空间几何体复习知识与经典例题练习

合集下载

空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结在我们的日常生活中,各种各样的物体形状各异,而在数学的世界里,我们把这些物体抽象成空间几何体来进行研究。

接下来,让我们一起深入探讨空间几何体的结构特征,并通过一些例题来加深理解。

一、空间几何体的分类空间几何体主要分为多面体和旋转体两大类。

多面体是由若干个平面多边形围成的几何体。

常见的多面体有棱柱、棱锥、棱台等。

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

旋转体是由一个平面图形绕着一条直线旋转所形成的几何体。

常见的旋转体有圆柱、圆锥、圆台、球等。

圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

球:以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。

二、空间几何体的结构特征1、棱柱的结构特征侧棱都平行且相等。

两个底面与平行于底面的截面是全等的多边形。

2、棱锥的结构特征侧面都是三角形。

只有一个顶点。

3、棱台的结构特征上下底面是相似多边形。

各侧棱延长后交于一点。

4、圆柱的结构特征母线平行且相等,都垂直于底面。

两个底面是全等的圆。

5、圆锥的结构特征母线交于顶点。

轴截面是等腰三角形。

6、圆台的结构特征母线延长后交于一点。

上下底面是两个半径不同的圆。

7、球的结构特征球面上任意一点到球心的距离都相等。

三、例题解析例 1:判断下列几何体是否为棱柱。

(1)一个长方体;(2)一个有两个面互相平行,其余各面都是平行四边形的几何体。

解:(1)长方体符合棱柱的定义,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以是棱柱。

(2)不一定是棱柱。

(完整版)空间几何体练习题含答案

(完整版)空间几何体练习题含答案

第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. B. C. D.1:2:31:3:51:2:41:3:93.在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三18棱锥后,剩下的几何体的体积是()A. B. C. D.237645564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则(1V2V12:V V=)A. B. C. D.1:31:12:13:15.如果两个球的体积之比为,那么两个球的表面积之比为( )8:27A. B. C. D.8:272:34:92:96.有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:cmA. ,B. ,224cmπ212cmπ215cmπ212cmπC. ,D. 以上都不正确224cmπ236cmπ二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。

15π0602.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.Q3.球的半径扩大为原来的倍,它的体积扩大为原来的_________ 倍.24.一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米329则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为,高为,则该棱台的体积为___________。

4,163三、解答题1. (如图)在底半径为,母线长为的圆柱,求圆柱的表面积242.如图,在四边形中,,,,,ABCD 090DAB ∠=0135ADC ∠=5AB =CD =,求四边形绕旋转一周所成几何体的表面积及体积.2AD =ABCD AD参考答案一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面 2134123V ππ=⨯⨯=二、填空题1. 设圆锥的底面半径为,母线为,则,得,r l 123r l ππ=6l r =,得,圆锥的高226715S r r r r ππππ=+⋅==r =h =21115337V r h ππ==⨯=2. 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==3. 821212,8r r V V ==4. 12234,123V Sh r h R R ππ=====5. 28'11()(416)32833V S S h =++=⨯+⨯= 三、解答题1.解:圆锥的高,h ==1r =22(2S SS πππ=+=+=侧面表面底面 2.解:S S S S=++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=+ V V V=-圆台圆锥222112211()331483r r r r h r h πππ=++-=。

2023年新高考数学大一轮复习专题28 空间几何体的结构特征、表面积与体积(原卷版)

2023年新高考数学大一轮复习专题28 空间几何体的结构特征、表面积与体积(原卷版)

