发电机组差动保护

合集下载

某发电厂1号机组高厂变差动保护动作原因分析与防范措施

某发电厂1号机组高厂变差动保护动作原因分析与防范措施

某发电厂1号机组高厂变差动保护动作原因分析与防范措施一、动作原因分析:1.供电系统电压异常:高厂变差动保护的主要作用是检测供电系统的电压是否正常,当供电系统的电压超出了设定范围时,保护装置会自动动作。

原因可能包括供电系统电压突然降低或升高,供电系统电压不平衡等问题。

2.发电机故障:高厂变差动保护还能检测发电机的故障情况,如发电机的绝缘损坏、转子短路、接地故障等。

当发电机发生故障时,保护装置会将其断开与电网的连接,以保护设备和人员的安全。

3.电网故障:电网故障包括短路、接地故障等,这些故障会导致系统电压的突变,从而触发高厂变差动保护。

电网的故障通常与其他设备的故障有关,如电缆或绝缘子的损坏、设备的过负荷运行等。

二、防范措施:1.定期检查和维护设备:对高厂变差动保护装置进行定期的检查和维护,确保其正常工作。

检查范围包括外观检查、连接检查、仪表检查等,以及对设备进行及时的维修和更换。

2.加强对供电系统的监控:通过设置电压监控装置,实时监测供电系统的电压波动情况,一旦电压超出设定范围,及时采取措施,防止高厂变差动保护动作。

3.增强电网的可靠性:加强对电网设备的检修和维护工作,确保各设备的正常运行。

特别是对电缆、绝缘子等易损部位进行定期的检查和更换,减少电网故障的发生。

4.加强对发电机的检修和维护工作:对发电机进行定期的巡检和清洁工作,及时发现和排除潜在故障。

此外,还可通过安装振动监测和绝缘监测装置,对发电机的运行状态进行实时监测。

5.提高运维人员的技术水平:培训运维人员,提高其对高厂变差动保护原理和工作原理的掌握程度,以及对故障排查和处理的能力。

只有运维人员具备一定的技术水平,才能有效地防范高厂变差动保护误动作。

总结:针对高厂变差动保护动作的原因,我们可以从加强设备检修和维护、监测电压波动、增强电网可靠性、加强对发电机的检修和维护、提高运维人员的技术水平等多方面进行防范措施的制定和执行。

通过这些措施的合理实施,可以有效地减少高厂变差动保护的误动作,提高发电机组运行的可靠性和稳定性。

差动保护的基本原理

差动保护的基本原理

差动保护的基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备发生故障时的电流差异,从而及时采取动作措施,防止故障扩大并保护设备安全运行。

本文将从差动保护的基本原理、差动保护的主要应用领域以及差动保护的发展趋势等方面进行详细介绍。

差动保护的基本原理差动保护是基于电流差动原理而建立的。

其基本原理是通过比较电流的进出差异来检测设备是否发生故障。

在理想情况下,正常工作时电流的进出应该是相等的,即电流之差为零。

如果设备发生故障,则电流发生偏差,进出电流之差将不为零,这时差动保护系统将发出动作信号,切断故障部分的电源,保护系统的正常运行。

差动保护系统主要由主保护和备用保护两部分组成。

主保护负责实现差动保护的主要功能,备用保护则在主保护系统发生故障时起到备份作用。

主保护系统通常由差动电流继电器、比较器以及动作执行器等组成。

差动电流继电器负责将进出电流进行比较,发现差异时输出信号给比较器,比较器再将信号转化为动作信号给动作执行器。

差动保护的主要应用领域差动保护广泛应用于电力系统的各个环节,包括发电厂、变电站以及配电网等。

在发电厂中,差动保护用于发电机组、变压器等设备的保护。

在变电站中,差动保护则用于变压器、电缆线路等高压设备的保护。

而在配电网中,差动保护主要应用于低压设备,如配电变压器、电缆线路等。

差动保护的发展趋势随着电力系统的不断发展和现代化要求的提高,差动保护也在不断演变和完善。

目前,差动保护已经实现了微机保护的发展,并结合了现代的通信技术。

微机保护使得差动保护系统的功能更加强大,可实现更精确的测量和判断。

通信技术的应用使得差动保护系统能够实现远程控制和监控,提高了运维效率和安全性。

此外,差动保护系统还在趋向智能化和自适应方向发展。

智能化差动保护系统能够实现自动分析故障类型和区域,准确识别故障类型并采取相应的保护措施。

自适应差动保护系统则能够根据电网的实际运行情况对差动保护参数进行动态调整,提高保护系统的适应性和准确性。

发电机差动保护误动原因分析

发电机差动保护误动原因分析

发电机差动保护误动原因分析[摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。

本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。

[关键词]差动保护;电流互感器;原因分析;整改措施0 引言多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。

造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。

各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。

发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。

1 发电机差动保护动作情况山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。

发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。

中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。

如图1图18月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。

差动保护回路因差流存在并达到动作限值引起差动保护动作,装置动作正确。

但因区外短路,故本不应引起发电机差动保护动作。

保护装置记录当时的动作数据如下:机端A相电流13.97∠090°A机端B相电流18.13∠322°A机端C相电流16.52∠175°A中性点A相电流18.91∠252°A中性点B相电流21.92∠117°A中性点C相电流15.62∠354°AA相差动电流8.30AA相制动电流16.10AB相差动电流9.42AB相制动电流19.55AC相差动电流0.14AC相制动电流15.57A2保护动作原因分析2.1客观原因:发电机组中性点电流互感器与机组出口电流互感器距离为350米,两电流互感器间有一段300米的汇流母排,外部设备雷击后,多次谐波被母排及发电机吸收,使机端与发电机中性点电流互感器的一次电流差异较大,引起差动动作,造成发电机事故停机。

发电机差动、转子接地、定子接地保护

发电机差动、转子接地、定子接地保护

发电机差动、转子接地、定子接地保护1、工频变化量反应匝间短路的灵敏度,工频变化量比率差动保护,它利用工频故障分量构成的工频变化量比率差动保护,不受负荷电流影响,灵敏度高,抗TA 饱和能力强,具有很高的检测变压器内部小电流故障(如中性点附近的单相接地及相间短路,单相小匝间短路)的能力。

