一级倒立摆的建模及控制分析
(完整版)一级倒立摆系统分析
![(完整版)一级倒立摆系统分析](https://img.taocdn.com/s3/m/eb73d25b28ea81c759f57880.png)
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
一级倒立摆的建模及控制分析
![一级倒立摆的建模及控制分析](https://img.taocdn.com/s3/m/bc60d8e7f705cc17552709cc.png)
直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。
它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。
倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。
由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。
二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。
图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。
图2是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。
(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。
一级倒立摆的建模与控制分析
![一级倒立摆的建模与控制分析](https://img.taocdn.com/s3/m/571300dd4693daef5ef73ded.png)
研究生《现代控制理论及其应用》课程小论文一级倒立摆的建模与控制分析学院:机械工程学院班级:机研131姓名:尹润丰学号: 2013212020162014年6月2日目录1. 问题描述及状态空间表达式建立............................ - 1 -1.1问题描述................................................................. - 1 -1.2状态空间表达式的建立..................................................... - 1 -1.2.1直线一级倒立摆的数学模型........................................... - 1 -1.2.2 直线一级倒立摆系统的状态方程 ...................................... - 5 -2.应用MATLAB分析系统性能.................................. - 6 -2.1直线一级倒立摆闭环系统稳定性分析......................................... - 6 -2.2 系统可控性分析.......................................................... - 7 -2.3 系统可观测性分析........................................................ - 8 -3. 应用matlab进行综合设计................................. - 8 -3.1状态反馈原理............................................................. - 8 -3.2全维状态反馈观测器和simulink仿真........................................ - 9 -4.应用Matlab进行系统最优控制设计......................... - 11 -5.总结.................................................... - 13 -1.问题描述及状态空间表达式建立1.1问题描述倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
直线一级倒立摆的建模及性能分析
![直线一级倒立摆的建模及性能分析](https://img.taocdn.com/s3/m/f9e96c2fa417866fb94a8e1b.png)
直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的建立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的建立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些主要相关因素之间的精确的定量表示。
数学模型是分析、设计、预测以及控制一个系统的理论基础。
因此,对于实际系统的数学模型的建立就显得尤为重要。
系统数学模型的构建可以分为两种:实验建模和机理建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对像并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
机理建模就是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是不稳定的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律,因此可以通过机理建模得到系统较为精确的数学模型。
为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。
将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,这样就可以通过力学原理建立较为精确的数学模型。
我们可以应用牛顿力学的分析方法或者欧拉-拉格朗日原理建立系统的动力学模型。
对于直线一级倒立摆这样比较简单的系统,我们采用通俗易懂的牛顿力学分析法建模。
为了建立直线一级倒立摆的数学模型,采用如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆相互作用力的水平和垂直方向的分量。
一级倒立摆的可视化建模与稳定控制设计
![一级倒立摆的可视化建模与稳定控制设计](https://img.taocdn.com/s3/m/f7ae1deaf90f76c661371a91.png)
1966年
1976年
1995年
倒立摆的应用
倒立摆的分类
直线倒立摆 一级倒立摆
基座运动
环形倒立摆
摆杆
二级倒立摆
平面倒立摆
多级倒立摆
另外根据材料分类:刚体摆杆倒立摆系统和柔性摆杆倒立摆系统 „„
