《数学建模》课后习题及答案

合集下载

数学建模试题(带答案)四

数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。

为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。

首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。

然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。

于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。

数学建模习题集及标准答案

数学建模习题集及标准答案
2.优点:中期预报比较准确;缺点:理论上很好,实用性不强;原因:预报时假设固有人口增长率以及最大人口容量为定值。实际上这两个参数很难确定,而且会随着社会发展情况变化而变化。
3.动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。
4.按照你的观点应从那几个方面来建立传染病模型。
5.叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。
6.试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散形式阻滞增长模型平衡点及其稳定性。
第二部分
1.优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没有考虑环境对人口增长的制约作用。
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益
(1,0),不管这时候b的值是多少;(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益

数学建模课后习题答案

数学建模课后习题答案

实验报告姓名:和家慧 专业:通信工程 学号:20121060248 周一下午78节实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MA TLAB 函数直接求解法等。

二 问题:路灯照明问题。

在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw的路灯,它们离地面的高度分别为5m 和6m 。

在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?三 数学模型解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=算法与编程利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1计算结果运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。

数学建模陈东彦版课后答案

数学建模陈东彦版课后答案

数学建模陈东彦版课后答案第⼀部分练习与思考题2.9-3.7 3.6-5.144.1-7.1 4.4-7.35.9-11.1 5.1-9.16.5-4.7 6.10-4.14第1章建⽴数学模型1.1 在稳定的椅⼦问题中,如设椅⼦的四脚连线呈长⽅形,结论如何?(稳定的椅⼦问题见姜启源《数学模型》第6页)1.2 在商⼈们安全过河问题中,若商⼈和随从各四⼈,怎样才能安全过河呢?⼀般地,有n 名商⼈带n 名随从过河,船每次能渡k ⼈过河,试讨论商⼈们能安全过河时,n 与k 应满⾜什么关系。

(商⼈们安全过河问题见姜启源《数学模型》第7页)1.3 ⼈、狗、鸡、⽶均要过河,船需要⼈划,另外⾄多还能载⼀物,⽽当⼈不在时,狗要吃鸡,鸡要吃⽶。

问⼈、狗、鸡、⽶怎样过河?1.4 有3对夫妻过河,船⾄多载两⼈,条件是任⼀⼥⼦不能在其丈夫不在的情况下与其他的男⼦在⼀起。

问怎样过河?1.5 如果银⾏存款年利率为5.5%,问如果要求到20XX 年本利积累为100000元,那么在1990年应在银⾏存⼊多少元?⽽到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ?-=,如果不考虑该市的流动⼈⼝的影响以及⾮正常死亡。

设该市1990年⼈⼝总数为8000000⼈,试求该市在未来的⼈⼝总数。

当∞→t 时发⽣什么情况。

1.7 假设⼈⼝增长服从这样规律:时刻t 的⼈⼝为)(t x ,最⼤允许⼈⼝为m x ,t 到t t ?+时间内⼈⼝数量与)(t x x m -成正⽐。

试建⽴模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进⾏⽐较。

1.8 ⼀昼夜有多少时刻互换长短针后仍表⽰⼀个时间?如何求出这些时间?1.9 你在⼗层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下⼏个楼层?1.10 居民的⽤⽔来⾃⼀个由远处⽔库供⽔的⽔塔,⽔库的⽔来⾃降⾬和流⼊的河流。