根据研究单位各种动模与静模试验统计表明:在变压器正常运行工况下发生1.5%的匝间故障时,工频变化量差动保护都能灵敏动作。

2、为何要采用变斜率比率差动原理?答:(1)变斜率比率差动一开始就带制动特性,可以很好地与CT不平衡电流匹配,防止了两折线比率差动拐点设置不合理产生的问题;(2)与普通比率差动比较,增加了灵敏动作区,提高了轻微内部故障时保护的灵敏度;同时,变斜率比率差动在制动电流很大时,减小一块易误动区,提高了安全性。

3、差动保护采用何种原理防止励磁涌流时误动?答:差动保护采用二次谐波原理及波形判别原理防止励磁涌流时差动的误动。

4、变压器差动保护对YD变压器电流的幅值和相位如何调整?RCS-985采用软件实现Y->Δ变换调整变压器各侧TA二次电流相位。

同时,通过软件自动平衡各侧的变比差别,最大的调整倍数:各侧均为5A的CT,相对于标准侧,调整系数范围0.01-6.4倍。

对于标准侧为5A的CT,调整侧为1A的CT,调整系数范围0.01–32倍。

5、定子匝间保护如何实现?如发电机中性点能引出6个端子,定子匝间保护由裂相横差和单元件横差保护实现,灵敏度最高;如发电机中性点只能引出3个端子时,机端配置匝间保护专用PT,采用纵向零序电压匝间保护方案,RCS-985中采用电流比率制动方案区分区外故障;如没有专用PT,采用工频变化量负序功率方向匝间保护。

6、发电机是否具备“低电压保持记忆过流保护”,作为自并励机组的后备保护?答:RCS-985装置发电机复合电压过流保护具备“低电压保持记忆过流保护”功能,记忆时间足够保护动作(记忆时间为15S)。

京玉发电关于2机组发电机差动保护动作故障停机的分析报告

京玉发电关于2机组发电机差动保护动作故障停机的分析报告

附件3:山西京玉发电有限责任公司关于#2机组发电机差动保护动作故障停机的分析报告一、事故经过1、事故前机组运行工况:2014年03月29日,二号机组负荷245MW,发电机电压22.83kV,定子电流6200A,转子电压256.41V,转子电流1428.90A,二号机组正常运行。

2、事故发生过程:2014年03月29日,12:43:43:230,二号机发变组A屏(RCS-985南瑞)首出“发电机差动保护”动作,跳开2号主变高压侧断路器202、灭磁开关、二号机6kV1、2段工作电源进线开关、关闭主汽门并启动厂用电切换。

12:43;43:722二号机组快切装置正确动作,厂用电切换正常。

12:43:43:303,二号汽轮机跳闸,12:43:44:474,二号锅炉BT保护动作。

具体故障数据及波形如下:图1:保护A屏(RCS-985)发电机差动动作报告及波形二、现场检查及处理情况2014年3月29日,12点50分,电气二次专业人员接到值长通知二号机组发电机差动保护动作。

到现场检查情况如下:1、保护装置及保护定值检查:现场检查二号机发变组保护A屏保护装置(RCS985)报“发电机差动TA 断线”、“主变差动TA断线”、“发电机差动保护动作”。

从保护动作报告上可以看出2号发电机机端电流B相(回路号B4081)差动电流达到动作定值。

发电机差动保护定值及保护动作分析计算如下:发电机差动保护定值:发电机差动启动定值(Icdqd):0.2Ⅰe 比率制动最大斜率(Kbl2):0.5 比率制动起始斜率(Kbl1):0.05 差动保护跳闸控制字:1E3F(全停)发电机二次额定电流(Ie):3.73A 保护CT变比:12500/5发电机差动速断投入:1 发电机比率差动投入:1TA断线闭锁比率差动:0 发电机工频变化量差动投入:1故障波形记录机端B相故障差动电流:0.64I eB相机端电流:0.01I eB相中性点电流:0.65I e比例差动保护的动作方程如下:由以上公式计算故障时电流为:I d=0.64I e=2.46A I r=0.66I e/2=1.19A由差动保护动作方程(Ir<nI e,n为最大斜率时的制动电流倍数,厂家固定取4)计算可得:K bl=0.068 , I d>0.22I e时,比例差动保护动作。

船舶发电机组非同步并车造成差动保护原因分析

船舶发电机组非同步并车造成差动保护原因分析

船舶发电机组非同步并车造成差动保护原因分析摘要:船舶发电机组是船舶电站的核心,同时也是舰船在建造、航行、系泊阶段作为主要的能源和动力来源。

如电网的在网机组所发出的功率不能满足电网用电负载的供电需求时,需将备用机组与在网机组通过电网进行并车,提高电网的功率冗余用以满足供电需求。

在并车过程中,操作失误、设备或元器件故障都会导致并车失败,严重时会因机组控制系统的继电保护动作,从而造成全船失电,发电机组也可能会受到电磁、机械的有害冲击造成设备毁灭性损伤,因此,要求在并车时产生的冲击电流最小、并且合闸后能进行自整步,更快的与在网机组进行同步,避免非同步并车造成发电机组过载、逆功率、短路保护使舰船失电。

本文将针对某船在建造阶段由于误操作导致船舶电站的备用机组与在网机组进行非同步并车而造成全船失电的原因进行分析研究。

关键词:船舶;发电机组;并车;差动保护;中图分类号:U665.12文献标识码:1引言随着当前船舶自动化程度的不断提升,船员的日常工作量也会随之减少,所以船舶电站在日常使用时更为便捷、工作效能更高,但是在一些特殊工况下,船舶电站受到人员、设备、外界因素的影响会导致可靠性明显降低,甚至威胁到舰船系泊及航行时的安全性。

保护船舶电力系统受损程度在可控范围内是船舶安全、高效航行的重要保证,针对船舶电力系统中各种常见的异常工作状态和故障,设置并且合理优化相应的保护装置可以降低事故发生概率。