根据不同的分类方法,我们可以将倒立摆进行不同的分类。
倒立摆的特点
特性:非线性、多变量、强耦合、不稳定性
倒立摆系统拥有低投入、简易的结构、直观 的形象、方便仿真等特点。
设计演示界面
保存文件,命名为 fangzhenjieguo.fig ,同时会自动生成一 个fangzhenjieguo.m 文件
将摆角、小车位 移和时间参量, 导入到工作区中 ,供GUI编程使 用。
打开之前保存演示界面是生成的fangzhenjieguo.m文件,找到 “仿真开始”按钮所对应的回调函数,在函数下方加入程序: sim('daolibaimoxing');%运行仿真模型
初始条件设为[0.1rad,0.5rad/s,0,0],仿真曲线如 图所示,上面图线为摆角,下面为小车位移。
右图为未加控制器前的系统 阶跃响应曲线,可以看出, 摆角和小车位移的曲线都是 发散的。通过与仿真结果比 较,可以看出,加了BP神经 网络控制器的倒立摆系统, 摆角和小车位移曲线趋于稳 定,说明所设计的BP神经网 络控制器能够起到有效的控 制作用。验证了控制器设计 的正确性和可行性。
四、GUI设计
图形用户界面(Graphical User Interface, 简称 GUI,又称图形用户接口)是指采用图形 方式显示的计算机操作用户界面。
GUI具有下面几个方面的基本要求:轻型、 占用资源少、高性能、高可靠性、便于移 植、可配置等特点。
直线一级倒立摆建模与控制
![直线一级倒立摆建模与控制](https://img.taocdn.com/s3/m/0d089be4856a561252d36f39.png)
期望特征多项式为
s 2 k2 20 s 20 k1 k2 1
* 由设计者选取,考虑“引入状态反馈向量后系统特 1*、2
* f * s s 1* s 2 =s2 (1* 2* )s 1*2*
征多项式”和“期望特征多项式”的系数相等即可求出状态反 馈向量。
,线性化运动方程。
倒立摆系统单输入-单输出传递函数模型
线性化后运动方程(参考):
I ml mgl mlx
2
以小车加速度为输入、摆杆角度为输出,令
ax
拉普拉斯变换后系统传递函数模型(参考):
s ml G s A s I ml 2 s 2 mgl
双击“Controller1”,输入选取的4个闭环极点对应的增益,运行仿真后双击 “Scope1”观测响应曲线,其中小车位置应该很好的收敛到0.01,小车速度、摆杆角
度和角速度应该收敛到0。若响应曲线效果不好则需重新选取闭环极点。
状态空间极点配置实物控制
选取了合适的4个闭环极点并通过了仿真测试后即可进行倒立摆系统实物控制。 进入 MATLAB Simulink 实时控制工具箱“Googol Education Products”打 开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo,如下图。
状态空间极点配置仿真控制
参考上述实例,选取倒立摆系统的4个闭环极点,进入 MATLAB Simulink 实时 控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Placement Experiments”中的“Poles Control Simulink”,如下图。
一阶倒立摆系统模型分析状态反馈与观测器设计
![一阶倒立摆系统模型分析状态反馈与观测器设计](https://img.taocdn.com/s3/m/55448f7a590216fc700abb68a98271fe900eaf57.png)
一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。
以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。
一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。
在进行线性化之前,首先需要确定系统的状态变量和输入变量。
对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。
在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。
A、B、C和D是系统的矩阵参数。
二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。
在设计状态反馈控制器之前,首先需要确定系统的可控性。
对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。
如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。
在确定系统可控性之后,可以通过状态反馈控制器来实现控制。
状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。
具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。
状态反馈控制器的输入是状态变量,输出是控制输入变量。
然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。
三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。
在设计观测器之前,首先需要确定系统的可观性。
对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。
如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。
在确定系统可观性之后,可以通过观测器来实现状态估计。
观测器的设计可以通过选择适当的观测增益矩阵L来实现。
具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。
一级倒立摆模型的机理建模
![一级倒立摆模型的机理建模](https://img.taocdn.com/s3/m/805f9d2b0066f5335a81218e.png)
一级倒立摆模型的建模问题提出:质量为m 的小球固结于长度为L 的细杆(可忽略杆的质量)上,细杆又和质量为M 的小车铰接相连。
由经验知:通过控制施加在小车上的力F (包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。
(忽略其他零件的质量以及各种摩擦和阻尼的条件)分析过程:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。
当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。