数学建模课后习题

数学建模课后习题

数学建模课后习题数学建模课后习题:探索斐波那契数列的奥秘数学建模,一项充满挑战与乐趣的实践活动,让我们的思维在理论联系实际的道路上飞驰。

在完成了一系列的课堂学习后,我们迎来了第一道课后习题——探索斐波那契数列的奥秘。

斐波那契数列,一个古老而神奇的话题,早在中世纪就引起了数学家的关注。

这个数列由0和1开始,后续的数字是前两个数字之和,即0, 1, 1, 2, 3, 5, 8, 13, 21, 34,等等。

这些数字在数学界被称为“斐波那契数”,而在生物学界,它们则被称为“黄金分割数”。

我们首先需要理解这个数列的定义和性质。

例如,斐波那契数列的每个数字都是前两个数字之和,且每个数字都无限接近于一个黄金分割比。

这些性质使得斐波那契数列在自然界的许多领域中都有应用,如植物生长、动物繁衍,甚至在人类的艺术和建筑设计中也有体现。

为了更好地理解和应用斐波那契数列,我们需要通过编程来实现它。

Python语言提供了一种简单的方法。

以下是一段Python代码,用于生成斐波那契数列:通过调用fibonacci(n)函数,我们可以得到前n个斐波那契数。

在完成这个函数之后,我们可以进一步思考如何利用斐波那契数列解决实际问题。

例如,我们可以使用斐波那契数列来优化矩阵乘法。

在传统的矩阵乘法中,我们需要进行一系列的加法和乘法操作,而这些操作的时间复杂度是O(n^3)。

然而,通过利用斐波那契数列,我们可以将时间复杂度降低到O(n)。

这是一个巨大的优化,尤其是在处理大规模数据时。

总的来说,斐波那契数列是一个充满挑战和乐趣的数学主题。

通过完成这个课后习题,我们不仅可以加深对数学建模的理解,还可以将所学知识应用于实际问题,实现从理论到实践的跨越。

让我们一起继续探索斐波那契数列的奥秘吧!数学建模习题及答案数学建模是一种将数学方法应用于实际问题求解的技能。

通过数学建模,我们可以将现实世界中的问题转化为数学问题,并运用数学工具和计算机技术进行求解。

数学建模教程课后答案

数学建模教程课后答案

表1-5
单 人 理论 取 qi2 取 qi2 取 qi2 取 qi2
位数 值 整



5 10-6 6 10-6 7 10-6 8 10-6
1 404 40.4 40 0.01 40 0.01 41 0.02 40 0.01
2 204 20.4 20 0.04 21 0.08 20 0.04 21 0.08 3 104 10.4 11 0.30 10 0.16 10 0.16 11 0.30 4 54 5.4 6 1.00 6 1.00 6 1.00 5 0.64 5 14 1.4 1 16.00 1 16.00 1 16.00 1 16.00 合 780 78 78 17.35 78 17.25 78 17.22 78 17.03
今证:n4不存在任何无重复安全过河 解.(反证法)设存在一个无重复安全过 河方案.该方案第一次跳到y轴前的状 态只能是(如图所示):(2,2)和(1,1), 且都是偶数步.若为(2,2) 则前一步必 是从(1,1)到(2,2)产生重复; 若为 (1,1),则前一步必来自y轴上的点都是 不可能的.
不难证明:“若不存在任何不重复安全 过河方案,则不存在任何安全过河方案”
该年生产总值为2004年的 e0.07520 =4.48倍.
解: 我们只须证明其等价命题:“若存 在一个安全过河方案,则必存在一个不重 复安全过河方案”. 事实上,从一个安全 过河方案中去掉一切产生重复的循环之后, 便得到一个不重复安全过河方案.
n=2时的安全过河方案(共5次)
y
(0,2)
(2,2)
(0,1)
(1,1) (2,1)
(0,0)
(2,0)
x
图 1-4
n1=987/6-n2-n3=84-54=30. 答案:锐,直,钝角三角形个数分别是30,0

数学建模课后答案

数学建模课后答案

数学建模课后答案数学建模课后答案【篇一:《数学模型》习题解答】t>1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,p1?235,p2?333,p3?432,方法一(按比例分配)第二章(1)(2008年9月16日)pi?13i1000.q1?p1npi?132.35,q2?p2nipi?133.33, q3?p3nipi?134.32i分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为235233324322q1??9204.17, q2??9240.75, q3??9331.22?33?44?5q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pi是ni每席位代表的人数,取ni?1,2,?,从而得到的pip中选较大者,可使对所有的i,i尽量接近. nini再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得tvdt?2?k?(r?wkn)dnn2?rk?wk22n22vv《数学模型》作业解答第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=mlt 23, [v]=lt1,[s]=l,[?]=ml,这里l,m,t是基本量纲.2?3量纲矩阵为:1?2?10a=?3?1(p)(v)齐次线性方程组为:2?3?(l)01??(m) 00??(t)(s)(??2y1?y2?2y3?3y4?0y1?y4?03y?y?012?它的基本解为y?(?1,3,1,1) 由量纲pi定理得p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lmt,[?]=lmt,0-1-3[?]=mlt(ltl)l=mlltt=lmt,[g]=lmt,其中l,m,t是基本量纲.-2-1-1-1-2-2-2-1-10-2量纲矩阵为1?3?11?(l)?0?(m)110?a=? ???10?1?2(t)??(v)(?)(?)(g)齐次线性方程组ay=0 ,即y1-3y2-y3?y4?0?0 ?y2?y3-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得*v?3??1?g. ?v??3g,其中?是无量纲常数. ?16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lm0t0 ,[g]=lmt0-1-3-2-1-1-1-2-2-2-1-10-2其中l,m,t是基本量纲. 量纲矩阵为1?0a=1(v)齐次线性方程组ay=0 即(l)?(m)?00?1?2?(t)?(?)(?)(?)(g)1?3?10111y1?y2?3y3?y4?y5?0?y3?y4?0 ?y1?y4?2y5?0?的基本解为11?y?(1,?,0,0,?)?12231?y2?(0,?,?1,1,?)22?得到两个相互独立的无量纲量1?v??1/2g?1/23/2?1?1/2g??2??即 v?1) g?1,?3/2?g1/2??1??2?1. 由?(?1,?2)?0 , 得 ?1??(?2g?(?3/2?g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?l0m0t,[l]?lm0t0,[m]?l0mt0,[g]?lm0t?2,[k]?[f][v]?1?mlt?2(lt 1 )1l0mt?1,其中l,m,t是基本量纲.量纲矩阵为0?0a=1(t)?(l)?(m)?00?2?1??(t)(l)(m)(g)(k)10011001齐次线性方程组y2?y4?0??y3?y5?0 ?y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量tl?1/2g1/2??11/2?1?1/2lmgk??2∴t?kl1/2l1, ?1??(?2), ?2?gmg1/2∴t?lkl1/2(1/2) ,其中?是未定函数 . gmg考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为t,t;l?kl?1/2l,l;m,m. 又t() 1/2gm?g当无量纲量m?l?t?l?gl?时,就有 ?.mltgll《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k,其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:【篇二:数学建模习题答案】t>中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