2发电机组非同步并车造成差动保护情况简述在某型船建造阶段,单台发电机对电网进行供电,备用发电机处于空载状态。

由于电站控制方式为半自动控制且自动调频调载装置投入使用,所以两台机组电压均为390±5V、频率均为50±0.5Hz。

在前期检修时线缆安装失误,导致备用机组断路器的遥控合闸指令线(接至手动准同步检测装置)异常接触,造成短路,待并发电机组突接入电网,瞬间与在网机组并车。

结果导致原在网发电机组由于冲击电流过大而瞬时脱扣;待并发电机组的差动保护装置动作、发电机组紧急停机并灭磁、机组断路器欠电压保护脱扣;舰船电网失电。

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用大型电动机高阻抗差动保护原理、整定及应用一、引言随着电力系统的发展和电动机的广泛应用,电动机保护也变得越来越重要。

其中差动保护是电动机保护中常用的一种方法,它可以有效地检测电动机的故障并及时采取保护措施。

本文将介绍一种常用的差动保护方案——大型电动机高阻抗差动保护,包括其原理、整定方法以及应用。

二、大型电动机高阻抗差动保护原理大型电动机高阻抗差动保护是一种基于电流差动原理的保护方案。

它通过比较电动机的输入和输出电流来检测电动机的故障。

具体原理如下:1. 故障前状态:电动机的输入和输出电流应该是相等的,差动电流为零。

2. 故障发生:当电动机发生故障时,比如转子绕组短路或绝缘损坏,会导致差动电流增大。

3. 保护动作:差动保护装置会监测输入和输出电流的差值,当差值超过设定的阈值时,会发出保护信号,触发断路器断开电路,以保护电动机不受进一步损坏。

三、大型电动机高阻抗差动保护整定方法1. 阻抗整定:大型电动机高阻抗差动保护的阻抗整定是非常关键的一步。

阻抗整定的目的是确定差动电流的阈值,使其能够准确地检测电动机的故障。

阻抗整定一般通过实验来进行,根据电动机的特性和运行状态来确定阈值。

2. 故障判据:大型电动机高阻抗差动保护的故障判据一般是根据电动机的额定电流和差动电流的比值来确定的。

当差动电流与额定电流的比值超过一定的阈值时,就判定为电动机故障。

3. 阈值设定:阈值设定是根据电动机的特性和运行条件来确定的。

一般来说,阈值设定应该略大于电动机在正常运行状态下的差动电流,以确保能够准确地检测到故障。

四、大型电动机高阻抗差动保护应用大型电动机高阻抗差动保护广泛应用于各种大型电动机的保护中,尤其是对于容易发生故障的电动机,如高压电机、重载电机等。

它可以有效地检测电动机的故障,避免因故障而导致设备损坏甚至事故发生。

大型电动机高阻抗差动保护还可以与其他保护装置相结合,形成多重保护,提高电动机的安全性和可靠性。

发电机组差动保护

发电机组差动保护
发电机组差动保护
发电机是电力系统中重要的组成部分,发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是十分贵重的电气设备,尤其是大型同步发电机组,对电力系统的影响可谓是举足轻重。随着电力系统的不断发展,发电机的单机容量也越来越大。在国内,单机600 MW以上的发电机组已不再少见。发电机的主要故障类型有定子绕组相间短路、定子绕组匝间短路、定子绕组单相接地、转子绕组一点或两点接地等,对发电机破坏性最大的就是定子绕组相间短路,发电机差动保护作为发电机定子绕组相间短路故障的主保护已广泛在电力系统中应用。发电机单机容量的提高,相应地对完成发电机定子短路主保护的差动保护也提出了更高的要求。自微机在继电保护上应用以后,由于微机保护的智能的特点及高速运算的能力,微机发电机差动保护的新原理大量涌现,给继电保护带来了一片生机。差动保护的性能也得到了前所未有的提高。
子绕组发生短路和匝间短路时,TAO上会流过较大的基频零序短路流过电流大于动作门槛电压时,横差保护出口, 即Id> Id.set(Id为横差电流的基波分量, Id.set为横差保护电流定值)。
2 比率制动式微机
为了防止差动保护在外部短路时,发电机有很大穿越电流使CT误差增大时误动作,采用比率差动原理。该保护采用机端电流If作为制动电流,而不采用中性点侧电流或两侧电流的综和电流作为制动电流。这样既能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用,特别是发电机尚未与系统并联运行而发生内部短路时,机端三相没有电流,中性点侧电流只作为动作电流,因此提高了内部短路的灵敏度.为防止因CT断线引起比率差动保护误动该保护带有CT断线闭锁功能。该保护采用分相式,即A、B、C任一相保护动作均出口,以下判据均以一相为例。
当满足以下条件时比率差动保护动作

发电机保护动作分析及处理

发电机保护动作分析及处理

主持:朱宁衣电技术k i i a n g a友电与变电l\OI\(;(;L iN D IA N C«')IN GI发电机故障保护动作分析及处理1.1 发电机差动保护动作现象:蜂鸣器响,监控后台将光字信号弹出,机纽事故栏中差动保护光字牌显示红色盖动保护动作机组停机。