专题28空间几何体的结构特征、表面积与体积【考点预测】知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1.棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3.棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1.圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2.圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3.圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4.球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式体积公式1.斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系. (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠=x O y (或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线. 注:4. 2.平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.【题型归纳目录】题型一:空间几何体的结构特征 题型二:空间几何体的表面积与体积 题型三:直观图 题型四:最短路径问题 【典例例题】题型一:空间几何体的结构特征例1.(2022·全国·模拟预测)以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直 D .棱台的每条侧棱均与上下底面不垂直例2.(2022·全国·高三专题练习(文))下列说法正确的是( ) A .经过三点确定一个平面B .各个面都是三角形的多面体一定是三棱锥C .各侧面都是正方形的棱柱一定是正棱柱D .一个三棱锥的四个面可以都为直角三角形例3.(2022·海南·模拟预测)“三棱锥P ABC -是正三棱锥”的一个必要不充分条件是( ) A .三棱锥P ABC -是正四面体 B .三棱锥P ABC -不是正四面体 C .有一个面是正三角形 D .ABC 是正三角形且PA PB PC ==例4.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例5.(2022·山东省东明县第一中学高三阶段练习)下列说法正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .过空间内不同的三点,有且只有一个平面 C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台例6.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例7.(2022·全国·高三专题练习)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V 、棱数E 、面数F 之间总满足数量关系2,V F E +-=,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.例8.(2022·安徽·合肥一六八中学模拟预测(理))如图,正方体1AC 上、下底面中心分别为1O ,2O ,将正方体绕直线12O O 旋转360︒,下列四个选项中为线段1AB 旋转所得图形是( )A .B .C .D .例9.(多选题)(2022·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是( )(多选)A .①是棱台B .②是圆台C .③是棱锥D .④是棱柱例10.(2022·陕西·西北工业大学附属中学高三阶段练习(理))碳60(60C )是一种非金属单质,它是由60个碳原子构成的分子,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2.则其六元环的个数为__________.【方法技巧与总结】 熟悉几何体的基本概念.题型二:空间几何体的表面积与体积例11.(多选题)(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22例12.(2022·青海·海东市第一中学模拟预测(理))设一圆锥的侧面积是其底面积的3倍,则该圆锥的高与母线长的比值为( )A .89B C D .23例13.(2022·云南·二模(文))已知长方体1111ABCD A B C D -的表面积为62,所有棱长之和为40,则线段1AC 的长为( )A B C D例14.(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为( ) A .9π B .12π C .16π D .18π例15.(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =P ABCD -的体积是8,则该四棱锥的侧面积是( )AB .C .D .例16.(2022·全国·高三专题练习)《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16例17.(2022·湖南·高三阶段练习)如图,一种棱台形状的无盖容器(无上底面1111D C B A )模型其上、下底面均为正方形,面积分别为24cm ,29cm ,且1111A A B B C C D D ===,若该容器模型的体积为319cm 3,则该容器模型的表面积为( )A .()29cmB .219cmC .()29cmD .()29cm例18.(2022·海南海口·二模)如图是一个圆台的侧面展开图,其面积为3π,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )A B C D例19.(2022·全国·高三专题练习)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A .B .C .D .例20.(2022·河南安阳·模拟预测(文))已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( ) A .13B .23C .1D .43例21.(2022·山东·烟台市教育科学研究院二模)鲁班锁是我国传统的智力玩具,起源于中国古代建筑中的榫卯结构,其内部的凹凸部分啮合十分精巧.图1是一种鲁班锁玩具,图2是其直观图.它的表面由八个正三角形和六个正八边形构成,其中每条棱长均为2.若该玩具可以在一个正方体内任意转动(忽略摩擦),则此正方体表面积的最小值为________.例22.(2022·湖北省天门中学模拟预测)已知一个圆柱的体积为2 ,底面直径与母线长相等,圆柱内有一个三棱柱,与圆柱等高,底面是顶点在圆周上的正三角形,则三棱柱的侧面积为__________.例23.(2022·上海闵行·二模)已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.例24.(2022·浙江绍兴·模拟预测)有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为_________.例25.(2022·上海徐汇·三模)设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线ABAB和圆锥的轴的距离为1,则该圆锥的侧面积为___________.例26.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2,则该几何体的体积为___________.【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 题型三:直观图例27.(2022·全国·高三专题练习)如图,已知用斜二测画法画出的ABC 的直观图是边长为a 的正三角形,原ABC 的面积为 __.例28.(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为( )A .1B .2C .2D .1例29.(2022·全国·高三专题练习)如图,△ABC 是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等边三角形C .△ABC 是等腰直角三角形D .△ABC 是等腰三角形,但不是直角三角形例30.(2022·全国·高三专题练习)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D '''',已知2,2A O O B B C =='''''=',则四边形ABCD 的周长为( )A .20B .12C .8+D .8+例31.(2022·全国·高三专题练习(文))如图,已知等腰直角三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .例32.(2022·全国·高三专题练习)一个三角形的水平直观图在x O y '''是等腰三角形,底角为30,腰长为2,如图,那么它在原平面图形中,顶点B 到x 轴距离是( )A .1B .2CD .【方法技巧与总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:S 直原. 题型四:最短路径问题例33.(多选题)(2022·广东广州·三模)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB .该圆台轴截面面积为2C 3D .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm例34.(2022·河南洛阳·三模(理))在棱长为1的正方体1111ABCD A B C D -中,点E 为1CC 上的动点,则1D E EB +的最小值为___________.例35.(2022·黑龙江齐齐哈尔·二模(文))如图,在直三棱柱111ABC A B C -中,12,1,90AA AB BC ABC ===∠=︒,点E 是侧棱1BB 上的一个动点,则下列判断正确的有___________.(填序号)②存在点E ,使得1A EA ∠为钝角③截面1AEC 周长的最小值为例36.(2022·河南·二模(理))在正方体1111ABCD A B C D -中,2AB =,P 是线段1BC 上的一动点,则1A P PC +的最小值为________.例37.(2022·陕西宝鸡·二模(文))如图,在正三棱锥P ABC -中,30APB BPC CPA ∠=∠=∠=,4PA PB PC ===,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是___________.例38.(2022·安徽宣城·二模(理))已知正四面体ABCD 的棱长为2,P 为AC 的中点,E 为AB 中点,M 是DP 的动点,N 是平面ECD 内的动点,则||||AM MN +的最小值是_____________.例39.(2022·新疆阿勒泰·三模(理))如图,圆柱的轴截面ABCD 是一个边长为4的正方形.一只蚂蚁从点A 出发绕圆柱表面爬到BC 的中点E ,则蚂蚁爬行的最短距离为( )A .B .C .D例40.(2022·云南·昆明一中高三阶段练习(文))一竖立在水平地面上的圆锥形物体,一只蚂蚁从圆锥底面圆周上一点P 出发,绕圆锥表面爬行一周后回到P 点,已知圆锥底面半径为1,母线长为3,则蚂蚁爬行的最短路径长为( )A .3B .C .πD .2π【方法技巧与总结】此类最大路径问题:大胆展开,把问题变为平面两点间线段最短问题. 【过关测试】一、单选题1.(2022·河北·高三阶段练习)已知圆锥的高为1,则过此圆锥顶点的截面面积的最大值为( )A .2B .52C D .32.(2022·全国·模拟预测(文))若过圆锥的轴SO 的截面为边长为4的等边三角形,正方体1111ABCD A B C D -的顶点A ,B ,C ,D 在圆锥底面上,1A ,1B ,1C ,1D 在圆锥侧面上,则该正方体的棱长为( )A .B .C .(2D .(23.(2022·全国·高三专题练习)已知圆锥的轴截面是等腰直角三角形,且面积为4,则圆锥的体积为( ) A .43 B .43πC .83D .83π4.(2022·广东深圳·高三阶段练习)通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为( )AB .1cmCD 5.(2022·全国·高三专题练习)已知一个直三棱柱的高为2,如图,其底面ABC 水平放置的直观图(斜二测画法)为A B C ''',其中1O A O B O C ''''''===,则此三棱柱的表面积为( )A.4+B .8+C .8+D .8+6.(2022·湖北·天门市教育科学研究院模拟预测)已知某圆锥的侧面积为的半径为( ) A .2B .3C .4D .67.(2022·山西大同·高三阶段练习)正四棱台的上、下底面的边长分别为2、4,侧棱长为2,则其体积为( )A .56B C .D .5638.(2022·江西九江·三模(理))如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为r .若是放入一个正方体,合上盒盖,可放正方体的最大棱长为a ,则ra=( )A B .34C .2D .)3129.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 10.(2022·全国·高三专题练习)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .2.65≈)( ) A .931.010m ⨯ B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯二、多选题11.(2022·河北·高三阶段练习)如图,正方体1111ABCD A B C D -棱长为1,P 是1A D 上的一个动点,下列结论中正确的是( )A .BPB .PA PC +C .当P 在直线1AD 上运动时,三棱锥1B ACP -的体积不变D .以点B 1AB C 12.(2022·全国·高三专题练习)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =13.(2022·江苏·常州高级中学模拟预测)棱长为1的正方体1111ABCD A B C D -中,点P 为线段1A C 上的动点,点M ,N 分别为线段11A C ,1CC 的中点,则下列说法正确的是( ) A .11A P AB ⊥ B .三棱锥1M B NP -的体积为定值 C .[]160,120APD ∠∈︒︒D .1AP D P +的最小值为2314.(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为B .体积为3C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22三、填空题15.(2022·全国·高三专题练习)已知一三角形ABCA B C '''(如图),则三角形ABC 中边长与正三角形A B C '''的边长相等的边上的高为______.16.(2022·上海·模拟预测)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为___________;17.(2022·新疆·三模(理))已知一个棱长为a 的正方体木块可以在一个圆锥形容器内任意转动,若圆锥的底面半径为1,母线长为2,则a 的最大值为______.18.(2022·吉林长春·高三阶段练习(理))中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2).刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等,如图(3)(4).已知八分之一的正方体去掉八分之一的牟合方盖后的剩余几何体与长宽高皆为八分之一正方体棱长的倒四棱锥“等幂等积”,祖暅由此推算出牟合方盖的体积.据此可知,若正方体的棱长为1,则其牟合方盖的体积为______. 四、解答题19.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,且1,4,5AB DC AB DC PM PC ==∥.(1)求证:PA 平面MDB ;(2)当直线,PC PA 与底面ABCD 所成的角都为4π,且4,DC DA AB =⊥时,求出多面体MPABD 的体积.20.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面; (2)求图2中三棱锥C BDG -的体积.21.(2022·全国·高三专题练习)如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC CE 的长.22.(2022·青海·海东市第一中学模拟预测(文))如图,在三棱柱111ABC A B C -中,112224AC AA AB AC BC =====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 上一点,且12CP PC =,求三棱锥111A PB C -体积.。

高中数学空间几何体知识点归纳与常考题型专题练习(附解析)

高中数学空间几何体知识点归纳与常考题型专题练习(附解析)

( 7)球体:定义: 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征: ①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影) 俯视图(从上向下)
;侧视图(从左向右) 、
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
B.
C. D.
29.如图是某几何体的三视图,则该几何体的体积为(

A. 1 B. C. D. 30.某几何体的三视图如图所示,且该几何体的体积是 是( )
,则正视图中的 x 的值
A. 2 B. C. D.3
31.将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D﹣ ABC 的体积为( )
设三棱锥 F﹣ADE 的体积为 V 1,三棱柱 A 1B1C1﹣ ABC 的体积为 V 2,则 V 1:
V2=