数学模型习题参考解答

数学模型习题参考解答

综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题) (1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明n 支球队“各队每两场比赛最小相隔场次r 的上界”(如n =5时上界为1)是⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是i ,j 两队, i 队参加的下一场比赛是i ,k 两队(k ≠j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,k 以外的2r 支球队参赛,于是32+≥r n ,注意到r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的n 编排出达到该上界的赛程.如对于n =8, n =9可以得到:1A 2A 3A 4A 5A 6A 7A 8A每两场比赛相隔场次数相隔场次总数 1A × 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 19 3A5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 96 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 187 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 17 7A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 17 8A25 1621972212×4,4,3,2,2,2171A2A3A 4A5A 6A 7A 8A 9A每两场比赛相隔场次数 相隔场 次总数1A × 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 23 4,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 19 3,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 14 4,4,3,3,3,3 23 7A 16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A 21 17 25 13 29 9 33 × 5 3,3,3,3,3,3,3, 21 9A13210231914285×3,4,3,4,3,4,324可以看到, n =8时每两场比赛相隔场次数只有2,3,4, n =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即n 为偶数时每两场比赛相隔场次数只有22-n ,12-n ,2n,n 为奇数时只有23-n ,21-n . (4)衡量赛程优劣的其他指标如平均相隔场次 记第i 队第j 个间隔场次数为ij c ,2,2,1,,,2,1-==n j n i ,则平均相隔场次为∑∑=-=-=n i n j ij c n n r 121)2(1r 是赛程整体意义下的指标,它越大越好.可以计算n =8,n =9的r ,并讨论它是否达到上界.相隔场次的最大偏差 定义||,r c Max f ij j i -=∑-=--=21|)2(|n j ij r n c Max gf 为整个赛程相隔场次的最大偏差,g 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算n =8,n =9的f ,g ,并讨论它是否达到上界.参考文献工程数学学报第20卷第5期2003 2. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,h 取尽量简单的形式,如αα=)(g ;0)(=βh (030≤β),0)(h h =β)30(0>β. (1)可030≤β将作为必要条件,以α最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到⎪⎭⎫⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处030=β.又通过计算或分析可知α也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔l (如0.5m), x 从0(或030≤β处)到d D -按l 离散,对于)20~0(00θ计算α的平均值,得020=θ时其值最大.(3)可设地板线是x 的二次曲线2bx ax +,寻求a ,b 使α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线.3.节水洗衣机(1996年全国大学生数学建模竞赛B 题)该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和.假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数c .0x ~初始污水量,~k u 第k 轮加水量,k x ~第k 轮脱水量),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x c xc u x c x u x n n n =+=+=--11221110,,, , 得到)()(210c u c u u c x x n n n ++=. 在最终污物量与初始污物量之比0/x x n 小于给定的清洁度条件下,求各轮加水量k u ),,1(n k =,使总用水量最小,即∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n等价于)()(21c u c u u Min n u k +++++α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第n ~2轮加水量u u k =(常数),第1轮加水量c u u +=1.令cx u =,问题简化为nx Min u n ,ε<⎪⎭⎫ ⎝⎛+nx t s 11.. 其解为0→x ,即0→u ,而∞→n .这与实际上是不合理的.应该加上对u 的限制:21v u v ≤≤.则得max min n n n ≤≤,其中 max min n n n ≤≤,1)/1ln(2min +⎥⎦⎤⎢⎣⎡+=c v n α这样,n为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,19974.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxId .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的.按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,2001 5. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题) 设ij a 为第i 架飞机与第j 架飞机的碰撞角(即)8arcsin(ijij r a =其中ij r 为这两架飞机连线的长度),ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量.本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:∑=61i i Min θs.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL : 1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+ 7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J))); 8] );9] @FOR(LINK(I,J)|I#NE#J:10] (@SIN(alpha*3./180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endata END 计算结果如下:ija j=1 2 3 4 5 6i =1 0.000 0 5.391232.2315.091820.96342.23452 5.391 2 0.0000 4.804 0 6.61355.807 9 3.81593 32.2310 4.8040.000 0 4.364722.83372.12554 5.091 8 6.6135 4.364 7 0.0004.4.537 2.98985 20.9634 5.807922.83374.53770.000 0 2.30986 2.234 5 3.8159 2.125 5 2.98982.309 8 0.000ijβ也可类似地利用LINGO求得,计算结果如下:ijβj=1 2 3 4 5 6i =1 0.000109.263 6-128.250 024.179 8173.065 114.474 92 109.263 60.000 0-88.871 1-42.243 6-92.304 89.000 03 -128.250 0-88.871 10.00012.476 3-58.786 20.310 84 24.179 8-42.243 612.476 30.000 05.969 2-3.525.65 173.065 1-92.304 8-58.786 25.969 20.000 01.914 46 14.479.000.310 -3.5 1.910.04 9 0 0 8 256 4 4 00 0于是,该飞机管理的数学规划模型可如下输入LINGO求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2…..…2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddataEND[注] alpha,beta中数据略去,见上面表格.求解结果如下:OPTIMUM FOUND AT STEP 197SOLUTION OBJECTIVE VALUE= 3.630V ARIABLE V ALUE REDUCED COSTCITA(1) 0.E-06 -1.000 000 CITA(2) -0.E-05 -0.715 033 4CITA(3) 2.557 866 1.000 000 CITA(4) -0.E-04 0.E+00 CITA(5) 0.E-05 -1.000 000 CITA(6) 1.071 594 0.E+00 ………. (以下略)由此可知最优解为:︒︒≈≈07.1,56.263θθ (其它调整角度为0).评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,1996 6. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整.目标函数之降落伞的费用,可以根据表1数据拟合伞面费用1C 与伞的半径r 的关系。

数学建模姚云飞第二版课后答案

数学建模姚云飞第二版课后答案

数学建模姚云飞第二版课后答案1、向量与向量共线的充分必要条件是()[单选题] *A、两者方向相同B、两者方向相同C、其中有一个为零向量D、以上三个条件之一成立(正确答案)2、13.设x∈R,则“x3(x的立方)>8”是“|x|>2”的( ) [单选题] *A.充分而不必要条件(正确答案)B.必要而不充分条件C.充要条件D.既不充分也不必要条件3、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)4、29、将点A(3,-4)平移到点B(-3,4)的平移方法有()[单选题] *A.仅1种B.2种C.3种D.无数多种(正确答案)5、一个直二面角内的一点到两个面的距离分别是3cm和4 cm ,求这个点到棱的距离为()[单选题] *A、25cmB、26cmC、5cm(正确答案)D、12cm6、若(m-3)+(4-2m)i为实数,那么实数m的值为()[单选题] *A、3B、4(正确答案)C、-2D、-37、23、在直角坐标平面内有点A,B,C,D,那么四边形ABCD的面积等于()[单选题]A. 1B. 2C. 4(正确答案)D. 2.58、9.点(-3,4)到y轴的距离是()[单选题] * A.3(正确答案)B.4C.-3D.-49、计算的结果是( ) [单选题] *A. -p2?(正确答案)B. p2?C. -p1?D. p1?10、下列说法正确的是()[单选题] *A、任何直线都有倾斜角(正确答案)B、任何直线都有倾斜角C、直线倾斜角越大斜率就越大D、直线与X轴平行则斜率不存在11、4、已知直角三角形的直角边边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()[单选题] *A、6B、10(正确答案)C、8D、212、椭圆的离心率一定()[单选题] *A、等于1B、等于2(正确答案)C、大于1D、等于013、7.一条东西走向的道路上,小明向西走米,记作“米”,如果他向东走了米,则可记作()[单选题] *A-2米B-7米C-3米D+7米(正确答案)14、? 是第()象限的角[单选题] *A. 一(正确答案)B. 二C. 三D. 四15、9.下列说法中正确的是()[单选题] *A.正分数和负分数统称为分数(正确答案)B.正整数、负整数统称为整数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数16、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)17、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ18、9. 如图,在平面直角坐标系中,正方形ABCD的边长为2,点A坐标为(-2,1),沿某一方向平移后点A1的坐标为(4,2),则点C1的坐标为()[单选题]*A、(2,3)B、(2,4)(正确答案)C、(3,4)D、(3,3)19、若m·23=2?,则m等于[单选题] *A. 2B. 4C. 6D. 8(正确答案)20、1.计算-20+19等于()[单选题] *A.39B.-1(正确答案)C.1D.3921、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数22、若(x+m)(x2-3x+n)展开式中不含x2和x项,则m,n的值分别为( ) [单选题] *A. m=3,n=1B. m=3,n=-9C. m=3,n=9(正确答案)D. m=-3,n=923、38、如图,点C、D分别在BO、AO上,AC、BD相交于点E,若CO=DO,则再添加一个条件,仍不能证明△AOC≌△BOD的是()[单选题] *A.∠A=∠BB.AC=BD(正确答案)C.∠ADE=∠BCED.AD=BC24、下列计算正确的是()[单选题] *A. a2+a2=2a?B. 4x﹣9x+6x=1C. (﹣2x2y)3=﹣8x?y3(正确答案)D. a6÷a3=a225、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数26、22.如果|x|=2,那么x=()[单选题] * A.2B.﹣2C.2或﹣2(正确答案)D.2或27、下列运算正确的是()[单选题] *A. a2?a3=a?B. (﹣a3)2=﹣a?C. (ab)2=ab2D. 2a3÷a=2a2(正确答案)28、北京、南京、上海三个民航站之间的直达航线,共有多少种不同的飞机票?()[单选题] *A、3B、4C、6(正确答案)D、1229、如果四条不共点的直线两两相交,那么这四条直线()[单选题] *A、必定在同一平面内B、必定在同一平面内C可能在同一平面内,也可能不在同一平面内(正确答案)D、无法判断30、40.若x+y=2,xy=﹣1,则(1﹣2x)(1﹣2y)的值是()[单选题] *A.﹣7(正确答案)B.﹣3C.1D.9。