处理:若发电机出门断路器未断开,应立即断开检查一次设备.修试人员对发电机绝缘.二次冋路进行全面检杏若无异常,经批准后,可开机作递升加压试验,若有异常,应立即停机检修若升压空载运压降低;机组发出“吼"的声音并较大振动;定子电流、电压值剧烈摆动处理:如果出现发电机组剧烈振动,应立即停机:通知修试人员检査发电机各部绝缘、同期卩|丨路情况以 及定广绕纟 11端部有无变形丼处理尤异常后,经总工程师批准可幵机起励空运行无异常后,屮请并网1.7 发电机转子两点接地现象:蜂鸣器响.监控后台符光字信号弹出.机#IL 私故栏屮转子两点接地光字牌显示红色保护动作.I t l l l洄 SB®茴U3(H>64 I湖北水t*丨水也职业技木伞%乜力系张>n h行3—5 m in无异常时,可申请并网,递增负荷1.2 复压过流保护动作现象:蜂鸣器响,监控后台苻光字信号弹出.机m 事故栌M压过流光字牌红色保护动作,机织停机处理:若发电机出N断路器未断开,应立即断开若益动保护IH常投入,应4调度联系是否系统事故,消除事故后,可复归光字信兮,开机并网1.3 发电机过电压保护动作现象:蜂鸣器响,监控后台有光字信号弹出,发电机的过电压保护光字牌为红色处理:若发电机出丨I断路器未断开,应立即断开,若原丙不明,应玟即停机通知修试人员对发电机进f r 绝缘、厂.次冋路检査检查无异常后,可复n光字信53-,力-机空载运行;空载运行无异常后,申请并网1.4发电机失磁保护动作现象:蜂鸣器响,监控后台有光字信号弹出.机m 事故栏失磁事故光字牌红色保护动作.机纟i i停机处理:若发电机出n断路器米断幵,应立即断开若确系人为误动作引起,可不检立即投人运行;苦其他保护耒动作.如來是冈灭磁开关跳丨起保护动怍,则应观察发电机出n断路器是否断开,如没断开应立即断开.将励磁凋Y/装S退出运行检杳灭磁开关的橾作冋路、操作机构宥无汗常,井及时处理|.5 发电机发生剧烈振荡或失去同步现象:发电机发出有规律的裝鸣声;有功功率、无 功功率、定了-转F电流数值剧烈摆动处理:应尽可能增加发电机的励磁电流;适当调整机纟U有功负疴(荇转速升卨降低苻功负荷,转速降低增加有功负荷);采取措施I m in内无效时,应立B丨J 停机处理;恢釔正常后,屮请幵机并N1.6发电机非同期并列现象:定子电流突然汁高;发电机和母线丨.各电机纽解列停机灭磁汗关跳汗处理:若发屯机出n断路器未断开,应断)「•检 查转子M路有无荇火.若荇火,应立即灭火通知修试人员处理IH常后,以归光字信号,中清开机1.8发电机若火现象:发电机风洞盖板处冒烟、火矶,绝缘烧焦;发电机保护动作.机组解列停机处理:若保护柜动,应按下紧急停机按钮停机并报告车间领导;确认发电机无电压后,打开消防阀丨' 1进行灭火;若热风M打开.应立即关闭2发电机异常运行保护动作分析及处理2.1 发电机过负荷现象:齊铃响,随控后台有光字信号弹出,机組故障柃中过负荷光字牌®示红色处理:监视发电机各个部位的温度,检迕定f电 流是否超过允许值.可根椐具体怙况适当减负荷2.2发电机转子-点接地现象:筲铃响.监控后台有光字倍兮弹出,机组故障衫中转子-点接地光字牌祯示红色处理:/I:保护测控屏丨•.检査正负极对地电阻情况;俭査是否1.作人员不小心所致;沾擦成川气吹杓滑环(防止糾路或接地);无效时,中沾解列.淖机处理2.3 发电机操作、测控、保护电源屮断现象:羚铃响,监控后台有光字信号弹出,机姐故障柃中保护5f.常光字牌敁示红色处■:检杏柁制屏耵断路器是否断〗「•检查直流馈电屏丨:讣关设备是否断汗,豇流系统是否故障检迕后不能确定缺陷原W.通知检修人员处理.2.4 发电机滑环打火有不合格的碳刷运行,滑环打火时,应更换气火花较大可能造成绝缘损坏吋,应立即按F紧急停机按钮停机处理2020-03-0丨收摘第28卷2020年第3期农村电工45。

1 发电机差动保护检验

1 发电机差动保护检验

1 发电机差动保护检验1.1 最小动作电流测试退出循环闭锁原理(整定负序电压为 0)。

依次在装置各侧加入单相电流,差动最小动作电流值应与定值相符,并满足误差要求。

电流值大于 1.05 倍最小动作电流值时,差动保护应可靠动作;电流值小于 0.95 倍最小动作电流时,差动保护应不动作。

1.2 差流越限告警定值测试1.3、IT , Id 及INIz,根据B1.4动作;1.5 TAAB 相电压,BC 相短接,负序电压=UAB/3 ,负序电压超过整定值时,差动由 TA 断线告警转为差动出口。

1.6 比率差动保护整组动作时间测试差动保护任一侧通入 2 倍差动最小动作电流,测试到各出口压板,要求其动作时间不大于 25 ms。

1.7 差动速断保护功能检验在差动保护任一侧施加冲击电流,电流值大于 1.05 倍速断整定值时,速断保护应可靠动作;差动电流值小于 0.95 倍速断整定值时,速断保护均应不动作。

1.8 差动速断保护动作时间测试在差动保护任一侧施加冲击电流,电流值大于 1.2 倍差动速断整定值,测试到各出口压板,要求其动作时间不大于 20 ms。

2 变压器差动保护检验2.1 差动最小动作电流测试依次在变压器差动两侧通入三相电流,差动最小动作电流值与整定值相符。

电流值大于1.05 差动最小动作电流值时,差动保护应可靠动作;电流值小于 0.95 差动最小动作电流值时,差动保护,y,y,差动 TA 2.22.3Y,y,d11 (在及 Iz求。

图 1 变压器比率差动保护制动特性曲线2.4 谐波制动特性检验其中: I2ω、I1ω——某相差流中的二次谐波电流和基波电流;η——整定的二次谐波制动比; IN为二次 TA 额定电流。

以或门制动特性为例:用可叠加谐波输出的测试仪在某一侧通入 2 倍差动定值的三相基波电流,改变任一相二次谐波电流(与门制动特性要同时改变三相二次谐波电流),差动保护在谐波含量小于 0.95 倍整定值应可靠动作,谐波含量大于 1.05 倍整定值时应可靠不动作。