39.如图,在圆柱 O1O2 内有一个球 O,该球与圆柱的上、下底面及母线均相切,
记圆柱 O1O2 的体积为 V 1,球 O 的体积为 V 2,则 的值是

40.若某几何体的三视图(单位: cm3.
( 1)要使倾斜后容器内的溶液不会溢出,角 α的最大值是多少; ( 2)现需要倒出不少于 3000cm3 的溶液,当 α=60°时,能实现要求吗?请说明 理由. 47.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC 的长为 10 cm,容器Ⅱ的两底面对角线 EG, E1G1 的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、 玻璃棒粗细均忽略不计) ( 1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC1 上,求 l

空间几何重难点及考点总结精练

空间几何重难点及考点总结精练

立体几何重难点及考点一、 几何体结构与三视图直观图1、有关直观图问题例1、已知ABC D 的直观图'''A B C 是边长为a 的正三角形,则原ABC D 的面积的面积变式、已知正三角形ABC 的边长为a ,那么ABC D 的平面直观图'''A B C D 的面积为面积为例2、一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是的等腰梯形,则这个平面图形的面积是 。

2、三视图例1、用单位立方体搭一个几何体,使其主视图和俯视图如下图所示,则几何体体积的最小值与最大值分别为(别为( )15101610107139与、与、与、与、D C BA例2、已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如下图所示,则该几何体的体积是例3、某几何体的一条棱长为7,在该几何体的正视图中,在该几何体的正视图中,这条棱的投影是长为这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为(的最大值为( ) A. 22 B. 32C. 4 D. 523、有关截面问题例1、如图,在直棱柱111ABC A B C -中,AC=BC=2,90ACB Ð=°,E 、F 分别为AB 、CB 中点,过直线EF 作棱柱的截面,若截面与平面ABC 所成的二面角的大小为60°,则截面的面积为,则截面的面积为例2、用一个平面截正方体,对于截面的边界,有以下图形:(1)钝角A B C C ’B ’F A ’E C A D x y B 三角形(2)直角三角形(3)菱形(4)正五边形(5)正六边形,则不可能的图形的选项是)正六边形,则不可能的图形的选项是 例3、如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分。

空间立体几何高考知识点总结与经典题目

空间立体几何高考知识点总结与经典题目

空间立体几何知识点归纳:1. 空间几何体的类型(1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。

(2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

如圆柱、圆锥、圆台。

2. 一些特殊的空间几何体直棱柱:侧棱垂直底面的棱柱。

正棱柱:底面多边形是正多边形的直棱柱。

正棱锥:底面是正多边形且所有侧棱相等的棱锥。

正四面体:所有棱都相等的四棱锥。

3. 空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和_ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I •二r2 2圆台的表面积:S =理rl 7 r•二RI •二R 球的表面积:s= 4 R24 •空间几何体的体积公式1 柱体的体积:V = S底h 锥体的体积:v = - S底h3底1 ---------- 、, 4 3台体的体积:V = —( S上•S上S T S下)h 球体的体积:V R3 '35.空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。

画三视图的原则:长对正、宽相等、高平齐。

即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。

6 .空间中点、直线、平面之间的位置关系(1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。

(3)平面与平面的位置关系:平行;相交。

7. 空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。

②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

④线面垂直的性质定理:垂直于同一平面的两直线平行。

超实用高考数学:空间几何体知识点解析(含历年真题专项练习)

超实用高考数学:空间几何体知识点解析(含历年真题专项练习)

空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式 V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高);V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r .在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎫33,1时,V ′<0.∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面P AB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面P AB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面P AB 上, 即球心就是△P AB 的外心,根据正弦定理ABsin ∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知P A ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵P A ⊥平面ADE ,∴R 1=⎝⎛⎭⎫P A 22+r 21, 可得P A 2=R 21-r 21=102,∴P A =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵P A ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝⎛⎭⎫P A 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π. 专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+(3)2=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18 答案 C 解析 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形, 设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元 答案 B解析 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A.32π3 B .3π C.4π3 D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36 B.12 C.13 D.32答案 C解析 ∵在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且长度相等, ∴此三棱锥的外接球即以P A ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即P A =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △P AB ×PC =13×12×⎝⎛⎭⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确.12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点,则P A =2AA 1=4,OA =2,所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC=4,AC =4,得△P AC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×(23)2+(2)2=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r·l=2.由于侧面展开图为半圆,可知12πl2=2π,可得l=2,因此r=1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm,母线长最短50 cm,最长80 cm,则斜截圆柱的侧面面积S=________cm2.答案 2 600π解析将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(π×40)×(50+80)=2 600π(cm2).15.已知球O与棱长为4的正四面体的各棱相切,则球O的体积为________.答案82 3π解析将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R=22,则球O的体积V=43πR3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5, ∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。

立体几何复习(知识点+经典习题)

立体几何复习(知识点+经典习题)

立体几何复习(知识点+经典习题)1.给出以下命题:1) 若平面α内的两条相交直线分别平行于平面β内的两条直线,则平面α平行于平面β;2) 若平面α外一条直线l与平面α内的一条直线平行,则直线l和平面α平行;3) 设平面α和平面β相交于直线l,若平面α内有一条直线垂直于l,则平面α和平面β垂直;4) 直线l与平面α垂直的充分必要条件是直线l与平面α内的两条直线垂直。

写出所有真命题的序号。

2.在空间中,以下命题正确的是:A) 平行直线的平行投影重合;B) 平行于同一直线的两个平面平行;C) 垂直于同一平面的两个平面平行;D) 垂直于同一平面的两条直线平行。

考点为二三视图与直观图及面积与体积。

基础训练】1.如图,E和F分别为正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的投影可能是什么形状。

2.如果一个水平放置的图形的斜二测直观图是一个底角为45度,腰和上底均为1的等腰梯形,则原图形的面积是多少?3.在三角形ABC中,AB=2,BC=1.5,∠ABC=120度。

若使其绕直线BC旋转一周,则它形成的几何体的体积是多少?4.已知一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的对角线长是多少?若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积是多少?5.正方体的内切球和外接球的半径之比为多少?6.一个正方体的顶点都在球面上,它的棱长为2,则球的表面积是多少?7.若三个球的表面积之比是1:2:3,则它们的体积之比是多少?8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是多少?9.半径为R的半圆卷成一个圆锥,则它的体积为多少?高考链接】1.一个棱锥的三视图如图,则该棱锥的全面积为多少?2.设某几何体的三视图如下,则该几何体的体积为多少?1.在三棱锥ABCDE中,AB=AC=AD=2,BC=3,CD=4,BE=5,CE=6,DE=7,求∠AED的大小。