数学建模课后习题答案

数学建模课后习题答案

第一章 课后习题6.利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。

解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。

由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得:t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---=1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:()2,274.112275693.01386.0≥+=--t e e t z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。

数学建模习题解答[杨启帆主编]和评分标准

数学建模习题解答[杨启帆主编]和评分标准

部分数学建模习题解答【杨启帆主编】第一章第5题一个男孩和一个女孩分别在离家2km和1km且方向相反的两所学校里上学,每天同时放学后分别以2km/h和1km/h的速度步行回家。

一只小狗以6km/h的速度由男孩奔向女孩,又从女孩处跑向跑回男孩处,如此往返的奔跑,直至回到家中。

问小狗总共奔波了多少路程?解:由于男孩、女孩与小狗跑的时间一样,所以把时间设为t,则有2t+1t=3,得到t=1h。

所以小狗跑了6km/h*1h=6km。

第一章10题一位探险家必须穿过一片宽度为800 km的沙漠,他仅有的交通工具是一辆每升汽油可行驶10km的吉普车.吉普车的油箱可装10升汽油。

另外吉普车上可携带8个可装5升汽油的油桶,也就是说,吉普车最多可带50升汽油(最多能在沙漠中连续行驶500 km)。

现假定在探险家出发地的汽油是无限充足的.问这位保险家应怎样设计他的旅行才能通过此沙漠?他要通过沙漠所需的汽油最少是多少升?为了穿越这片800km宽的沙漠,他总共需要行驶多少公里路程。

总共要花费多少升的汽油?思路:1、若沙漠只有500公里或者更短,这时很简单,一次搞定。

2、若沙漠有550km,怎么办?需要保证的是:车到了离沙漠终点还有500km的地方,能恰恰加满油且不会有多余。

方案可为:600-550=50,从起点处加5*3(升)=15升油,开出50km,设一加油站,存下5升,剩下5升刚好使得汽车返回起点。

再在起点处加满50升油,到加油站时,只乘45升了,把存放在那儿的5升油加上。

则可跑出沙漠。

(这样共加油15+50=65,总路程为150+500=650km)3、再看2的情况,符合这种情况的沙漠的最大距离是多少呢:答案是500*(1+1/3)公里。

即在起点准备100升油,第一次装50升,跑了500/3公里后存放50*1/3升油,然后返回起点,这时车里的油也正好用完,然后再在起点处装50升,跑了550/3公里后,车内剩下(50*2/3)升油,再加上存放的50*1/3升油,恰好为50升油,则可跑出沙漠。

数学建模陈东彦版课后答案

数学建模陈东彦版课后答案

数学建模陈东彦版课后答案篇一:数学建模承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属(请填写完整的全名):参赛队员 (打印并签名) :1.指导教师或指导教师组负责人 (打印并签名)日期: 2010 年 11 月 22 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):对等高线图转化为三维地形图以及水的流向的探讨摘要:在等高线地形图上,根据等高线不同的弯曲形态,可以判读出地表形态的一般状况。