差动保护工作原理

差动保护工作原理

差动保护工作原理差动保护是电力系统保护中常用的一种保护方式,主要用于检测电力系统中的故障情况,并采取措施防止故障扩大。

差动保护可以用于对各种电气设备进行保护,如变压器、发电机、母线等。

下面将详细介绍差动保护的工作原理。

差动保护是一种基于电流差值的保护方式。

其基本原理是通过比较同一电路的两个或多个点的电流,来判断电气设备是否存在故障。

差动保护一般采用主动式差动保护,也就是主动比较电流并判断是否存在故障,另外还有被动式差动保护,也就是被动接受其他装置的差动信号。

差动保护通常由一个差动继电器组成,该继电器上接入从变压器、发电机以及线路中取得的电流信号。

差动继电器接受这些电流信号,并通过比较这些信号的差异来判断电气设备是否存在故障。

差动保护的工作原理大致可以分为三个步骤:采样、比较和判定。

首先是采样。

差动继电器上接入从电气设备中取得的电流信号。

这些电流信号是通过采样装置采集而来的,通常采用电流互感器获取变压器、发电机以及线路中的电流信号。

采样装置会将采集的电流信号转换成适合差动继电器处理的信号,然后输入到差动继电器中。

接下来是比较。

差动继电器将接收到的电流信号进行比较,比较对象通常是同一电路中的两个或多个点的电流信号。

差动继电器会将这些电流信号进行差分运算,得到一个差值。

如果差值超过所设定的阈值,就会触发差动继电器的动作。

最后是判定。

差动继电器会根据比较得到的差值判断电气设备是否存在故障。

如果差值超过阈值,差动继电器会发出警报信号,并向对应的断路器或开关发送信号,将故障路段进行隔离。

如果差值在阈值之内,差动继电器则认为电气设备正常运行。

差动保护的工作原理中,要特别注意的是阈值的设定。

阈值的大小与电气设备的特性有关,通常需要根据设备的额定电流和故障特性来确定。

阈值设置过小,容易造成误动作,阈值设置过大,容易漏检故障。

差动保护相对来说是一种较为简单、可靠的保护方式。

它可以实时监测电气设备的工作情况,一旦发现故障可以迅速切除故障路段,保护系统的安全稳定运行。

发电机差动保护误跳闸的原因分析及处理

发电机差动保护误跳闸的原因分析及处理
1d
】5
I口 】z
图2
前期分 析差动动作的 原因有三种 可能:第一种 原因是差动保 护两 组互感器之间的设备出现故障,主要包括:发电机本体,发电机出现电
缆,发电机小室内的电压互感器,励磁变压器等。第二种原因是保护装
置制动 特性不好造 成误动作: 第三种原因 是两组差动 保护CT的特 性较
差造成的。
3处理方法及步骤
UU
口四
保护装置交流模件
图l 1)动 作方 程
f 当I d>】q
时I z( 】 9
<当I d>Kz( I z 一19) +t q时I z>] 9
l 当I d>I s
时】d >】s
L
上式 中 I d— —动作 电流 (即 差流)
I d=l i t +bl
】p制动电流
l ::且;虹
2) 动作特性 由动作 方程作出 的发电机 纵差保护 动作特性可 以显示于 图2中, 可以看出发电机纵差保护的动作特性由二部分组成:即无制动部分和比 率制动部分。在区内故障电流小时它具有较高的动作灵敏度:而在区外 故障时,它应具有躲过暂态不平衡差流的能力。正常情况下,通过整定 保护的各定值,其动作特性能够满足动作的灵敏度和可靠性的要求。
185
流泄露试验;发电机转子绝缘电阻试验、测量直流电阻试验,交流阻抗
试验: 发电机小室 内设备( 包括电压 互感器、引 出线母排等 ) 分别 做绝 缘电阻试验,交流耐压试验:发电机出现电缆要做绝缘电阻、交流耐压
试验:差动保护两组CT分别做极性试验、变比试验,伏安特性试验。
试验结果 是除了CT的伏安 特性试验以外, 其他试验数据都 合格,
1设备 状况 及故 障现 象 徐州 某热电厂 配备两台 30MW汽轮 发电机组 ,额定电 压10.5kv, 经过 变压 器升压 到35kv后 并入电 网, 选配国 电南 京自 动化有 限公 司 GDGT801 E型发电机保护装置。1#发电机自2008年5月份投入运行 以来,在受到外网异常情 况的影响下,半年时间内连续跳闸4次。都是 差动 保护 误动作 。 2差动 保护原 理及 故障原 因分 析 差动保护 是发电机最重要 的一种主保护, 是为了防止发电 机内部 发生相间 及匝问短路故 障的一种保护 。在差动保护 CT感应到不平 衡电 流时,产生差流,保护迅速动作于跳闸,防止事故扩大,保护电网系统 的安全。差动保护的选择性好,灵敏度高。这台发电机选吾E的 DGT801型 保护装 置配 置的 是纵差 保护 ,其构 成原 理是 按比较 发电 机 中性 点端 CT与出 线端 CT二 次同名 相电 流的大 小及 相位 构成。 下面 以 - - t 8差动为例进行分析,并设两侧电流的正方向指向发电机内部。图1 为发电机完全纵差保护的交流接入回路示意图。

差动保护

差动保护

发电机纵差动保护培训资料1、发电机纵差动保护原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外部故障,而且还要求无延时地切除内部故障,为此而设置发电机纵差动保护。

在发电机中型点侧配置一组电流互感器,在发电机出口配置一组电流互感器,其保护范围为两电流互感器之间的发电机定子绕组及引出线。

两电流互感器是同一电压等级、同变比、可同型及特性尽可能相近的,其不平衡电流比较小。

为防止外部短路暂态不平横电流的影响,差动继电器可选用带中间速饱和电流器的继电器。

不平衡电流计算只考虑两电流互感器不一致而产生的不平蘅电流。

Ibp.max =KftqKtxfiI(3)dmaxKftq—非周期分量影响系数 BCH—2继电器取1Ktx—同型系数取0.5 fi=0.1 ID(3)max —外部短路最大短路电流周期分量为了防止电流互感器二次回路断线引起保护误动,设计有电流互感器二次回路断线监视装置,在发电机电流互感器二次回路断线后延时发信。

正常运行时发出断线信号后,运行人员应将差动保护退出,以防在断线情况下发生外部短路时差动保护误动。

2、发电厂330KV发电机差动保护蒲城发电厂1、2号发动机采用单星形中型点经中值电阻(1000欧)接地接线方式,差动保护采用BCH—12型差动继电器,保护范围是中型点CT与发电机出口CT之间、反映相间短路和单相接地故障,此保护未设CT断线闭锁,依靠躲过单相CT断线二次不平衡电流来闭锁CT断线。

发电机另外与主变共设置一套差动保护,保护范围是330KV两个出口开关CT、发电机中性点CT、厂高变低压侧两分支CT之间的接地、相间短路。

3、发电机纵差动保护的评价1)发电机纵差动保护不能反映定子绕组匝间短路;2)发电机定子绕组不同地点发生短路时,由于定子绕组多点感应电动势不同及短路阻抗不同,所以短路电流大小不同,中性点附近短路或接地,差动保护不灵敏。

