如下回归:Y t =β+β1X1t+β2X2t+β3Y t?1-+μt试问:这一方法能否消除原模型中Yt的相关性? 为什么?解答:能消除。

在基本假设下,X1t,X2t与μt应是不相关的,由此知,由X1t 与X2t估计出的Yt应与μt不相关。

5.对于一元回归模型Y t =β+β1Xt*+μt假设解释变量Xt *的实测值Xt与之有偏误:Xt= Xt*+et,其中et是具有零均值、无序列相关,且与Xt不相关的随机变量。

试问:(1) 能否将X t= X t*+e t代入原模型,使之变换成Y t=β0+β1X t+νt后进行估计? 其中,νt为变换后模型的随机干扰项。

斯托克,沃森计量经济学第四章实证练习stata操作及答案

斯托克,沃森计量经济学第四章实证练习stata操作及答案

斯托克,沃森计量经济学第四章实证练习stata操作及答案E4.1E4.2E4.3E4.4VARIABLES aheage 0.605(0.0245)Constant 1.082(0.688)Observations 7,711R-squared 0.029Robust standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.11.①截距估计值estimated intercept:1.082②斜率估计值estimated slope:0.605回归方程:ahe= 1.082+0.605*age③当工人年长1岁,平均每小时工资增加0.605美元。

2.Bob: 0.605*26+1.082=16.812(美元)Alexis: 0.605*30+1.082=19.232(美元)答:预测Bob的收入为每小时16.812美元,Alexis为19.232美元。

3.年龄不能解释不同个体收入变化的大部分。

因为R-squared反映了因变量的全部变化能通过回归关系被自变量充分解释的比例,而分析得R-squared的值为0.029,解释度低,说明年龄不能解释不同个体收入变化的大部分。

1.答:两者看上去有微弱的正相关关系2.VARIABLES course_evalbeauty 0.133(0.0550)Constant 3.998(0.0449)Observations 463R-squared 0.036Robust standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1①截距估计值:3.998斜率估计值:0.133回归方程:Course_Eval=3.998+0.133*beauty//mean beautyMean estimation Number of obs = 463Mean Std.Err. 95% Conf. Interval beauty 4.75e-08 0.0367 -0.0720 0.0720②截距的估计值=Course_Eval的样本均值-斜率估计值*Beauty 的样本均值计算得Beauty的样本均值趋近于零,所以截距的估计值等于Course_Eval的样本均值。

计量经济学第四章习题

计量经济学第四章习题

计量经济学第四章习题第四章练习题1. 什么是异⽅差性?试举例说明经济现象中的异⽅差性。

检验异⽅差性的⽅法思路是什么? 2. 判断题。

并简单说明理由。

(1) 存在异⽅差时,普通最⼩⼆乘法(OLS )估计量是有偏的和⽆效的; (2) 存在异⽅差时,常⽤的t 检验和F 检验失效;(3) 存在异⽅差时,常⽤的OLS 估计⼀定是⾼估了估计量的标准差; (4)如果从OLS 回归中估计的残差呈现出系统性,则意味着数据中存在着异⽅差; (5) 存在序列相关时,OLS 估计量是有偏的并且也是⽆效的; (6) 消除序列相关的⼀阶差分变换假定⾃相关系数ρ必须等于1; (7) 回归模型中误差项t u 存在异⽅差时,OLS 估计不再是有效的; (8) 存在多重共线性时,模型参数⽆法估计;(9)存在多重共线性时,⼀定会使参数估计值的⽅差增⼤,从⽽造成估计效率的损失;(10) ⼀旦模型中的解释变量是随机变量,则违背了基本假设,使得模型的OLS 估计量有偏且不⼀致。

3. 回归模型中误差项t u 存在序列相关时,OLS 估计不再是⽆偏的;已知消费模型:01122t t t t y x x u ααα=+++。

其中,t y :消费⽀出;t x 1:个⼈可⽀配收⼊;t x 2:消费者的流动资产。

设0)(=t u E ,为常数)其中2212()(σσt t ar x u V =。

要求: (1)进⾏适当变换消除异⽅差,并证明之。

(2)写出消除异⽅差后,模型的参数估计量的表达式。

4. 简述异⽅差对下列各项有何影响:(1) OLS 估计量及其⽅差; (2) 置信区间;(3)显著性t 检验和F 检验的使⽤。

5. 已知模型:22201122,()t t t t t t t Y X X u Var u Z βββσσ=+++==。

式中,Y 、X 1、X 2和Z 的数据已知。

假设给定权数t w ,加权最⼩⼆乘法就是求下式中的各β,以使的下式最⼩2221102)()(t t t t t t t t t X w X w w Y w u w RSS βββ---==∑∑(1) 求RSS 对β1、β2和β2的偏微分并写出正规⽅程。