等高线呈封闭状时,高度是外低内高,则表示为凸地形(如山峰、山地、丘顶等);等高线高度是外高内低,则表示的是凹地形(如盆地、洼地等)。

等高线是曲线状时,等高线向高处弯曲的部分表示为山谷;等高线向低处凸出处为山脊。

数条高程不同的等高线相交一处时,该处的地形部位为陡崖,并在图上绘有陡崖图例。

由一对表示山谷与一对表示山脊的等高线组成的地形部位为鞍部。

等高线密集的地方表示该处坡度较陡;等高线稀疏的地方表示该处坡度较缓。

问题一:由等高线图转换为三维地形图有好多种方法,本文用坡度、坡向、等高线膨胀法以及建立空间直角坐标系的方法建立数学模型,把等高线图转化成三维地形图。

问题二:把地面无限细分为无限个单元格。

数学模型 课后习题答案

数学模型 课后习题答案

数学模型课后习题答案数学模型课后习题答案数学模型是一门研究数学方法如何应用于实际问题的学科。

通过建立数学模型,我们可以对现实世界中的复杂问题进行抽象和简化,从而得到更好的解决方案。

在学习数学模型的过程中,课后习题是非常重要的一部分。

通过解答习题,我们可以巩固所学的知识,并且培养解决实际问题的能力。

下面是一些数学模型课后习题的答案,希望对大家有所帮助。

1. 题目:某公司的销售额在过去几年内呈指数增长,已知2015年的销售额为100万美元,2019年的销售额为400万美元。

问:预测2021年的销售额是多少?解答:根据题目中的信息,我们可以得到以下数据点:(2015, 100)和(2019, 400)。

假设销售额的增长率为r,则可以得到以下关系式:100 * (1 + r) ^ 4 = 400。

解这个方程可以得到r ≈ 0.414。

因此,2021年的销售额约为400 * (1 + 0.414) ≈ 565.6万美元。

2. 题目:某城市的人口数量在过去几年内呈线性增长,已知2010年的人口数量为100万人,2018年的人口数量为150万人。

问:预测2022年的人口数量是多少?解答:根据题目中的信息,我们可以得到以下数据点:(2010, 100)和(2018, 150)。

假设人口数量的增长率为k,则可以得到以下关系式:100 + 8k = 150。

解这个方程可以得到k = 6.25。

因此,2022年的人口数量约为150 + 12 * 6.25 = 225万人。

3. 题目:某公司的产品在市场上的销售量在过去几个月内呈正态分布,已知过去6个月的销售量分别为1000、1200、1400、1600、1800和2000。

问:预测下个月的销售量是多少?解答:根据题目中的信息,我们可以计算出过去6个月的销售量的平均值μ为(1000 + 1200 + 1400 + 1600 + 1800 + 2000) / 6 = 1500,标准差σ为√((1000- 1500)^2 + (1200 - 1500)^2 + (1400 - 1500)^2 + (1600 - 1500)^2 + (1800 - 1500)^2 + (2000 - 1500)^2) / 6 ≈ 346.41。

《数学建模》习题及参考答案 第一章 建立数学模型

《数学建模》习题及参考答案 第一章 建立数学模型

第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。

甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。

问开往甲乙两站的电车经过丙站的时刻表是如何安排的。

参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

西南大学《数学建模》答案

西南大学《数学建模》答案

单项选择题1、经济增长模型中, 经济(生产率)增长的条件是( )..整数模型.静态模型.动态模型.线性模型2、.上述A.上述C.上述D.上述B3、层次分析法中, 成对比较尺度为3, 表示为( )..强.稍强.稍弱.弱4、天气预报的评价中, 计数模型里若明天有雨概率<50%, 则( )..预报有雨.预报无效.不予统计.预报无雨5、. F. 上述A.上述B.上述C.上述D6、交通流与道路通行能力中, 车流密度较大时适用( )..整数模型.指数模型.线性模型.对数模型7、奶制品的生产与销售中, 用LINGO求解,输出丰富,利用影子价格和( ) 可对结果做进一步研究..灵敏性分析.价值系数范围.变量取值.敏感性分析8、动态优化问题指最优解是( )..数.实数.函数.整数9、软件开发人员的薪金中, ( ),有助于得到更好的结果..保留全部数据.剔除异常数据.保留异常数据.剔除部分数据10、如何施救药物中毒中, 口服活性炭来吸附药物,可使药物的排除率增加到原来(人体自身)的( ) 倍. . A. 1.5. 3. 2.5. 211、牙膏的销售量中, 建立统计回归模型时, 通过增添( ), 二次项等进行模型改进.. C. 一次项.交互项.回归项.统计项12、模型假设在合理与简化之间作出( )..取舍.选择.优化.折中13、回归模型是通过( ) 讨论如何选择不同类型的模型..变量.数据.约束.实例14、实物交换中, 同一族无差别曲线( )..没有交点.共有1个交点.每两条有2个交点.每两条有1个交点15、求解静态优化模型一般用( )..积分法.单纯形法.图解法.微分法16、.上述C.上述D.上述A.上述B17、数学建模的一般步骤包括模型准备, ( ), 模型构成, 模型检验, 模型分析, 模型求解, 模型应用..模型约束.模型假设.模型变量.模型符号18、污水均流池的设计中, 假设认为设计均流池最大容量时需留有( ) 的裕量.. 20%. 15%. 25%. 30%19、动态模型描述对象特征随( ) 的演变过程..时间或空间.时间或地点.时间.地点20、商人们怎样安全过河中, 随从们密约, 在河的任一岸, 一旦随从的人数比商人( ), 就杀人越货.. D. 多.相等.少.多或相等21、椅子在不平的地面上放稳, 假设认为地面高度( ).. E. 慢慢变化.小范围变化.连续变化.基本不变22、下列哪种模型是实物模型..水箱中的舰艇.火箭模型.分子结构图.电路图23、多元函数条件极值, 最优解在可行域的( ) 上取得..边界.顶点.内部.原点24、层次分析模型属于( ) 模型..离散.整数.非线性.线性25、传染病模型描述的是传染病的( ) 过程..增长.传播.变化.减少26、层次分析法对于不一致的成对比较阵, 建议用对应于( )的特征向量作为权向量..最小特征根.第一特征根.第二特征根.最大特征根27、机理分析和测试分析二者结合是用机理分析建立( ), 用测试分析确定模型参数..模型约束.模型内容.模型框架.模型结构28、双层玻璃窗的功效中, 双层与单层窗传导的热量之比为( ).. B. 2/(s+2). 1/(s+1). 1/(s+2). 2/(s+1)29、.提高阈值.提高卫生水平.群体免疫.提高医疗水平判断题30、实物交换中, 甲乙双方最终的交换方案是交换路径上的任一点. . A.√. B.×31、牙膏的销售量中, 价格差较小时更需要靠广告来吸引顾客的眼球.. A.√. B.×32、模型的基本特征是由构造模型的目的决定的.. A.√. B.×33、线性规划模型的最优解一定在凸多边形的某个顶点取得.. A.√. B.×34、传染病模型的模型3(SIS模型)中, 传染病有免疫性.. A.√. B.×35、地图、电路图、照片都是符号模型.. A.√. B.×36、软件开发人员的薪金中, 0-1变量的个数可比定性因素的水平少1.. A.√. B.×37、原型和直观模型是一对对偶体。