同步发电机构纵差动保护一、发电机纵差动保护的作用原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外故障,而且还要求无延时地切除内部故障。

(最新整理)发电机差动保护原理

(最新整理)发电机差动保护原理

(完整)发电机差动保护原理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)发电机差动保护原理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)发电机差动保护原理的全部内容。

5.1 发电机比率制动式差动保护比率制动式差动保护是发电机内部相间短路故障的主保护。

5。

1。

1保护原理5.1。

1.1比率差动原理。

差动动作方程如下:I op I op.0 ( I res I res.0 时) I op I op.0 + S (I res – I res.0) ( I res > I res 。

0 时)式中:I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res 。

0为最小制动电流整定值,S 为比率制动特性的斜率。

各侧电流的方向都以指向发电机为正方向,见图5.1。

1。

差动电流: N T op I I I ⋅⋅+=制动电流: 2NT res I I I ⋅⋅-=式中:I T ,I N 分别为机端、中性点电流互感器(TA )二次侧的电流,TA 的极性见图5.1.1.图5。

1.1 电流极性接线示意图(根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1。

1.2 TA 断线判别当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线:a. 本侧三相电流中至少一相电流为零;b. 本侧三相电流中至少一相电流不变;c. 最大相电流小于1.2倍的额定电流。

5.2发电机匝间保护发电机匝间保护作为发电机内部匝间短路的主保护。

根据电厂一次设备情况,可选择以下方案中的一种:5。

发电机差动保护动作原因分析

发电机差动保护动作原因分析

发电机差动保护动作原因分析一、事故经过2012 年10 月23 日07 时29 分,网控值班员听见巨响声同时发现盘面柴发电源二103-16 断路器跳闸,网控值班员立即前往网控10KV 配电室发现浓烟,经检查柴发电源二103-16 高压柜后盖已被甩出,柜内已烧黑。

2 号发电机纵差保护动作,2 号发电机组跳闸。

07 时33 分,低频保护动作,甩负荷至第5 轮。

07 时33 分41 秒,1 号、3 号机组跳闸,全厂失电。

二、故障分析继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16 柜故障时刻发抗组差动回路确实存在很大的不平衡电流。

与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。

证明发电机等一次设备未发生故障,发抗组保护装置本身在这次大修期间已经对保护装置及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。

差动动作时间和103-16 柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。

随后保护人员调取录波图进行分析,发现故障时刻发电机中性点 B 相电流波形严重畸变。

经过_n峯兰军二 3 峯R至sr壬罕爭冀2・筈<t«l4lM却決崔宦至*c锂e壬早誓犯、農护罢三W峯晖里骐煖羽璋P_J«X9揭 遥些羽「-■釋提垂羽突瑶誓耳工鬣靈秦W 、鬻曲応三?一_碍环至誤星壬壬<護-W垂星丸筆超■澤建十舄盂X寺5 £«-=>一一令K 辜=二瓷立=爭芒二 杆盧盂■奏+禅二5&務匸=一-念进整澤邹喂 “计算,发电机中性点B 相电流与发电机机端B 相电流之差正好等于装置采样的差流值从录波图上可以看出,故障时刻发电机中性点B 相电流波形发生严重畸变,且故障时刻发电机中性点 B 相电流与发电机机端电流在同 一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互 感器和* !■? ■W ■1 - ■■ I ■ J 1|H^ »~*~i_^—弋,"^― "4_ —— "^―——■ ■—I■— dH ■■Mt':HM IHr ,iW ■ M! " fff发电机机端电流互感器造成的影响不同。

发电机差动保护动作原因分析及预防措施

发电机差动保护动作原因分析及预防措施

发电机差动保护动作原因分析及预防措施摘要:在整个电力系统中,发电机是非常关键的一部分,对整个电力系统的运行有着很大的影响,而差动保护在预防发电机内部短路故障有着关键作用。

但就近几年的实际情况来看,发电机差动保护动作事故频频出现,对整个工作系统都有着很大的影响。

鉴于此,本文就结合具体案例,对发电机差动保护动作的原因进行分析,针对实际情况,提出了一些预防措施,尽可能的将此类事故发生的可能降至最低。

关键词:发电机;差动保护动作;原因;预防在电厂工作中,发电机故障是非常关键的问题,对整个工作流程都有着很大的影响。

因此,本文选取XX发电厂进行研究,该电厂的总装机容量为135MW,发电机利用南瑞继保RCS-985RS/SS装置,主要为二分支,发电机关键部位配置电流互感器。

2020年10月,XX电厂发电机运行过程中,1#机组出现机端短路的情况,发电机进行差动保护动作。

为了深入了解发电机运行过程中出现的具体故障,预防不良事件的发生,笔者对发电厂此次事故的具体情况进行了进一步的调查和研究,明确原因,提出预防措施。

1 XX发电厂发电机差动保护动作事故经过2020年10月,XX发电厂1#机组带30MW正常运行,当时0#和2#机组处于正常的备用状态。

1#机组当天上午运行过程中,发电机的监控系统发出警报,并提示发电机出现故障问题,警报系统显示“比率差动动作”,同时,发电机的保护装置开始启动运行。

2事故后的检查情况在发现发电机出现故障问题后,发电厂立即停止了1#机组的运行,并找到检修维护人员,对发电机以及差动保护的各项指标进行了全方面的检查和分析。

在检测发电厂故障录波器和保护定值后发现,保护定值处于正常状态,设备动作正确,未出现过失误情况。

当检测上述设备无误后,检修人员在确保绝对安全的情况下,又对发电机的出口各部位、励磁变压器以及中性点相关设备进行了进一步的检测,对发电机各部位的短路情况以及出口绝缘情况进行检测,测试结果均显示未出现故障问题[1]。

发变组保护

发变组保护

1、发变组有哪些保护及动作范围1.发电机差动保护:用来反映发电机定子绕组和引出线相间短路故障,瞬时动作于全停I、II。

2. 主变压器差动保护:主变压器差动保护通常为三侧电流,其主变压器差动保护范围为三侧电流互感器所限定的区域(即主变压器本体、发电机至主变压器和厂用变压器的引线以及主变压器高压侧至高压断路器的引线),可以反映该区域内的相间短路,瞬时动作于全停I、II。