计量经济学第四章练习题及参考解答

计量经济学第四章练习题及参考解答

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且?练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。

因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x x x y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i ix x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为 12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-= 11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-= 则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且。

因为()()∑-=22322221ˆvar r x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。

《计量经济学》第四章精选题及答案

《计量经济学》第四章精选题及答案

第四章:多重共线性二、简答题1、导致多重共线性的原因有哪些?2、多重共线性为什么会使得模型的预测功能失效?3、如何利用辅回归模型来检验多重共线性?4、判断以下说法正确、错误,还是不确定?并简要陈述你的理由。

(1)尽管存在完全的多重共线性,OLS 估计量还是最优线性无偏估计量(BLUE )。

(2)在高度多重共线性的情况下,要评价一个或者多个偏回归系数的个别显著性是不可能的。

(3)如果某一辅回归显示出较高的2i R 值,则必然会存在高度的多重共线性。

(4)变量之间的相关系数较高是存在多重共线性的充分必要条件。

(5)如果回归的目的仅仅是为了预测,则变量之间存在多重共线性是无害的。

5、考虑下面的一组数据:12233i i i Y X X βββ=++来对以上数据进行拟合回归。

(1) 我们能得到这3个估计量吗?并说明理由。

(2) 如果不能,那么我们能否估计得到这些参数的线性组合?可以的话,写出必要的计算过程。

6、考虑以下模型:231234i i i i i Y X X X ββββμ=++++由于2X 和3X 是X 的函数,那么它们之间存在多重共线性。

这种说法对吗?为什么? 7、在涉及时间序列数据的回归分析中,如果回归模型不仅含有解释变量的当前值,同时还含有它们的滞后值,我们把这类模型称为分布滞后模型(distributed-lag model )。

我们考虑以下模型:12313233i t t t t t Y X X X X βββββμ---=+++++其中Y ——消费,X ——收入,t ——时间。

该模型表示当期的消费是其现期的收入及其滞后三期的收入的线性函数。

(1) 在这一类模型中是否会存在多重共线性?为什么? (2) 如果存在多重共线性的话,应该如何解决这个问题? 8、设想在模型12233i i i iY X X βββμ=+++中,2X 和3X 之间的相关系数23r 为零。

如果我们做如下的回归:1221i i i Y X ααμ=++ 1332i i i Y X γγμ=++(1)会不会存在22ˆˆαβ=且33ˆˆγβ=?为什么? (2)1ˆβ会等于1ˆα或1ˆγ或两者的某个线性组合吗? (3)会不会有22ˆˆvar()var()βα=且33ˆˆvar()var()γβ=? 9、通过一些简单的计量软件(比如EViews 、SPSS ),我们可以得到各变量之间的相关矩阵:2323232311 1k k k k r r r r R r r ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭。

第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。

因为 ()()()()()()()22332322222323ˆi iii ii iiii iy x x y x x x x x x x β-=-∑∑∑∑∑∑∑当23X X 与 之间的相关系数为零时,离差形式的230i ix x =∑有 ()()()()223222222223ˆˆi i ii i iiiy x x y x xx x βα===∑∑∑∑∑∑ 同理有: 33ˆˆγβ= (2)会的。

(3) 存在 ()()()()2233ˆˆˆˆvar var var var βαβγ==且 因为 ()()2222223ˆvar 1ix r σβ=-∑当 230r = 时, ()()()22222222223ˆˆvar var 1iix x r σσβα===-∑∑ 同理,有 ()()33ˆˆvar var βγ=4.2 表4.4给出了1995—2016年中国商品进口额Y 、国生产总值GDP 、居民消费价格指数CPI 的数据。

表4.4 中国商品进口额、国生产总值、居民消费价格指数资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