高中数学湘教版 第6章 数学建模 课后练习、课时练习

高中数学湘教版  第6章 数学建模 课后练习、课时练习

一、单选题1. 一般的数学建模包含如下活动过程:①建立模型;②实际情境;③提出问题;④求解模型;⑤实际结果;⑥检验结果,则正确的序号顺序为()A.③②①④⑤⑥B.③②①④⑥⑤C.②①③④⑤⑥D.②③①④⑥⑤2. 对20不断进行“乘以2”或“减去3”的运算,每进行一次记作一次运算,若运算n 次得到的结果为23,则n的最小值为()A.7 B.8 C.9 D.103. 下列说法正确的是()A.数学探究活动是数学建模B.用数学的思想方法分析、解决了实际问题的过程就是数学建模C.数学建模的第一步是对数学问题进行抽象概括D.数学建模的对象是现实世界中的实际问题二、填空题4. 在一个十字路口,每次亮绿灯的时长为30秒,那么,每次绿灯亮时,在一条直行道路上能有多少汽车通过?这个问题涉及车长、车距、车速、堵塞的干扰等多种因素,不同型号车的车长是不同的,驾驶员的习惯不同也会使车距、车速不同,行人和非机动车的干扰因素则复杂且不确定.面对这些不同和不确定,需要作出假设.例如小明发现虽然通过路口的车辆各种各样,但多数是小轿车,因此小明给出如下假设:通过路口的车辆长度都相等,请写出一个你认为合理的假设________________________.5. 我们知道,提出问题比解决问题更重要,提出关于现实世界问题是创新的起点.作为中学生我们应该自觉地观察现实世界并提出实际问题,以便养成面对实际情景提出实际问题的习惯,为成为创新型人才打下坚实的基础.生活中,我们经常经过熟悉的十字路口,面对“熟悉的十字路口”这一现实世界情景,请你就“熟悉的十字路口”提出关于现实世界的问题,作为自己学习数学建模的第一步.你提出的实际问题是______.(答案不唯一)三、解答题6. 如图,在山顶P点已得三点A,B,C的俯角分别为,,,其中A,B,C为山脚下两侧共线的三点,现欲沿直线AC挖掘一条隧道,试根据测得的AD,EB,BC的长度,建立估计隧道DE长度的数学模型.7. 下图1为世界各洲在一段时间内人口数量随时间变化的曲线,这些曲线描述的人口变化规律与图2中的曲线有何不同?试分析原因.8. 如图,有三个新兴城镇分别位于A,B,C处,且,().今计划在BC的垂直平分线上建一个中心医院P,方便三镇居民就医,试在下列条件下求P的位置:(1)P到三镇距离平方和最小;(2)P到三镇距离之和最小;(3)P到三镇的最远距离最小.9. 1981年,生物学家根据触角长和翼长将蠓虫分为Af和Apf两类,已知9只Af 蠓虫和6只Apf蠓虫的标本数据如下(单位:mm):Af蠓虫触角长 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56 翼长 1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08Apf蠓虫触角长 1.14 1.18 1.20 1.26 1.28 1.30翼长 1.78 1.96 1.86 2.00 2.00 1.96现另有三个蠓虫标本的触角长和翼长分别为,,,请设法确定哪个是Af蠓虫,哪个是Apf蠓虫.(可以借助网络等资源查询相关资料,得到解决问题的思路)。

数学建模习题及答案课后习题

数学建模习题及答案课后习题

数学建模习题及答案课后习题第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。

学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。

(2)节中的Q值⽅法。

(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种⽅法的道理吗。

如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。

将3种⽅法两次分配的结果列表⽐较。

(4)你能提出其他的⽅法吗。

⽤你的⽅法分配上⾯的名额。

2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。

⽐如洁银⽛膏50g装的每⽀元,120g装的元,⼆者单位重量的价格⽐是:1。

试⽤⽐例⽅法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w的增加c减少的程度变⼩。

解释实际意义是什么。

3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。

假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):⾝长(cm)重量76548211627374821389652454(g)胸围(cm)先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。

若知道管道长度,需⽤多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

数学建模第四版习题答案

数学建模第四版习题答案

数学建模第四版习题答案数学建模是一门应用数学的学科,通过数学方法解决实际问题。

《数学建模(第四版)》是一本经典的教材,其中的习题是学生巩固知识和提高能力的重要练习。

本文将对《数学建模(第四版)》部分习题进行解答和讨论。

第一章是数学建模的基础知识。

习题1.1要求解释什么是数学建模,以及它在现实生活中的应用。

数学建模是将实际问题转化为数学问题,通过数学方法进行求解和分析。

它在工程、经济、环境等领域都有广泛的应用,如物流优化、金融风险评估等。

第二章是线性规划问题。

习题2.3要求利用线性规划方法解决一个生产计划问题。

假设某工厂有两种产品A和B,每种产品的生产需要不同的资源和时间。

通过建立数学模型,可以确定最佳的生产计划,以最大化利润或最小化成本。

第三章是整数规划问题。

习题3.2要求解决一个装载问题。

假设有一辆货车和若干货物,每个货物有不同的重量和体积。

货车的载重和容积有限,需要确定如何装载货物,使得装载量最大化。

通过整数规划方法,可以得到最优的装载方案。

第四章是非线性规划问题。

习题4.1要求求解一个最优化问题。

假设有一家公司要选择最佳的投资组合,以最大化收益。

通过建立数学模型,并应用非线性规划方法,可以确定最佳的投资策略。

第五章是动态规划问题。

习题5.3要求解决一个路径规划问题。

假设有一个迷宫,求从起点到终点的最短路径。

通过动态规划方法,可以逐步确定最优的路径,以及到达每个位置所需的最小代价。

第六章是图论问题。

习题6.2要求解决一个旅行商问题。

假设有若干个城市,旅行商需要依次访问每个城市,并返回起点城市。

通过建立图模型,并应用图论算法,可以确定最短的旅行路线,以及访问每个城市的顺序。

第七章是随机过程问题。

习题7.1要求求解一个排队论问题。

假设有若干个顾客到达某个服务点,服务点只能同时为一个顾客提供服务。

通过建立排队模型,并应用随机过程理论,可以确定顾客等待时间的分布,以及服务点的利用率。

总之,《数学建模(第四版)》的习题涵盖了数学建模的各个方面,从基础知识到高级应用,从线性规划到随机过程。

数学建模习题3答案

数学建模习题3答案

数学建模习题3答案2.某种山猫在较好的,中等及较差的自然环境下,年平均增长率分别是1.68%,0.55%,-4.5%。

假设开始时有100只山猫,按以下情况分别讨论山猫数量逐年变化的过程及趋势:(1)三种自然环境下25年的变化过程,结果要列表并图示;解:首先讨论紫檀环境下山猫的数量的演变。