第21讲 空间几何体(解析)-2023年高考一轮复习精讲精练必备

第21讲  空间几何体(解析)-2023年高考一轮复习精讲精练必备

第21讲空间几何体学校____________姓名____________班级____________一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l4.柱、锥、台、球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3二、考点和典型例题1、空间几何体的结构特征【典例1-1】(2022·广东深圳·高三阶段练习)通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为()AB .1cmCD 【答案】D 【详解】由已知圆台的侧面展开图为半圆环,不妨设上、下底面圆的半径分别为r ,()R r R ,则21r π=π⨯,24R π=π⨯,解得12r =,2R =.所以圆台轴截面为等腰梯形,其上、下底边的长分别为1cm 和4cm ,腰长为3cm ,即1,4,3AD BC AB ===,过点A 作AH BC ⊥,H 为垂足,所以32BH =,2AH =,故选:D .【典例1-2】(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =棱锥P ABCD -的体积是8,则该四棱锥的侧面积是()A B .C .D .【答案】C 【详解】如图,连接AC ,BD ,记AC BD O = ,连接OP ,所以OP ⊥平面ABC D.取BC 的中点E ,连接OE PE ,.因为正四棱锥P ABCD -的体积是8,所以218833AB OP OP ⋅==,解得3OP =.因为12BE BC ==POE 中,PE ===则PBC 的面积为1122BC PE ⋅=⨯=故该四棱锥的侧面积是故选:C【典例1-3】(2022·湖南·长郡中学模拟预测)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为()A .B .C .D .【答案】C 【详解】因为圆台下底面半径为5,球的直径为210R =,所以圆台下底面圆心与球心重合,底面圆的半径为5R =,画出轴截面如图,设圆台上底面圆的半径r ,则4r =所以球心O 到上底面的距离3h ===,即圆台的高为3,所以母线长l =,所以()12πS r r l =+=侧,故选:C.【典例1-4】(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为()A .12+B .22+C .2D .1【答案】B【详解】解:由题得12BC =+,所以()11(22222S A D B C A B =+⋅=+'''='''故选:B .【典例1-5】(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为()A .9πB .12πC .16πD .18π【答案】D 【详解】分别过,A B 作圆柱的母线,AE BF ,,,CE DE CF DF ,设圆柱的底面半径为r 则三棱锥A BCD -的体积为两个全等四棱锥C ABFE -减去两个全等三棱锥A CDE-即311122222183323r r r r r r r ⨯⨯⨯⨯-⨯⨯⨯⨯⨯==,则3r =圆柱的侧面积为2π18πr r ⨯=故选:D .2、空间几何体的表面积、体积【典例2-1】(2022·山东泰安·模拟预测)在底面是正方形的四棱锥P ABCD -中,PA ⊥底面ABCD ,且34PA AB ==,,则四棱锥P ABCD -内切球的表面积为()A .3πB .4πC .5πD .6π【答案】B 【详解】解:由题意,设四棱锥P ABCD -内切球的半径为r ,因为2143163P ABCD V -=⨯⨯=,四棱锥P ABCD -的表面积21143424524822S =+⨯⨯⨯+⨯⨯⨯=,所以31P ABCD Vr S-==,所以四棱锥P ABCD -内切球的表面积为24π4πr =.故选:B.【典例2-2】(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【详解】∵球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤时,0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.【典例2-3】(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【答案】C 【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .【典例2-4】(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙()AB.CD【答案】C 【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h l ==,所以221122214391393r h l V V r h ππ==甲乙.故选:C.【典例2-5】(2022·山东临沂·三模)战国时期的铜镞是一种兵器,其由两部分组成,前段是高为3cm 、底面边长为2cm 的正三棱锥,后段是高为1cm 的圆柱,圆柱底面圆与正三棱锥底面的正三角形内切,则此铜镞的体积为()A3cm 3πB.3cm 33π+C3cm 4+D.3cm 34+【详解】由题意,铜镞的直观图如图所示,三棱锥的体积3111322322m V =创创�,因为圆柱的底面圆与正三棱锥底面的正三角形内切,所以圆柱的底面圆的半径r =,所以圆柱的体积2321cm 3V p p 骣=创=3cm 3π故选:A.3、与球有关的切、接问题【典例3-1】(2022·北京·101中学三模)一个底面积为1的正四棱柱的顶点都在同一球面上,若此球的表面积为20π,则该四棱柱的高为()AB .2C .D【详解】设球的半径为R ,则24π=20πR ,解得2=5R设四棱柱的高为h ,则22114h R ++=,解得h =故选:C【典例3-2】(2022·广东·深圳市光明区高级中学模拟预测)若正三棱柱111ABC A B C -的所有顶点都在同一个球O 的表面上,且球O 的体积的最小值为43π,则该三棱柱的侧面积为()A .B .C .D .3【答案】B 【详解】如图:设三棱柱上、下底面中心分别为1O 、2O ,则12O O 的中点为O ,设球O 的半径为R ,则OA R =,设AB BC AC ==a =,1AA h =,则212OO h =,223O A AB a =,则在Rt △2OO A 中,222222221143R OA OO O A h a ==+=+122h a ≥⨯=,当且仅当123h a =时,min R =因为34433R V π=≥球,即min 1R =1=,即ah =所以该三棱柱的侧面积为3ah =故选:B.【典例3-3】(2022·湖北·模拟预测)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若某直角圆锥内接于一球(圆锥的顶点和底面上各点均在该球面上),求此圆锥侧面积和球表面积之比()A4B .2C D .4π【答案】A【详解】设直角圆锥底面半径为r ,r =,所以底面圆的圆心即为外接球的球心,所以外接球半径为r ,所以222444S rl r S r r πππ===圆锥侧球.故选:A.【典例3-4】(2022·山东聊城·三模)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,圆锥的底面圆周和顶点都在同一球面上,则该球的体积为()A .83πB .323πC .16πD .32π【答案】B【详解】设球半径为R ,圆锥的底面半径为r ,若一个直角圆锥的侧面积为,设母线为l ,则2224l l r l +=⇒=,所以直角圆锥的侧面积为:112222r l r ππ⨯⋅=⨯=,可得:2r =,l ==12BO ===,由()2222r R R +-=,解得:2R =,所以球O 的体积等于344328333R πππ=⨯=,故选:B【典例3-5】(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2【答案】C【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则2123O ABCD V r h -=⋅⋅=≤=当且仅当222r h =即h 故选:C。

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。

空间几何体知识点总结与练习题

空间几何体知识点总结与练习题

空间几何体的表面积和体积圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线), S 圆柱侧=2rl π,S 圆柱表=2()r r l π+,其中为r 圆柱底面半径,l 为母线长。

V Sh =柱 (S 为底面面积,h 为柱体的高)圆锥:侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面周长,侧面展开图扇形中心角为0360rlθ=⨯,S 圆锥侧=rl π, S 圆锥表=()r r l π+,其中为r 圆锥底面半径,l 为母线长。

13V Sh =锥 ( S 为底面面积,h 为高)圆台:侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于 圆台下底周长,侧面展开图扇环中心角为0360R rlθ-=⨯,S 圆台侧=()r R l π+,S 圆台表=22()r rl Rl R π+++.''1()3V S S S S h =++台 (S ,'S 分别上、下底面积,h 为高)球:334R π=球V,S=4πR 2一、 选择题1.在棱柱中( )A .只有两个面平行B .所有的棱都平行C .所有的面都是平行四边形D .两底面平行,且各侧棱也互相平行2.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面 3个不同的位置,则数字l 、2、3对面的数字是( )A .4、5、6B .6、4、5C .5、4、6D .5、6、4 3. 三视图均相同的几何体有( ) A.球B.正方体 C.正四面体D.以上都对4.已知正ABC △的边长为a ,那么ABC △的平面直观图ABC △'''的面积为( ) A.234a B.238a C.268a D.2616a 5.利用斜二测画法得到:① 三角形的直观图是三角形; ② 平行四边形的直观图是平行四边形; ③ 正方形的直观图是正方形; ④ 菱形的直观图是菱形. 以上结论,正确的是( ) A.①②B.①C.③④D.①②③④6.图1是由图2中的哪个平面图旋转而得到的( )7. 若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体可能是( ) A.圆柱 B.三棱柱 C.圆锥D.球体8.球的体积与其表面积的数值相等,则球的半径等于( )A .21B .1C .2D .39.中心角为135°的扇形,其面积为B ,其围成的圆锥的全面积为A ,则A :B 为( )A .11:8B .3:8C .8:3D .13:810.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A .ππ221+B .ππ421+C .ππ21+D .ππ241+11.已知正方体外接球的体积是π332,那么正方体的棱长等于( )A.22B.332 C.324 D.334 12.如图,直三棱柱的主视图面积为2a 2,则左视图的面积为( ) A .2a 2B .a 2C .23a D .243a13.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )aaaA.B. C.D.二、填空题14.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是15.如图,用一平面去截球所得截面的面积为 2cm 2,已知 球心到该截面的距离为1 cm ,则该球的体积是 cm 3.16.如图,长方体ABCD —A 1B l C l D 1中,AD =3,AA l =4,AB =5,则从A 点沿表面到C l 的最短距离为______.17.一个几何体的三视图如图3所示,则该几何体的体积(单位:3cm )为 3cm .理第11题图318.已知右图的三视图中正方形的边长为a ,则该几何体的体积是19.下面三视图的实物图形的名称是20.若某几何体的三视图(单位:)如图所示,则此几何体的体积是.参考答案1-5 DCDDA 6-10 ACDAA 11-13 DCB14.12π 15.π34 16. 7417.33π+18.3724aπ19.四棱锥20. 18侧视图正视图俯视图。