《计量经济学》第3章、第4章课后题答案

《计量经济学》第3章、第4章课后题答案

第三、四章习题09国贸1班张继云 1403.31)为分析家庭书刊年消费支出(Y)对家庭月平均收入(X)与户主受教育年数(T)的关系,做如图所示的线形图。

建立多元线性回归模型为Y i=β1+β2X+β3T+μi2) 假定所建立模型中的随机扰动项μi满足各项古典假设,用OLS法估计其参数,得到的回归结果如下。

可用规范形式将参数估计和检验结果写为Y = -50.01638+0.086450X+52.37031T(49.46026)(0.029363)(5.202167)t=(-1.011244)(2.944186)(10.06702)R2=0.951235 F=146.2974 n=183)对回归系数β3的t检验:针对H0:β3=0和H1:β3≠0,由回归结果中还可以看出,估计的回归系数β3的标准误差和t值分别为:SE(β3)= 5.202167, t(β3)= 10.6702。

当α=0.05时,查t分布表得自由度n-3=18-3=15的临界值t0.025(15)=2.131。

因为t(β1)= 10.6702> t0.025(16)=2.131,所以应该拒绝H0:β2=0。

这表明户主受教育年数对家庭书刊年消费支出有显著性影响。

4)所估计的模型的经济意义是当户主受教育年数保持不变时,家庭月平均收入每增加一元时将导致家庭书刊年消费支出增加0.086450元。

而当家庭月平均收入保持不变时,户主受教育年数每增加一年时将导致家庭书刊年消费支出增加52.37031元。

此模型可用于预测将来的家庭书刊年消费支出。

4.31)假定所建立模型中的随机扰动项μi满足各项古典假设,用OLS法估计其参数,得到的回归结果如下。

可用规范形式将参数估计和检验结果写为LnY t = -3.060638+1.056682lnGDP t-1.656536lnCPI t(0.337331)(0.092174) (0.214570)t = (-9.073096) (17.97182) (-4.924656)R2=0.992222 F=1275.739 n=232)数据中有多重共线性,居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且其简单相关系数呈现正向变动。

计量经济学课后习题答案汇总

计量经济学课后习题答案汇总

计量经济学练习题第一章导论一、单项选择题⒈计量经济研究中常用的数据主要有两类:一类是时间序列数据,另一类是【 B 】A 总量数据B 横截面数据C平均数据 D 相对数据⒉横截面数据是指【A 】A 同一时点上不同统计单位相同统计指标组成的数据B 同一时点上相同统计单位相同统计指标组成的数据C 同一时点上相同统计单位不同统计指标组成的数据D 同一时点上不同统计单位不同统计指标组成的数据⒊下面属于截面数据的是【D 】A 1991-2003年各年某地区20个乡镇的平均工业产值B 1991-2003年各年某地区20个乡镇的各镇工业产值C 某年某地区20个乡镇工业产值的合计数D 某年某地区20个乡镇各镇工业产值⒋同一统计指标按时间顺序记录的数据列称为【B 】A 横截面数据B 时间序列数据C 修匀数据D原始数据⒌回归分析中定义【 B 】A 解释变量和被解释变量都是随机变量B 解释变量为非随机变量,被解释变量为随机变量C 解释变量和被解释变量都是非随机变量D 解释变量为随机变量,被解释变量为非随机变量二、填空题⒈计量经济学是经济学的一个分支学科,是对经济问题进行定量实证研究的技术、方法和相关理论,可以理解为数学、统计学和_经济学_三者的结合。

⒉⒊现代计量经济学已经形成了包括单方程回归分析,联立方程组模型,时间序列分析三大支柱。

⒋⒌经典计量经济学的最基本方法是回归分析。

计量经济分析的基本步骤是:理论(或假说)陈述、建立计量经济模型、收集数据、计量经济模型参数的估计、检验和模型修正、预测和政策分析。

⒍⒎常用的三类样本数据是截面数据、时间序列数据和面板数据。

⒏⒐经济变量间的关系有不相关关系、相关关系、因果关系、相互影响关系和恒等关系。

三、简答题⒈什么是计量经济学?它与统计学的关系是怎样的?计量经济学就是对经济规律进行数量实证研究,包括预测、检验等多方面的工作。

计量经济学是一种定量分析,是以解释经济活动中客观存在的数量关系为内容的一门经济学学科。

计量经济学练习题答案第四章

计量经济学练习题答案第四章

4_3(1)通过最小二乘估计得到各解释变量的系数、及假设检验结果如下:C -359.9942 4371.878 -0.082343 0.9351G 0.256960 0.016148 15.91251 0.0000R-squared 0.965618 Mean dependent var 29094.92Adjusted R-squared 0.962752 S.D. dependent var 32738.48S.E. of regression 6318.400 Akaike info criterion 20.44476Sum squared resid 9.58E+08 Schwarz criterion 20.58874Log likelihood -273.0042 F-statistic 337.0167Durbin-Watson stat 0.664387 Prob(F-statistic) 0.000000(2)GDP和CPI的相关系数为G IG 1 0.80I 0.80 1可见,GDP和CPI有很强的共线性。