记k年山猫的数量为x k,设自然条件下的年平均增长率为r(相当于假设年增长率r为常数),则列式得:X k+1=x k*(1+r),k=0,1,2,……解为等比数列X k=x0*(1+r)k ,k=0,1,2,……在以下的Matlab的程序里,分别取r=0.0168,0.0055,-0.045,取初始值x0 =100,用循环语句迭代计算出25年不同自然环境下山猫的数量的演变过程,将结果列表并绘图:n=25;r=[.0168,.0055,-.045];x=[100,100,100];for k=1:nx(k+1,:)=x(k,:).*(1+r);enddisp('自然条件下(b=0)山猫的数量的演变')%列表自然条件下(b=0)山猫的数量的演变disp(' 年较好中等较差') %每列项目的名称年较好中等较差disp([(0:n)',round(x)]) %舍入为整数,列表0 100 100 1001 102 101 962 103 101 913 105 102 874 107 102 835 109 103 796 111 103 767 112 104 728 114 104 699 116 105 6610 118 106 6311 120 106 6012 122 107 5813 124 107 5514 126 108 5215 128 109 5016 131 109 4817 133 110 4618 135 110 4419 137 111 4220 140 112 4021 142 112 3822 144 113 3624 149 114 3325 152 115 32plot(0:n,x(:,1),'k^',0:n,x(:,2),'ko',0:n,x(:,3),'kv') legend('r=0.0168','r=0.0055','r=-0.045',2) axis([-1,n+1,0,200])title('自然条件下(b=0)山猫数量的演变') xlabel('第k年'),ylabel('山猫的数量')(2)如果每年捕获三只,山猫的数量将会如何变化?会灭绝吗?如果每年捕获一只呢?解:讨论每年捕获三只条件下山猫数量的演变。

《数学建模》(章绍辉 著)参考解答

《数学建模》(章绍辉 著)参考解答

绘得的图形:
奖 学 金 捐 款 账 户 余 额 的 演 变 , 年 利 率 2.5% 25
20
账户余额(万元)
15
10 每 年 用 0.4万 元 每 年 用 0.5万 元 每 年 用 0.6万 元 每 年 用 1万 元 每 年 用 2万 元 0 2 4 6 8 10 第 k年 12 14 16 18 20
平衡点为 x b r . 因为 r>0,所以如果 x0 b r ,即 0 b rx0 , xk 就会单调增 加趋于无穷大,并且增加得越来越快;如果 x0 b r ,即 b rx0 ,
xk 就会单调衰减(到零为止) ,并且减少得越来越快;如果 x0 b r ,即 b rx0 , xk 就会保持不变,即 xk x0 .
如果养老金想用到 80 岁,即 x240 =0,那么
x0
b 1 r

240
1
r 1 r
240
170908
.
xk 0 ,可以解得只需要
k log b r log ,则 log b r log b r x0 log 1 r (上取整) 养老金在第 K 个月恰好用完. 把具体数据代入,执行以下程序, 算得 K=120,即 10 万养老金恰好 10 年用:
后第 k 月末账户总额为 xk 元, 从第一个月开始每月支取 b 元. 则 列式得
xk 1 (1 r ) xk b, k 0,1, 2, .
解得
xk (1 r )k x0 b r b r , k 0,1, 2,
依题意有 r=0.003,b=1000, x0 =100000. 因为 r>0,且 x0 b r , 所以 xk 就会单调衰减(到零为止) ,并且减少得越来越快;若要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。

(2)2.1节中的Q值方法。

(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

(4)你能提出其他的方法吗。

用你的方法分配上面的名额。

2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。

比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。

试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。

解释实际意义是什么。

3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。

若知道管道长度,需用多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。

6.动物园里的成年热血动物靠饲养的食物维持体温基本不变,在一些合理、简化的假设下建立动物的饲养食物量与动物的某个尺寸之间的关系。

7.举重比赛按照运动员的体重分组,你能在一些合理、简化的假设下建立比赛成绩与体重第一部分课后习题答案2.(1)生产成本主要与重量w成正比,包装成本主要与表面积s成正比,其它成本也包含与w和s成正比的部分,上述三种成本中都含有与w,s均无关的成分。

又因为形状一定时一般有3/2w s ∝,故商品的价格可表为γβα++=3/2ww C (γβα,,为大于0的常数)。

(2)单位重量价格13/1--++==w w wCc γβα,其简图如下:显然c 是w 的减函数,说明大包装比小包装的商品便宜,;曲线是下凸的,说明单价的减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。

3. 对于同一种鱼不妨认为其整体形状是相似的,密度也大体上相同,所以重量w 与身长l 的立方成正比,即31l k w =,1k 为比例系数。

常钓得较肥的鱼的垂钓者不一定认可上述模型,因为它对肥鱼和瘦鱼同等看待。

如果只假定鱼的横截面积是相似的,则横截面积与鱼身最大周长的平方成正比,于是l d k w 22=,2k 为比例系数。

利用数据估计模型中的系数可得1k =0.014,2k =0.0322,将实际数据与模型结果比较如下表:基本上满意。

4. 将管道展开如图:可得απcos d w =,若d 一定,w 趋于0,α趋于π/2;w 趋于πd ,α趋于0。

若管道长度为l,不考虑两端的影响时布条长度显然为πd l/w,若考虑两端影响,则应加上πdw/sinα。

对于其它形状管道,只需将πd改为相应的周长即可。

5.设圆盘半径为单位1,矩形板材长a,宽b;可以精确加工,即圆盘之间及圆盘与板材之间均可相切。

方案一:圆盘中心按正方形排列,如下图1,圆盘总数为1N=[a/2][b/2]方案二:圆盘中心按六角形排列,如下图2,行数m满足2+(m-1)≤3a,于是m=132+⎥⎦⎤⎢⎣⎡-a图1 图2列数(按图2第1行计数)n满足:若[b]为奇数,则各行圆盘数相同为([b]-1)/2;若[b]为偶数,则奇数行圆盘数为[b]/2,偶数行圆盘数为[b]/2-1。