空间几何体练习题及参考答案

空间几何体练习题及参考答案

A空间几何体部分1、如果一个水平放置的图形的斜二测直观图是一个底面为45o,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A. 2+1+2、半径为R 的半圆卷成一个圆锥,则它的体积为() 3R 3R 3R 3R 3、一个棱柱是正四棱柱的条件是A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C 、底面是菱形,且有一个顶点处的三条棱两两垂直D 、每个侧面都是全等矩形的四棱柱4.有一个几何体的三视图如下图所示,这个几何体应是一个A 、棱台B 、棱锥C 、棱柱D 、都不对5.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A.23 B. 76 C. 45D. 566.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是A 、25πB 、50πC 、125πD 、都不对 7.正方体的内切球和外接球的半径之比为()A.B.2 C. 2 D.38.在△ABC 中,AB=2,BC=1.5,∠A BC=120o,若使绕直线BC 旋转一周,则所形成的几何体的体积是A. 92π B. 72π C. 52π D. 32π9、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为A 、7B 、6C 、5D 、3 10.直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在 侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2VB 、3VC 、4VD 、5V 11、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正 方形,EF ∥AB,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )正视图侧视图俯视图_ A _BBB 1DCC 1AEE 1D 1A 1FF 1A 、92 、5 C 、6 D 、15212、如右图所示,正三棱锥V-ABC中,D,E,F分别是VC ,VA,AC 的中点,P为VB上任意一点,则直线DE与PF 所成的角的大小是( )A6π B 2π C 3πD 随P点的变化而变化。

空间几何体复习知识与经典例题练习

空间几何体复习知识与经典例题练习

第一章空间几何体一,知识点归纳〔一〕空间几何体的构造特征〔1〕多面体——由假设干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

〔2〕柱,锥,台,球的构造特征——有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做棱柱。

——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

——以直角三角形的始终角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

——用一个平行于底面的平面去截棱锥,我们把截面及底面之间的局部称为棱台.——用平行于圆锥底面的平面去截圆锥,底面及截面之间的局部叫做圆台.——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.〔二〕空间几何体的三视图及直观图1.投影:区分中心投影及平行投影。

平行投影分为正投影和斜投影。

——正视图;侧视图;俯视图;是视察者从三个不同位置视察同一个空间几何体而画出的图形;画三视图的原那么:长对齐,高对齐, 宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系x ' o ' y ' 中画直观图时,图形中平行于坐标轴的线段保持平行性不变,平行于 x 轴〔或在 x 轴上〕的线段保持长度不变,平行于 y 轴〔或在 y 轴上〕的线段长度减半。

(三)空间几何体的外表积及体积1, 空间几何体的外表积①棱柱, 棱锥的外表积:各个面面积之和②圆柱的外表S积=表积S =πrl +πr 22πr l+2πr2③圆锥的外④圆台的外表积SS = 4πR2=πrl +πr 2+πRl +πR2⑤球的外表积nπR2 1⑥扇形的面积公式S扇形=径〕2, 空间几何体的体积360=lr 〔其中l 表示弧长,r 表示半2S 上S 下 ①柱体的体积 V = S 底 ⨯ h ②锥体的体积 V = 1 S ⨯ h 3 底③台体的体积 V = 1S + + S ) ⨯ h ④球体的体积( 上 下 3V = 4πR 33二、例题例 1 以下说法中,正确的选项是( ) .〔A 〕有两个面相互平行,其余各面都是平行四边形的几何体叫做棱柱〔B 〕棱柱的侧棱长肯定相等, 侧面是平行四边形〔C 〕有一个面是多边形,其余各面是三角形的几何体叫棱锥 〔D 〕有两个面是相互平行的相像多边形,其余各面都是梯形的多面体肯定是棱台例 2 以下几何体各自的三视图中,有且仅有两个视图一样的是( )A .①②B.①③C.①④D.②④例 3 如下图,在长方体 ABCD - A / B /C / D /中,用截面截下一个棱锥C - A / DD /,求棱锥C - A / DD / 的体积及剩余局部得体积之比.D /C /例 4 如图,在四边形 ABCD 中, ∠DAB = 900 , ∠A A /DC = 1350 ,B /AB = 5 ,CD = 2 , AD = 2 ,求四边形 ABCD 绕 AD 旋转一D 周所成几C 何体的外表积及体积.三、练习1 以下命题中,正确的选项是〔〕.〔A 〕有两个面平行,其余各面都是四边形的几何体叫棱柱2 A B〔B〕有两个面平行,其余各面都是平行四边形的几何体叫棱柱〔C〕有一个面是多边形,其余各面都是三角形的几何体叫棱锥〔D〕棱台各侧棱的延长线交于一点2.对于一个底边在x 轴上的三角形,采纳斜二测画法作出其直观图,其直观图面积是原三角形面积的〔〕倍 B. 2 倍 C. 2 倍4 21D.2倍3.三个球的体积之比为 1:8:27,那么它们的外表积之比为〔〕A.1:2:3 B.1:4:9 C.2:3:4 D.1:8:274, 以下各组几何体中是多面体的一组是〔〕A三棱柱四棱台球圆锥B三棱柱四棱台正方体圆台C三棱柱四棱台正方体六棱锥D圆锥圆台球半球5.以下说法正确的选项是〔〕A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍旧是平行四边形D 相互垂直的两条直线的直观图仍旧相互垂直主视图俯视图左视图6.假设右图是一个几何体的三视图,那么这个几何体是〔〕3锦似 程 前 你 〔A 〕 圆锥 (B)棱柱 〔C 〕圆柱 (D)棱锥 7, 假设圆台的上下底面半径分别是 1 和 3,它的侧面积是两底面面积的 2 倍,那么圆台的母线长是〔 〕 A 2B 2.5C 5D 108. 棱长都是1的三棱锥的外表积为〔〕A.B. 2C. 3D. 49. 长方体的一个顶点上三条棱长分别是3, 4, 5 ,且它的8 个顶点都在同一球面上,那么这个球的外表积是〔〕A.25πB.50πC. 125πD. 都不对11, 一个棱柱至少有————————个面, 面数最少的棱柱有————————个顶点,有—————————个棱。

第10讲 空间几何体(3大考点+强化训练)(习题版)

第10讲 空间几何体(3大考点+强化训练)(习题版)