(3)利用OLS估计lny=c1+lng,lny=c2+lni和lng=c3+lniC -3.750670 0.312255 -12.01156 0.0000R-squared 0.986423 Mean dependent var 9.484710Adjusted R-squared 0.985880 S.D. dependent var 1.425517S.E. of regression 0.169389 Akaike info criterion -0.642056Sum squared resid 0.717312 Schwarz criterion -0.546068Log likelihood 10.66776 F-statistic 1816.407Durbin-Watson stat 0.471111 Prob(F-statistic) 0.000000Variable Coefficient Std. Error t-Statistic Prob.C -6.854535 1.242243 -5.517871 0.0000LNI 2.939295 0.222756 13.19511 0.0000R-squared 0.874442 Mean dependent var 9.484710Adjusted R-squared 0.869419 S.D. dependent var 1.425517S.E. of regression 0.515124 Akaike info criterion 1.582368Sum squared resid 6.633810 Schwarz criterion 1.678355Log likelihood -19.36196 F-statistic 174.1108C -2.796381 0.882798 -3.167634 0.0040LNI 2.511022 0.158302 15.86227 0.0000 R-squared 0.909621 Mean dependent var 11.16214Adjusted R-squared 0.906005 S.D. dependent var 1.194029S.E. of regression 0.366072 Akaike info criterion 0.899213Sum squared resid 3.350216 Schwarz criterion 0.995201Log likelihood -10.13938 F-statistic 251.6117Durbin-Watson stat 0.099623 Prob(F-statistic) 0.000000 Lny、lng和lni的相关系数如下:LNG LNI LNYLNG 1 0.953740317415 0.993188514728LNI 0.953740317415 1 0.935115922429LNY 0.993188514728 0.935115922429 14_4利用OLS估计参数,结果如下:C -221.8540 130.6532 -1.698038 0.1030CZZC 0.090114 0.044367 2.031129 0.0540GDP -0.025334 0.005069 -4.998036 0.0000R-squared 0.999857 Mean dependent var 22572.56Adjusted R-squared 0.999838 S.D. dependent var 27739.49S.E. of regression 353.0540 Akaike info criterion 14.70707Sum squared resid 2866884. Schwarz criterion 14.89905Log likelihood -194.5455 F-statistic 53493.93Durbin-Watson stat 1.458128 Prob(F-statistic) 0.000000 为计税依据所以GDP越大,税收也会越多。

计量经济学第四章第6和10题答案

计量经济学第四章第6和10题答案

第4章练习6解:(1)答:不能,因为将代入原模型中使其变换后的模型为,显然,由于与同期相关,则说明变换后的模型中的随机干扰项与同期相关。

解:(2)对于多数经济变量的时间序列,除非它们是以一阶差分的形式或变化率的形式出现,往往具有较强的相关性,因此,当和直接表示经济规模或水平的经济变量时,它们之间很可能相关;如果变量是一阶差分的形式或以变化率的形态出现,则它们间的相关性就会降低,但仍有一定程度的相关性。

解:(3)由(2)的结论知,,即与变换后的模型的随机干扰项不相关,而且与有较强的相关性,因此可用作为的工具变量对变换后的模型进行估计。

第4章练习10编编号号170080081006115018001876026501000100907120020002052039001200127308140022002201049501400142509155024002435051100160016930101500260026860解:根据eview软件操作得:Dependent Variable: YMethod: Least SquaresDate: 04/17/11 Time: 22:28Sample: 1 10Included observations: 10Variable CoefficientStd.Error t-Statistic Prob.C245.515869.523483.5314080.0096 X10.5684250.7160980.7937810.4534 X2-0.0058330.070294-0.0829750.9362R-squared0.962099 Mean dependentvar1110.000Adjusted R-squared0.951270 S.D. dependentvar314.2893S.E. ofregression69.37901 Akaike infocriterion11.56037Sum squaredresid33694.13 Schwarzcriterion11.65115Log likelihood-54.80185 Hannan-Quinncriter.11.46079F-statistic88.84545 Durbin-Watsonstat 2.708154Prob(F-statistic)0.000011根据以上表格可得估计的回归模型为:(3.53)(0.79)(-0.083)分析:1.从回归估计的结果看,模型拟合较好。