圆盘总数为⎩⎨⎧+--=)2(2/12/)1]([)1(2/)1]([2bmbmN其中(1)为:m为偶数。

(2)为:m为奇数,[b]为偶数。

两个方案的比较见下表(表中数字为1N/2N):3 5 8 10 14 204 2/2 4/4 8/7 10/9 14/13 20/197 3/3 6/6 12/11 15/14 21/20 30/2910 5/5 10/10 20/18 25/23 35/33 50/4815 7/8 14/16 28/28 35/36 49/52 70/7620 10/11 20/22 40/39 50/50 70/72 100/105当a,b较大时,方案二优于方案一。

其它方案,方案一、二混合,若a=b=20,3行正方形加8行六角形,圆盘总数为106。

6.假设处于静止状态的动物的饲养食物量主要用于维持体温不变,且动物体内热量主要通过它的表面积散失,对于一种动物其表面积S与某特征尺寸l之间的关系是2lS∝,所以饲养食物量2lw∝。

ab7. 假设举重比赛成绩y 与运动员肌肉的截面积s 成正比,而截面积2l s ∝(l 是某特征尺寸),体重3l w ∝,于是3/2wy ∝。

用举重总成绩检验这个模型,结果如下图3;如果用举重总成绩拟合αw y ∝,可得α=0.57,结果如下图4。

图3 图4第二部分 课后习题1.Malthus 模型预测的优缺点。

2. 阻滞增长模型预测的优缺点。

3. 简述动态模型和微分方程建模。

4. 按照你的观点应从那几个方面来建立传染病模型。

5. 叙述Leslie 人口模型的特点。

并讨论稳定状况下种群的增长规律。

6. 试比较连续形式的阻滞增长模型 (Logistic 模型)和离散形式阻滞增长模型, 并讨论离散形式阻滞增长模型平衡点及其稳定性。

第二部分 课后习题答案1. 优点: 短期预报比较准确; 缺点: 不适合中长期预报; 原因: 预报时假设人口增长率为常数, 没有考虑环境对人口增长的制约作用。

2. 优点: 中期预报比较准确; 缺点: 理论上很好,实用性不强; 原因: 预报时假设固有人口增长率以及最大人口容量为定值。

实际上这两个参数很难确定,而且会随着社会发展情况变化而变化。

3. 动态模型: 描述对象特征随时间(空间)的演变过程, 分析对象特征的变化规律, 预报对象特征的未来性态, 研究控制对象特征的手段;微分方程建模: 模根据函数及其变化率之间的关系确定函数, 根据建模目的和问题分析作出简化假设, 按照内在规律或用类比法建立微分方程。

4. 描述传染病的传播过程, 分析受感染人数的变化规律, 预报传染病高潮到来的时刻, 预防传染病蔓延的手段, 按照传播过程的一般规律,用机理分析方法建立模型。

5. 不同年龄组的繁殖率和死亡率不同, 以雌性个体数量为对象(假设性别比为1:1), 是一种差分方程模型。

6. 连续形式: ()y t 表示某种群t 时刻的数量(人口)d (1)d my y ry t N =- 离散形式: n y 表示某种群第n 代的数量(人口)1(1),1,2,nn n n my y y ry n N +-=-=若n m y N =, 则12,,n n m y y N ++=, *m y N =是平衡点; 1(1) nn n n my y y ry N +-=-的平衡点为*m y N =. 1(1)1(1)n n n m r y r y y r N +⎡⎤=+-⎢⎥+⎣⎦的平衡点为*111r x r b ==-+, 其中1,/(1),()(1)n n m b r x ry r N f x bx x =+=+=-, 此时的差分方程变为1(1)()1,2,n n n n x bx x f x n +=-==.由()(1)x f x bx x ==-可得平衡点**11,0x x b=-=. 在平衡点*0x =处,由于(0)1f b '=>,因此, *0x =不稳定.在在平衡点*11x b=-处, 因**()(12)2f x b x b '=-=-,所以 (i) *()13f x b '>⇔> 当3b >时, 平衡点*11x b=-不稳定;(ii) *()1f x '<13b ⇔<< 当13b <<时, 平衡点*11x b=-不稳定.第三部分 课后习题1. 判断下列数学模型是否为线性规划模型。

(a,b,c 为常数,x,y 为变量)⎪⎪⎩⎪⎪⎨⎧≥=+≤++≥-++=0,12432085862.753max 12121321321321x x x x x x x x x x t s x x x f +)(⎪⎩⎪⎨⎧=≥===∑∏==),,2,1(0),,2,1(.max )2(11n j x m i b x a t s x c f jnj i j ij nj jj ),,2,1;,,2,1(..,min 321212m j m i c y x t s y b x a f iji i nj j j mi i i ==≤++=∑∑==)(2. 将下述线性规划问题化为标准形式。

⎪⎪⎩⎪⎪⎨⎧≤≤≤-=--≥++-≤++-++=取值无约束)(321321321321321,62,063244239232min 1x x x x x x x x x x x x x x x Z ⎪⎩⎪⎨⎧≤≥+--=无约束)(y x x y x y x Z ,32||||max 2⎪⎩⎪⎨⎧≥≤≤-+-=++-+-=无约束)(321321321321,0,064..22min 3x x x x x x x x x t s x x x f⎪⎪⎩⎪⎪⎨⎧≤≥≥+--=+-≤++++++=无约束)(423143132143214321,0,0,12285327..32max 4x x x x x x x x x x x x x x t s x x x x f3. 用单纯形法求解线性规划问题。

⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,18231224..52max 21212121x x x x x x t s x x f4. 检验函数212212)1()(100)(x x x x f -+-=在T x )1,1(*=处有**,0G g =正定,从而*x 为极小点。

证明G 为奇异当且仅当005.0212=-x x ,从而证明对所有满足0025.0)(<x f 的x ,G 是正定的。

相关文档
最新文档