第10讲空间几何体(3大考点+强化训练)[考情分析]空间几何体的结构特征是立体几何的基础,空间几何体的表面积和体积是高考的重点与热点,多以选择题、填空题的形式考查,难度中等或偏上.知识导图考点分类讲解考点一:空间几何体的折展问题空间几何体的侧面展开图(1)圆柱的侧面展开图是矩形.(2)圆锥的侧面展开图是扇形.(3)圆台的侧面展开图是扇环.规律方法空间几何体最短距离问题,一般是将空间几何体展开成平面图形,转化成求平面中两点间的最短距离问题,注意展开后对应的顶点和边.【例1】(2023·鞍山模拟)如图,在三棱锥V -ABC 中,VA =VB =VC =8,∠AVB =∠AVC =∠BVC =30°,过点A 作截面AEF ,则△AEF 周长的最小值为()A .62B .63C .82D .83【变式1】(23-24高三上·山西大同·期末)已知圆台的上、下底面的圆心分别为1O ,2O ,母线1AB =(点A 位于上底面),且212BO AO =,圆2O 的周长为2π3,一只蚂蚁从点A 出发沿着圆台侧面爬行一周到点B ,则其爬行的最短路程为()A .1BC .2D 【变式2】(2024高三·全国·专题练习)如图,在棱长为1的正方体1111ABCD A B C D -中,已知P ,M 分别为线段1BD ,1BB 上的动点,N 为1B C 的中点,则PMN 的周长的最小值为()A .12+B C .12+D 【变式3】(23-24高三上·广东揭阳·期末)已知两圆锥的底面积分别为π4,4π,其侧面展开图中圆心角之和为2π,则两圆锥的母线长之和的最小值为()A .72B .92C .4D .5考点二:表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式(1)V 柱=Sh (S 为底面面积,h 为高).(2)V 锥=13Sh (S 为底面面积,h 为高).(3)V 台=13(S 上+S 上·S 下+S 下)h (S 上,S 下分别为上、下底面面积,h 为高).(4)V 球=43πR 3(R 为球的半径).规律方法空间几何体的表面积与体积的求法(1)公式法:对于规则的几何体直接利用公式进行求解.(2)割补法:把不规则的图形分割成规则的图形,或把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体.(3)等体积法:选择合适的底面来求体积.【例2】(2023·全国甲卷)在三棱锥P -ABC 中,△ABC 是边长为2的等边三角形,PA =PB =2,PC =6,则该棱锥的体积为()A .1B.3C .2D .3【变式1】(2024·河北·一模)已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为()A .32πB .26πC .16πD .8π【变式2】(2024·内蒙古赤峰·一模)在直三棱柱111ABC A B C -中,各棱长均为2,M ,N ,P ,Q 分别是线段AC ,11AC ,1AA ,1CC 的中点,点D 在线段MP 上,则下列结论错误的是()A .三棱柱111ABC ABC -外接球的表面积为28π3B .BD MQ⊥C .DQ ⊥面1B QND .三棱锥1D QB N -的体积为定值【变式3】(2024·贵州毕节·一模)如图所示,圆1O 和圆2O 是球O 的两个截面圆,且两个截面互相平行,球心O 在两个截面之间,记圆1O ,圆2O 的半径分别为12,r r ,若211233,4r r O O ===,则球O 的表面积为()A .40πB .42πC .44πD .48π考点三:多面体与球求空间多面体的外接球半径的常用方法(1)补形法:侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点的距离也是半径,列关系式求解即可.规律方法(1)求锥体的外接球问题的一般方法是补形法,把锥体补成正方体、长方体等求解.(2)求锥体的内切球问题的一般方法是利用等体积法求半径【例3】(2023·全国甲卷)在正方体ABCD -A 1B 1C 1D 1中,AB =4,O 为AC 1的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【变式1】(2024·湖南邵阳·二模)已知三棱锥-P ABC 中,PA ⊥平面ABC ,60,2ABC PA AC ∠=== ,则此三棱锥外接球的表面积为()A .14π3B .28π3C .10πD .5π【变式2】(23-24高三上·上海虹口·期末)“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿同一顶点出发的三条棱的中点截去一个三棱锥,共可截去8个三棱锥,得到8个面为正三角形、6个面为正方形的一种半正多面体.若2AB =,则此半正多面体外接球的表面积为()A .43πB .12πC .82π3D .8π【变式3】(2024·浙江·二模)在三棱锥D ABC -中,底面是边长为2的正三角形,若AD 为三棱锥D ABC -的外接球直径,且AC 与BD 所成角的余弦值为217,则该外接球的表面积为()A .19π3B .28π3C .7πD .16π强化训练一、单选题1.(2024高三·全国·专题练习)如图,S ABC -是正三棱锥且侧棱长为a ,两侧棱,SA SC 的夹角为30,,E F ︒分别是,SA SC 上的动点,则三角形BEF 的周长的最小值为()A 2aB 3aC 5aD 6a2.(2024·河南郑州·模拟预测)知名数学教育家单墫曾为中学生写了一个小册子《十个有趣的数学问题》,其中提到了开普勒的将球装箱的方法:考虑一个棱长为2的正方体,分别以该正方体的8个顶点及6个面的中心为球心作半径为22的球,这此球在正方体内的体积之和与正方体的体积之比为()A .π3B .π3C .π3D .6π3.(2024·云南昆明·模拟预测)如图,在三棱锥S ABC -中,,,AS AB AC两两垂直,且AS AB AC ===点,E F 分别是棱,AS BS 的中点,点G 是棱SC 靠近点C 的三等分点,则空间几何体EFG ABC -的体积为()A .6B .3C .D .94.(2023·海南海口·模拟预测)已知圆台的上、下底面圆半径分别为5和10,侧面积为300π,AB 为圆台的一条母线(点A 在圆台下底面圆周上),M 为AB 的中点.一质点P 从点A 出发,绕圆台侧面一周到达点M ,则质点P 所经路程的最小值为()A .60B .50C .40D .305.(2024·广东汕头·一模)已知圆锥的顶点为S ,O 为底面圆心,母线SA 与SB 互相垂直,SAB △的面积为8,SA 与圆锥底面所成的角为30 ,则()A .圆锥的高为1B .圆锥的体积为24πC D .二面角S AB O --的大小为456.(2024·四川绵阳·三模)如图,正方体ABCD A B C D -''''的棱长为3,点M 是侧面ADA D ''上的一个动点(含边界),点P 在棱CC '上,且1PC '=.则下列结论不正确的是()A .若保持PM .则点M 的运动轨迹长度为4π3B .保持PM 与BD '垂直时,点M 的运动轨迹长度为C .沿正方体的表面从点A 到点P 的最短路程为D .当M 在D ¢点时,三棱锥B MAP '-的外接球表面积为99π47.(2024·四川·一模)设正方体1111ABCD A B C D -的棱长为1,与直线1AC 垂直的平面α截该正方体所得的截面多边形为M .则下列结论正确的是().A .M 必为三角形B .M 可以是四边形C .M 的周长没有最大值D .M 的面积存在最大值8.(2023·陕西西安·一模)在三棱锥A BCD -中,平面ACD ⊥平面BCD ,ACD 是以CD 为斜边的等腰直角三角形,M 为CD 中点,BM BC ⊥,24AC BC ==,则该三棱锥的外接球的表面积为()A .16πB .24πC .32πD .40π二、多选题1.(2024·湖南长沙·模拟预测)四棱锥P ABCD -的底面为正方形,PA 与底面垂直,2PA =,1=AB ,动点M 在线段PC 上,则()A .不存在点M ,使得AC BM ⊥B .MB MD +C .四棱锥P ABCD -的外接球表面积为5πD .点M 到直线AB 2.(2024·江苏徐州·一模)已知圆台的上、下底面直径分别为2,6,高为)A .该圆台的体积为B .该圆台外接球的表面积为112π3C .用过任意两条母线的平面截该圆台所得截面周长的最大值为16D(16π+3.(23-24高三上·福建福州·期末)在三棱锥A BCD -中,已知BC BD ⊥,棱AC ,BC ,AD 的中点分别是E ,F ,G ,2AB AC AD CD ====,则()A .过点E ,F ,G 的平面截三棱锥所得截面是菱形B .平面ADC ⊥平面BCD C .异面直线AC ,BD 互相垂直D .三棱锥A BCD -外接球的表面积为16π3三、填空题1.(2024·辽宁葫芦岛·一模)《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.2.(2024·云南昆明·模拟预测)已知长方体1111ABCD A B C D -在球O 的内部,球心O 在平面ABCD 上,若球OAB =,则该长方体体积的最大值是.3.(2024·福建漳州·一模)在直三棱柱111ABC A B C -中,14AB AC AA ===,AC AB ⊥,过1AC 作该直三棱柱外接球的截面,所得截面的面积的最小值为.四、解答题1.(2024·陕西铜川·二模)如图,在四棱锥E ABCD -中.侧面ABE ⊥底面ABCD ,ABE 为等边三角形,四边形ABCD 为正方形,且2AB =.(1)若F 为CD 的中点,证明:AB EF ⊥;(2)求点B 到平面CDE 的距离.2.(2024高三·全国·专题练习)如图所示,在ABC 中,π2B ∠=,2AB BC ==,P 为AB 边上一动点,//PD BC 交AC 于点D .现将PDA 沿PD 翻折至'PDA △,使平面'PDA PBCD ⊥平面.(1)当棱锥'A PBCD -的体积最大时,求PA 的长.(2)若点P 为AB 的中点,E 为'AC 的中点,求证:'A B DE ⊥.3.(2023·湖南岳阳·模拟预测)如图,在直三棱柱111ABC A B C -中,12,3,30AB AA CAB ∠=== ,且AC BC ⊥.(1)求直三棱柱111ABC A B C -的表面积与体积;(2)求证:BC //平面11AB C ,并求出BC 到平面11AB C 的距离.4.(2023·贵州铜仁·模拟预测)如图,已知在正三棱柱111ABC A B C -中,1AA AB =,且点,E F 分别为棱1BB ,11A C 的中点.(1)过点,,A E F 作三棱柱截面,求截面图形的周长;(2)求平面AEF 与平面11BCC B 的所成角的余弦值.5.(2023·江苏苏州·模拟预测)如图,正方体1111ABCD A B C D -边长为1,P 是1A D 上的一个动点.求:(1)直线AB 与平面11BB C 所成角的余弦值;(2)PA PC +的最小值.。