第四章计量经济学答案

第四章计量经济学答案

第四章一元线性回归第一部分学习目的和要求本章主要介绍一元线性回归模型、回归系数的确定和回归方程的有效性检验方法。

回归方程的有效性检验方法包括方差分析法、t检验方法和相关性系数检验方法。

本章还介绍了如何应用线性模型来建立预测和控制。

需要掌握和理解以下问题:1 一元线性回归模型2 最小二乘方法3 一元线性回归的假设条件4 方差分析方法5 t检验方法6 相关系数检验方法7 参数的区间估计8 应用线性回归方程控制与预测9 线性回归方程的经济解释第二部分练习题一、术语解释1 解释变量2 被解释变量3 线性回归模型4 最小二乘法5 方差分析6 参数估计7 控制8 预测二、填空ξ1 在经济计量模型中引入反映()因素影响的随机扰动项,目的在于使模型更t符合()活动。

2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的()、社会环境与自然环境的()决定了经济变量本身的( );(2)建立模型时其他被省略的经济因素的影响都归入了( )中;(3)在模型估计时,( )与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了()与()之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。

3 ()是因变量离差平方和,它度量因变量的总变动。

就因变量总变动的变异来源看,它由两部分因素所组成。

一个是自变量,另一个是除自变量以外的其他因素。

()是拟合值的离散程度的度量。

它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。

()是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。

β4 回归方程中的回归系数是自变量对因变量的()。

某自变量回归系数的意义,指的是该自变量变化一个单位引起因变量平均变化( )个单位。

5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。

第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。

因为 ()()()()()()()22332322222323ˆi iii ii iiii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑当23X X 与 之间的相关系数为零时,离差形式的230i ixx =∑有 ()()()()223222222223ˆˆi i i i i iiiy x x y x xx x βα===∑∑∑∑∑∑ 同理有: 33ˆˆγβ= (2)会的。

(3) 存在 ()()()()2233ˆˆˆˆvar var var var βαβγ==且 因为 ()()2222223ˆvar 1ix r σβ=-∑当 230r = 时, ()()()22222222223ˆˆvar var 1iix x r σσβα===-∑∑ 同理,有 ()()33ˆˆvar var βγ=4.2 表4.4给出了1995—2016年中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 的数据。

表4.4 中国商品进口额、国内生产总值、居民消费价格指数资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章练习题及参考解答假设在模型i i i iu X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且为什么 (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvarγβαβ==且 练习题参考解答:(1) 存在3322ˆˆˆˆβγβα==且。

因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x xx y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i i x x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2)111ˆˆˆβαγ会等于或的某个线性组合 因为12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-=11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-=则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvarγβαβ==且。

因为()()∑-=22322221ˆvarr x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑ii x r x 同理,有()()33ˆvar ˆvar γβ=在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。

在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。

加进或剔除一个变量,通常是根据F 检验看其对ESS 的贡献而作出决定的。

根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗为什么练习题参考解答:根据对多重共线性的理解,逐步向前和逐步向后回归的程序都存在不足。

逐步向前法不能反映引进新的解释变量后的变化情况,即一旦引入就保留在方程中;逐步向后法则一旦某个解释变量被剔出就再也没有机会重新进入方程。

而解释变量之间及其与被解释变量的相关关系与引入的变量个数及同时引入哪些变量而呈现出不同,所以要寻找到“最优”变量子集则采用逐步回归较好,它吸收了逐步向前和逐步向后的优点。

下表给出了中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 。

表 中国商品进口额、国内生产总值、居民消费价格指数请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+1)利用表中数据估计此模型的参数。

2)你认为数据中有多重共线性吗 3)进行以下回归:it t i t t i t t v CPI C C GDP v CPI B B Y v GDP A A Y 321221121ln ln ln ln ln ln ++=+=+=++根据这些回归你能对数据中多重共线性的性质说些什么4)假设数据有多重共线性,但32ˆˆββ和在5%水平上个别地显着,并且总的F 检验也是显着的。

对这样的情形,我们是否应考虑共线性的问题练习题参考解答: (1) 参数估计结果如下22ln() 3.060 1.657ln() 1.057ln() (0.337) (0.092) (0.215)0.992 0.991 F 1275.093GDP CPI R R =-+-===进口(括号内为标准误)(2)居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且且CPI 与进口之间的简单相关系数呈现正向变动。