3.高厂变差动保护:保护范围包括变压器本体及套管引出线,能够反映保护范围内的各种相间、接地及匝间短路故障,瞬时动作于全停I、II。

4.励磁回路一点接地、两点接地保护:对于静止励磁的发电机正常运行时,励磁回路对地之间有一定的绝缘电阻和分布电容。

当励磁绕组绝缘严重下降或损坏时,会引起励磁回路的接地故障,最常见的是一点接地故障。

发生一点接地故障时,由于没有形成电流回路,对发电机没有直接影响,但一点接地后,励磁回路对地电压升高,在某些情况下,会诱发第二点接地。

当发生第二点接地故障时,由于故障点流过很大的短路电流,会烧伤转子,由于部分绕组被短接,气隙磁通将失去平衡,会引起机组剧烈振动。

此外,还可能使轴系和汽轮机汽缸磁化。

因此需要装设一点、两点接地保护。

一点接地保护动作于发信号,一点接地保护动作发出信号后,及时投入两点接地保护,两点接地保护动作后动作于全停I、II。

5. 发电机定子接地保护:采用基波零序电压保护和三次谐波定子接地保护,可构成100%定子接地保护。

95%定子接地保护主要反映发电机机端的基波零序电压的大小,当达到动作定值时,动作于全停I、II。

15%定子接地保护主要反映发电机机端的三次谐波电压的大小,当达到动作定值时,动作于发信号。

6.发电机复合电压过流保护:从发电机出口PT取电压量,从发电机中性点CT取电流量,电压判据由低电压和负序电压组成或条件,动作于全停I、II。

7. 发电机负序过负荷保护:作为发电机不对称过负荷保护,延时动作于信号。

发电机保护

发电机保护

发电机保护1、发电机差动保护:发电机差动保护是发电机相间短路的主保护。

根据接入发电机中性点电流的份额即接入全部中性点电流或只取一部分电流接入,可分为完全纵差保护和不完全纵差保护。

另外,根据算法不同,可以构成比率制动特性差动保护和标积制动式差动保护。

不完全纵差保护,适用于每相定子绕组为多分支的大型发电机。

它除了能反应发电机相间短路故障,尚能反应定子线棒开焊及分支匝间短路。

可根据机组结构、容量及有关特点,合理地选用发电机纵差保护的类型(完全纵差、不完全纵差、比率制动式或标积制动式)。

当采用完全纵差时,机端和中性点的电流互感器,应选用同型号、同变比的;当采用不完全纵差时,机端和中性点电流互感器仍可采用同型号、同变比的,但要引入平衡系数调平衡。

TA二次回路开路会引起高电压的危险,特别是大型发电机组,建议采用TA断线不闭锁差动保护方案。

发电机差动保护,动作于全停。

2、发电机横差:发电机横差保护,是发电机定子绕组匝间短路(同分支匝间短路及同相不同分支之间的匝间短路)、线棒开焊的主保护,也能保护定子绕组相间短路。

分单元件横差保护(又称高灵敏度横差保护)和裂相横差保护两种。

单元件横差保护,适用于每相定子绕组为多分支,且有两个或两个以上中性点引出的发电机,保护用TA的变比,按确保区内故障时TA的动稳定及热稳定来选择。

裂相横差保护,又称三元件横差保护,实际上是分相横差保护,其实质是将每相定子绕组的分支回路分成两组,并通过两组TA将各组分支电流之和,反极性引到保护装置中计算差流。

当差流大于整定值时,保护动作。

保护的动作特性,可采用比率制动特性,也可采用标积制动特性。

裂相横差保护可采用同型号、同变比的电流互感器,且要求各TA 的暂态特性要好。

每相定子绕组分支数为奇数时,由于两组TA所匝链的分支数不同,需引入平衡系数。

发电机横差保护,动作于全停。

3、发电机匝间保护:本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。

浅谈发电电动机的不完全差动保护

浅谈发电电动机的不完全差动保护

浅谈发电电动机的不完全差动保护差动保护作为发电机的主要保护,它的动作是否正确直接关系到主设备的安全和系统的正常运行,发电电动机,现在经常会因为一些雷击等问题,引起发电机组差动保护误动。

现阶段,纵差保护正确动作率一般维持在50%到60%左右,这个数据对主设备的安全性影响不好,同时制约着系统的稳定运行。

为了发电电动机的正常运转,就要考虑发电电动机不完全差动保护的相关特点。

1 纵差动保护的相关定义纵差动保护与横差动保护有比较大的差异,它是指在电力系统的回路过程中,对发电电动机中的纵方向的原件所以加以的差动保护方式,强调的对象是纵方向的元件。

例如那些对于母线送出的线路进行的保护就是所谓的差动保护了。

纵向差动保护的方式主要包括纵差动保护和不完全差动保护,从母线的角度看,完全差动保护是将那些母线上所有元件上的电流互感器,按照相同的名字和相同的极性直接连接到差动回路,这个时候的电流互感器的特点和变化都是比较相似,假设真的出现变化差异比较大的时候,可以通过补偿变流器弥补问题。

与完全差动保护不一样的是不完全差动保护,它不需要像差动保护将所有元件都连接到差动回路,仅仅将连接在母线的所有电源元件上的电流互感器,接入差动回路就可以了,但是对于那些无电源元件上的电流互感器就不需要接入差动回路,所以从整个结构上看就构成了不完全差动保护。

另外,变压器通常就是那种不需要接入差动回路的元件。

2 不完全差动保护的特点2.1不完全差动保护电流引入量不完全差动保护是一类创新的保护连接形式,它与传统的差动保护连接方式是不一样的,传统的方式被称为完全差动保护。

传统差动保护形式的特点,发电机中性点电流的引入量为相电流;而不完全差动保护,它的特点是发电机中性点电流的引入量是单个分支或者它们组合的电流量,因此这两种方式引入到保护装置的电流量是很大不同的。

不完全纵差动的保护,是比较机端每相定子全相电流和中性点侧每相定子的部分相电流而构成的,与完全纵差动保护是不一样,是比较每相定子首末两段的全相电流。

水力发电机组差动保护动作分析与改进措施

水力发电机组差动保护动作分析与改进措施

水力发电机组差动保护动作分析与改进措施发布时间:2021-12-06T02:53:39.601Z 来源:《当代电力文化》2021年7月第19期作者:张建林[导读] 某水力发电厂#01机开机并网操作过程中,机组差动保护动作跳闸。