高考数学一轮复习《空间几何体》练习题(含答案)

高考数学一轮复习《空间几何体》练习题(含答案)

高考数学一轮复习《空间几何体》练习题(含答案)一、单选题1.降水量(precipitation[amount]):从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度.降水量以mm 为单位,气象观测中一般取一位小数,现某地10分钟的降雨量为13.1mm ,小王在此地此时间段内用口径为10cm 的圆柱型量筒收集的雨水体积约为( )(其中π 3.14≈)A .331.0210mm ⨯B .331.0310mm ⨯C .531.0210mm ⨯D .531.0310mm ⨯2.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .()256122cm +B .()248162cm + C .()280122cm + D .()272162cm + 3.阿基米德(Archimedes ,公元前287年-公元前212年)是古希腊伟大的数学家,物理学家和天文学家,在他墓碑上刻着的一个圆柱容器里放了一个球,该球与圆柱的两个底面及侧面均相切,如图所示,则在该几何体中,圆柱表面积与球表面积的比值为( )A .32B .43C .32或23D .234.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )A .33πB .2πC .3πD .4π5.某圆锥的母线长为2,高为423,其三视图如下图所示,圆锥表面上的点M 在正视图上的对应点为A ,圆锥表面上的点N 在侧视图上的对应点为B ,则在此圆锥侧面上,从M 到N 的路径中,最短路径的长度为A .2B .22C .823+D .223- 6.已知某空间几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .323B .163C .4D .87.已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )A .12B .13C .16D .1128.某几何体的三视图如图所示,则该几何体的表面积为( )A .810+16B .40C .810++24D .489.棱长为1的正方体1111ABCD A B C D -中,点E 是侧面11CC B B 上的一个动点(包含边界),则下面结论正确的有( )①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;③在线段1BC 上存在点E ,使直线1A E 与CD .所成的角为30;④当E 在棱1BB 上移动时,1EC ED +的最小值是352+. A .1个 B .2个 C .3个 D .4个10.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为A .4πB .12C .1D .211.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于443+,则球O 的体积等于( )A .3223πB .1623πC .823πD .423π 12.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为A .36B .48C .64D .72二、填空题13.如果用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于____. 14.点A ,B ,C ,D 在同一个球的球面上,3AB BC AC ==,若四面体ABCD 体积的3________.15.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD 32,则此“方锥”的外接球表面积为________. 16.棱长为6的正方体内有一个棱长为x 的正四面体,正四面体的中心(正四面体的中心就是该四面体外接球的球心)与正方体的中心重合,且该四面体可以在正方体内任意转动,则x 的最大值为______.三、解答题17.如图,已知直三棱柱111ABC A B C ,其底面是等腰直角三角形,且22AB BC ==14AC AA ==.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值.18.如图是一个以111A B C为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知11112A B B C==,11190A B C∠=︒,14AA=,13BB=,12CC=,求该几何体的体积.19.如图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.(单位:cm)20.如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是矩形,2PA AB ==,2AD =,过点B 作BE ⊥AC ,交AD 于点E ,点F ,G 分别为线段PD ,DC 的中点.(1)证明:AC ⊥平面BEF ;(2)求三棱锥F -BGE 的体积.21.如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,AC =23,△ADE 为等腰直角三角形,∠AED =90°,平面ADE ⊥平面ABCD ,且EF //AB ,EF =1.(1)证明:AC ⊥平面BDF ;(2)若G 为棱BF 的中点,求三棱锥G —DEF 的体积.22.如图,在三棱锥-P ABC 中,2AB BC ==,22PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.23.如图,在三棱锥S -ABC 中,SA =SC ,D 为AC 的中点,SD ⊥AB .(1)证明:平面SAC ⊥平面ABC ;(2)若△BCD 是边长为3的等边三角形,点P 在棱SC 上,PC =2SP ,且932S ABC V -=,求三棱锥A -PBC 的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,60DAB ∠=︒,7PA PD ==,O F 、分别为AD AB 、的中点,PF AC ⊥.(1)求证:面POF ⊥面ABCD ;(2)求三棱锥B PCF -的体积。

空间几何体 专题总结及练习卷

空间几何体 专题总结及练习卷

空间几何体一、多面体:由若干个__________围成的几何体叫做多面体。

1、柱、锥、台的结构特征1)、棱柱:有两个面互相______,其余各面都是______,且每相邻两个四边形的公共边都______,由这些面所围成的多面体。

(三棱柱、四棱柱、五棱柱)性质: ①底面互相______.②侧面都是______ . ③侧棱平行且相等.2)、棱锥:有一个面是______,其余各面都是有一个公共顶点的______,由这些面所围成的多面体。

性质: ①侧面都是______.②平行于底面的截面与底面______,其相似比等于顶点到截面距离与高的比的平方.3)、棱台:用一个_______________的平面去截棱锥,截面和底面之间的部分.性质:①上下底面是相似的平行多边形.②侧面是______.③侧棱交于原棱锥的顶点.二、旋转体:一个平面图形绕着它所在的平面内的____________旋转所形成的封闭几何体叫作旋转体。

4)、圆柱:以_____________________为轴旋转,其余三边旋转所成的曲面所围成的旋转体.性质:①底面是全等的______;②母线与轴______;③轴与底面圆的半径______; ④侧面展开图是一个______。