可能数据中有多重共线性。

计算相关系数:(3)最大的CI=,表明GDP 与CPI 之间存在较高的线性相关。

(4)分别拟合的回归模型如下:22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)0.9828 0.9820 1198.698GDP R R F =-+===22ln Y 5.4424 2.6637ln (PI) t= (-4.3412) (11.6809)0.8666 0.8603 136.4437C R R F =-+===22ln() 1.4380 2.2460ln (PI) t=(-1.9582) (16.8140)0.9309 0.9276 282.7107GDP C R R F =-+===单方程拟合效果都很好,回归系数显着,可决系数较高,GDP 和CPI 对进口分别有显着的单一影响,在这两个变量同时引入模型时影响方向发生了改变,这只有通过相关系数的分析才能发现。

(5)如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意。

自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造解释变量数据矩阵X 才可能避免多重共线性的出现 练习题参考解答:本题很灵活,主要应注意以下问题:(1)选择变量时要有理论支持,即理论预期或假设;变量的数据要足够长,被解释变量与解释变量之间要有因果关系,并高度相关。

(2)建模时尽量使解释变量之间不高度相关,或解释变量的线性组合不高度相关。

克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y 和工资收入X1、非工资—非农业收入X2、农业收入X3的时间序列资料,利用OLSE 估计得出了下列回归方程:37.107 95.0 (1.09) (0.66) (0.17) (8.92) 3121.02452.01059.1133.8ˆ2==+++=F R X X X Y括号中的数据为相应参数估计量的标准误差。

试对上述模型进行评析,指出其中存在的问题。

练习题参考解答:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数95.02=R,F 统计量为,在置信水平下查分子自由度为3,分母自由度为23的F 临界值为,计算的F 值远大于临界值,表明回归方程是显着的。

模型整体拟合程度较高。

依据参数估计量及其标准误,可计算出各回归系数估计量的t 统计量值:01238.1331.0590.4520.1210.91, 6.10,0.69,0.118.920.170.661.09t t t t ========除1t 外,其余的j t 值都很小。

工资收入X1的系数的t 检验值虽然显着,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为,意味着工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常识不符。

另外,理论上非工资—非农业收入与农业收入也是消费行为的重要解释变量,但两者的t 检验都没有通过。

这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消费行为的单独影响。

理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。

为此,收集了中国能源消费总量Y (万吨标准煤)、国民总收入(亿元)X1(代表收入水平)、国内生产总值 (亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费 (千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2007年期间的统计数据,具体如表所示。

表 1985~2007年统计数据资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。

要求:1)建立对数多元线性回归模型,分析回归结果。

2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗为什么3)如果有多重共线性,你准备怎样解决这个问题明确你的假设并说明全部计算。

练习题参考解答:(1)建立对数线性多元回归模型,引入全部变量建立对数线性多元回归模型如下:生成: lny=log(y), 同样方法生成: lnx1,lnx2,lnx3,lnx4,lnx5,lnx6,lnx7.作全部变量对数线性多元回归,结果为:从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,,各变量联合起来对能源消费影响显着。

可是其中的lnX3、lnX4、lnX6对lnY影响不显着,而且lnX2、lnX5的参数为负值,在经济意义上不合理。

所以这样的回归结果并不理想。

(2) 预料此回归模型会遇到多重共线性问题, 因为国民总收入与GDP本来就是一对关联指标;而工业增加值、建筑业增加值、交通运输邮电业增加值则是GDP的组成部分。

这两组指标必定存在高度相关。

解释变量国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等很可能线性相关,计算相关系数如下:可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于以上。

如果决定用表中全部变量作为解释变量,很可能会出现严重多重共线性问题。

(3)因为存在多重共线性,解决方法如下:A :修正理论假设,在高度相关的变量中选择相关程度最高的变量进行回归建立模型:而对变量取对数后,能源消费总量的对数与人均生活电力消费的对数相关程度最高,可建立这两者之间的回归模型。

如22ln 9.9320.421ln 6 (0.116) (0.026)0.926 0.922 261.551y x R R F =+===B :进行逐步回归,直至模型符合需要研究的问题,具有实际的经济意义和统计意义。

采用逐步回归的办法,去检验和解决多重共线性问题。

分别作ln Y 对1234567ln,ln ,ln ,ln ,ln ,ln ,ln X X X X X X X 的一元回归,结果如下:一元回归结果:其中加入lnX6的方程调整的可决系数最大, 以lnX6为基础, 顺次加入其他变量逐步回归。

结果如下表:2R经比较,新加入lnX5的方程调整可决系数改进最大, 各参数的t 检验也都显着,但是lnX5参数的符号与经济意义不符合。

相关文档
最新文档