张建林中电(福建)电力开发有限公司 353000摘要:某水力发电厂#01机开机并网操作过程中,机组差动保护动作跳闸。

查明分析差动保护动作的情况,判断故障的原因并制定相关改进措施,对保护机组、电力系统具有着重要的意义。

关键词:水力发电厂;差动保护动作;励磁涌流;CT特性差异;故障分析;软件升级1 情况简介某水力发电厂有1台3.5MW的水力发电机组,机组保护采用国电南自DGT系列,差动保护由发电机差动(小差)、变压器差动(小差)、发/变组差动(大差)构成。

2 事件经过#01机开机并网操作过程中,中控室上位机监控系统报警:#01机机组差动保护动作,#01机组保护跳闸。

随即运行人员到现地检查后汇报:#01机高压侧保护动作信号灯亮,#01机差动保护装置无保护动作记录。

检修人员到现场检查后发现#01机差动保护装置“保护事件”菜单下无任何记录。

要求运行再次并网,#01机并网成功后再次查看差动保护装置“保护事件”菜单,此时有差动TA断线动作、返回等记录,差动保护装置记录正常。

随后到机组故障录波装置检查:#01机在并网时,“发电机差动”开关量有变位。

因此,保护装置“发电机差动”保护确实有动作跳闸。

3 原因分析从图1波形可知,A相(黄色)机端侧与中性点侧的差动电流,波形完全对称横轴;B相(绿色)、C相(红色)机端侧与中性点侧的差动电流,波形畸变,不完全对称横轴,出现差流。

图2是数据计算,A相差流Iad=0.04A,B相差流 Ibd=6.277A,C相差流 Icd=4.600A;其中,B相、C相差流均超过定值(1.07A),是#01机601开关出口跳闸的直接原因。

随后保护厂家对差动保护装置及后备保护装置的MMI插件进行程序升级,检修人员对#01机保护装置进行保护检验,同时开展模拟量通道检查、定值检验、操作箱继电器校验、保护整组传动试验等保护检验,均符合要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当满足以下条件时比率差动保护动作
If:机端电流,Icd:差动电流,Igd:制动拐点电流
Icdqd:差动保护门坎定值,K:比率差动制动系数
4.1.2 CT断线闭锁功能
正常运行时,发电机机端CT或中性点CT均无负序电流,无论是机端侧还是中性点侧出现CT断线,只要不是三相断线,均会产生负序电流,故可用负序电流作为CT断线的判据。当单侧负序电流大于0.1A时,则认为CT断线,并闭锁比率差动保护。由于CT断线闭锁功能是比率差动保护的辅助功能,必须是比率差动保护投入,该功能才起作用。
护不会误动作。
(3)、保护范围内短路时,如图4(3)中的D2 点短路时,则电流进电流互感器的电流为两侧电流互感器的二次电流之
和,即Ij=I1 +I2 ,这时Ij> Id ,保护动作。
发电机横差动保护的原理和判据
发电机的横差动保护主要用来预防定子绕组匝间短路,定子绕组匝间开焊故障,也可兼顾定子绕组相间短路的故障。一般汽轮发电机大多为每相两并联分支绕组,当三相第一分支的中性点和三相第二分支的中性点可分别引出机外时,可用单元件横差动保护,原理接线如图6所示。在01和02连线上接入横差电流互感器TAO。横 差保护反映具有零序性质的中性点连线上的基频电流,因此可以称为零序横差保护。当发电机正常运行时,流过TAO的电流很小(仅为不平衡电流),而当定
子绕组发生短路和匝间短路时,TAO上会流过较大的基频零序短路流过电流大于动作门槛电压时,横差保护出口, 即Id> Id.set(Id为横差电流的基波分量, Id.set为横差保护电流定值)。
2 比率制动式微机差动保护
比率差动保护
为了防止差动保护在外部短路时,发电机有很大穿越电流使CT误差增大时误动作,采用比率差动原理。该保护采用机端电流If作为制动电流,而不采用中性点侧电流部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用,特别是发电机尚未与系统并联运行而发生内部短路时,机端三相没有电流,中性点侧电流只作为动作电流,因此提高了内部短路的灵敏度。为防止因CT断线引起比率差动保护误动该保护带有CT断线闭锁功能。该保护采用分相式,即A、B、C任一相保护动作均出口,以下判据均以一相为例。
(1)、正常运行时,在发电机的中性点侧与出口侧的电 流数值和相位均相同,即I1=I2,由图4(1)可见, 流进电流继电器的电流为两侧二次电流差, Ij=I1-I2 ,若两边电流互感器的特性完全相同,则Ij=0,继电器不会动。
(2)、 在保护范围外短路时,如图4(2)所示的D1 点发生 短路,情况和正常运行时相似,即Ij=I1-I2 ,当电流互感器的特性完全相同时,Ij=0。但实际上电流互感器的特性不完全相同,因此, Ij=I1-I2 ≠0 ,有电流流过继电器,这个电流叫做不平衡电流,用Ibp 表示,当继电器的动作电流Id>Ibp 时,保
发电机组差动保护
发电机组差动保护
发电机的纵差动保护
发电机相间短路是发电机内部最严重的故障,因此要 定子绕组装设快速动作的保护装置,当发电机的中性点侧又分相引出线时,可装设纵差保护作为发电机相间短路的主保护。总差动保护是根据比较被保护元件始端及末端电流数值和相位的原理而构成,见图3,为了实现次保护在发电机中性点侧和靠近发电机出口断路器处装设同一变比的电流互感器1LH和2LH,两侧的电流互感器按环流法连接,即两侧电流互感器二次侧极相连,并在其差回路中接入电流继电器。
4.2差流告警
Icd:差动电流;Icdset:差动电流告警整定值
4.3过负荷告警
ISET:过负荷电流整定值,Tset:动作延时
发电机差动保护动作后的处理
若差动保护动作,发电机跳闸,应测量静子电阻绝缘,并对发电机及其保护区内一切设备回路状况进行全面检查,检查发电机内部有无烟火,焦糊气味或局部过热现象。同时,还要检查实验保护装置,是否是保护装置误动作,并询问调度电网系统有无故障
相关文档
最新文档