5)、圆锥:以____________________为旋转轴,旋转一周所成的曲面所围成的旋转体.性质:①底面是一个圆;②母线交于圆锥的顶点; ③侧面展开图是一个______.6)、圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分性质:①上下底面是两个______;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形.7)、球体:以__________________为旋转轴,半圆面旋转一周形成的旋转体.性质:①球的截面是______;②球面上__________________等于半径.三、空间几何体的三视图主 视 图 左视图正视图(反映了物体的高度和长度) 俯视图(反映了物体的长度和宽度)侧视图(反映了物体的高度和宽度)四、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x______,且长度______;②原来与y 轴平行的线段仍然与y______,长度为____________。

空间几何体(答案)

空间几何体(答案)

俯视图侧视图正视图空间几何体一、知识点:1.柱体、椎体、台体的定义。

2.柱体、椎体、台体、球体的表面积体积公式。

3.三视图4.球内接长方体、正方体的外接球、球内接正四面体、长方体内接四面体之间的关系。

5. 斜二测画法 二、练习题:1.如图所示,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( A)①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④2..若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为(B )A.B. C.2 D. 63. 如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的表面积为 ( A ) A .233+B .3C .61 D .23 4.如果一个几何体的三视图如图2所示(单位长度:cm), A 则此几何体的表面积是A. 2(80cm +B. 296cmC. 2(96cm + 主视图 左视图D. 2112cm侧视图正视图俯视图俯视图11A 5. 如图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是(B ).A .324 B . 334 C. 63D . 386.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为 ( C ) A .π34B .π38C .π316D .π3327. 已知高为3的直棱柱C B A ABC '''-的底面是边长为1的正三角形 (如图1所示),则三棱锥ABC B -'的体积为 ( D )A .41B .21解:∵ ,ABC B B 平面⊥'∴43343313131=⋅⋅='⋅=⋅=∆∆-'B B S h S ABC ABC ABC B V . 故选D.8.将棱长为1的正方体木块加工成一个体积最大的球,则这个球的体积为6π, 球的表面积为π (不计损耗)一个四面体的某一顶点上的三条棱两两互相垂直,其长均为6=x ,且四面体的四个顶点在同一球面上,则此球的表面积的 ( A ) A 18π B 24π C 36π D48π 10.如图,已知几何体的三视图(单位:cm). (1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积;.(1)这个几何体的直观图如图2-4所示.(2)这个几何体可看成是由正方体1AC 及直三棱柱1111BC Q A D P-的组合体.由11PA PD ==112A D AD ==,可得11PA PD ⊥. 故所求几何体的全面积22152222222S =⨯+⨯⨯⨯=+2(cm ) 所求几何体的体积23122102V =+⨯⨯=3(cm )A'C'AC图1三、高考对接:1(2010年高考广东卷理科6)如图1,△ ABC为三角形,AA'//BB' //CC' , CC'⊥平面ABC 且3AA'=32BB'=CC' =AB,则多面体△ABC -A B C'''的正视图(也称主视图)是【答案】D2(2009福建卷文)如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 空间几何体
一、知识点归纳
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体.
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。


中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征
1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都
互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何
体叫圆柱.
2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.
4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图
1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等
3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

(三)空间几何体的表面积与体积 1、空间几何体的表面积
①棱柱、棱锥的表面积: 各个面面积之和
②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+
④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积2
4S R π=
⑥扇形的面积公式21
3602
n R S lr π==扇形(其中l 表示弧长,r 表示半径)
2、空间几何体的体积 ①柱体的体积
V S h =⨯底 ②锥体的体积 13
V S h =⨯底
③台体的体积
1
)3
V S S h =+
+⨯下上( ④球体的体积3
43
V R π=
2
22r rl S
ππ+=
二、例题
例1下列说法中,正确的是( ) .
(A )有两个面互相平行,其余各面都是平行四边形的几何体叫做棱柱 (B )棱柱的侧棱长一定相等, 侧面是平行四边形
(C )有一个面是多边形,其余各面是三角形的几何体叫棱锥
(D )有两个面是相互平行的相似多边形,其余各面都是梯形的多面体一定是棱台 例2下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A .①②
B .①③
C .①④
D .②④
例3如图所示,在长方体/
/
/
/
D C B A ABCD -中,用截面截下一个棱锥/
/
DD A C -,求棱锥/
/
DD A C -的体积与剩余部分得体积之比.
例4如图,在四边形ABCD 中,090DAB ∠=,0
135ADC ∠=,5AB =,22CD =,
2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.
三、练习
1下列命题中,正确的是( ).
(A )有两个面平行,其余各面都是四边形的几何体叫棱柱 (B )有两个面平行,其余各面都是平行四边形的几何体叫棱柱 (C )有一个面是多边形,其余各面都是三角形的几何体叫棱锥 (D )棱台各侧棱的延长线交于一点
2.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A.2倍 B.
42倍 C.2
2倍 D.21倍
/A
A
B
C
D /D /B
/C
3.已知三个球的体积之比为1:8:27,则它们的表面积之比为( )
A .1:2:3
B .1:4:9
C .2:3:4
D .1:8:27 4、下列各组几何体中是多面体的一组是( ) A 三棱柱 四棱台 球 圆锥 B 三棱柱 四棱台 正方体 圆台 C 三棱柱 四棱台 正方体 六棱锥 D 圆锥 圆台 球 半球 5.下列说法正确的是( )
A 水平放置的正方形的直观图可能是梯形
B 两条相交直线的直观图可能是平行直线
C 平行四边形的直观图仍然是平行四边形
D 互相垂直的两条直线的直观图仍然互相垂直 6.若右图是一个几何体的三视图,则这个几何体是 ( ) (A ) 圆锥 (B)棱柱 (C )圆柱 (D)棱锥
7、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( ) A 2 B 2.5 C 5 D 10 8.棱长都是1的三棱锥的表面积为( )
C.
9.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )
A .25π
B .50π
C .125π
D .都不对
11、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

12、有下列结论:①角的水平放置的直观图一定是角②相等的角在直观图中仍然相等③相等的线段在直观图中仍然相等④若两条线段平行,则在直观图中对应的两条线段仍然平行 其中正确的是——————————————
13、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。

图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,
“锦”表示右面,“程”表示上面。

则“祝”“你”“前”分别表示正方体的—————
14、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 15、已知圆台的上下底面半径分别是2,5,求该圆台的母线长____________. 16、(如右图)在底半径为2,母线长为4的圆锥中内接一个高
__________.
17、下图是一个几何体的三视图, 根据图中的数据,计算该几何体的表面积为( )
主视图俯视图
左视图
祝 你 前 程 似 锦
A.15π
B.18π
C.22π
D.33π
18、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?
19一个圆柱形的玻璃瓶的内半径为3cm ,瓶里所装的水深为8cm ,将一个钢球完全浸入水中,瓶 中水的高度上升到8.5cm ,求钢球的半径?
20、(选自学习与评价必修2)
课后作业
1、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( ) A 长方体或圆柱 B 正方体或圆柱 C 长方体或圆台 D 正方体或四棱锥
2、①如果一个几何体的三视图是完全相同的,则这个几何体一定是正方体。

②如果一个几何体的正视图和俯视图都是矩形,则这个几何体一定长方体。

③如果一个几何体的三视图都是矩形,则这个几何体是长方体④如果一个几何体的正视图和俯视图都是等腰梯形,则这个几何体一定圆台。

其中说法正确的是————————— 3.三角形ABC 中,AB=3
2,BC=4,︒=∠120ABC ,现将三角形ABC 绕BC 旋转一周,所
得简单组合体的体积为( )
A .π4 B.π)34(3+ C.12π D.π)34(+
4、已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 __________。

5.某四棱锥的三视图如图所示, 该四棱锥的表面积和体积分别是________
A A 1
B 1 B
C
C 1
D 1 D
侧(左)视图
俯视图
4 4
正(主)视图
2
第17题。

相关文档
最新文档