现对小车和细杆摆分别受力分析:水平受力分析:对小车有: 'sin ''F F M x θ-=(a ) 对小球有: F'sin (x sin )''m l θθ=+=2''''(')m x m lcos m lsin θθθθ+⨯+⨯(b )由(a )、(b )两式得 2()'('''')F M m x m lcos m lsin θθθθ+⨯=++(c)垂直受力分析:对小球有:'cos (cos )''F mg m l θθ-=即 2'()'('')F cos m g m l sin cos θθθθθ⨯+⨯=-(d ) 由(a )、(d )两式得2''sin (tan ''('))cos m g F M x m l θθθθθ=+-⨯+(e)以上方程组为非线性方程组,做如下线性化处理:32sin ,cos 13!2!θθθθθ≈-≈-当θ很小时,认为可以忽略高次项,得2cos 1sin 0θθθθ≈≈=,,(') 故线性化后(c )式可简化为()''''F M m x ml θ=++ (f) (e )式可简化为''F Mx mg =+(g )传递函数:(由廖斐完成)由(g )式可得:F m g x Mθ-˝=(h )将(h )式代入式(f ),有:()"M m F F m g m l Mθθ+=-+()化简得:()"F M m g Ml θθ=+- (i ) 经拉氏变换得:()()()()F s M m g s Ms l s θθ=+-² (j ) 故其传递函数为:()1()()()s G s F s M m g M s lθ==+-² (k )模型建立完成。
单级倒立摆系统建模与控制器设计
![单级倒立摆系统建模与控制器设计](https://img.taocdn.com/s3/m/490db8e67c1cfad6195fa7f0.png)
得:
状态空间表达式
单级倒立摆系统的模型分析 根据小车质量,摆杆质量,摆杆转动轴心到杆质心的长度和 摆杆质量的具体数值,用Matlab 求出系统的状态空间方程 各矩阵。
程序1.M = 0.5; m = 0.2; I= 0.006; g = 9.8; l = 0.3; A=[0 1 0 0 0 0 3*M*g/(4*M+m) 0 00 0 1 0 0 3*(M+m)*g/((4*M+m)*l) 0]; C=[1 0 0 0 B=[0 0 0 1 0]; 4/(4*M+m) D=[0 0 0]; 3/((4*M+m)*l)];
摆杆不受外力干扰但是摆杆有一个小的初始偏角 程序2
系统开环初值响应曲线
由系统的开环初值响应曲线可知,系统是不稳定 的,这与我们的经验是相符合的。
摆杆初始位置在竖直状态,但是小车收到一个脉 冲干扰的情况。MATLAB程序如下:
系统开环脉冲响应曲线
由系统的开环脉冲干扰响应曲线可知, 系统是不稳定的,这与我们的经验也 是相符合的。
显然,因为系统有一个特征值为正实数5.5841, 故系统是不稳定的。
单级倒立摆系统的极点配置控制器设计
单级倒立摆系统控制器设计的目标 单级倒立摆系统控制器设计的目标是:通过对小 车的左右移动使得摆杆保持在竖直的位置。且对 于小车所给的阶跃输入信号,满足如下设计指标:
1、小车位置x和摆杆角度θ的稳定时间小于5秒; 2、位置x的上升时间小于0.5秒; 3、摆杆角度的超调量小于20度(0.35弧度)。
总结与收获
通过对单级倒立摆的建模与仿真学到了一 下知识
1、首先要将现实中系统转化相应的物理结构 2、充分掌握建立状态空间方程的过程 3、了解配置极点控制器以及PID控制器的方法 4、对MATLAB软件有了一个初步功能的了解
一阶倒立摆控制设计与实现
![一阶倒立摆控制设计与实现](https://img.taocdn.com/s3/m/645017d9988fcc22bcd126fff705cc1755275ff4.png)
一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。
在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。
本文将介绍一阶倒立摆控制设计与实现的相关内容。
一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。
该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。
常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。
在本文中,我们将使用比例控制器来控制一阶倒立摆。
比例控制器的输出与误差成正比,误差越大,输出越大。
比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。
三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。
四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。
我们可以使用MATLAB等工具进行建模和仿真。
在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。
在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。
在实现控制系统时,我们需要选择合适的硬件平台和控制器。
常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。
在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。
五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。
一阶倒立摆控制设计与实现
![一阶倒立摆控制设计与实现](https://img.taocdn.com/s3/m/caec0047854769eae009581b6bd97f192279bfda.png)
一阶倒立摆控制设计与实现以一阶倒立摆控制设计与实现为题,本文将介绍倒立摆控制系统的设计原理和实现过程。
倒立摆是一种经典的控制系统问题,它涉及到动力学建模、控制算法设计和实时控制等多个方面。
本文将从这些方面逐步展开,为读者介绍一阶倒立摆控制的基本知识。
1. 动力学建模倒立摆是一个复杂的动力学系统,它由一个可以旋转的杆和一个连接在杆末端的质点组成。
杆的旋转可以由一个电机控制,质点则受到重力和杆的作用力。
为了建立倒立摆的动力学模型,我们需要考虑杆的旋转角度和质点的位置。
2. 控制算法设计一阶倒立摆的控制目标是使杆保持竖直位置,即旋转角度为零,并且使质点保持在某个给定的位置上。
为了实现这个目标,我们可以设计一个控制器来控制杆的旋转角度和质点的位置。
常用的控制算法有PID控制算法、模糊控制算法和神经网络控制算法等。
PID控制算法是一种经典的控制算法,它通过调节比例、积分和微分三个参数来实现控制效果。
模糊控制算法则利用模糊逻辑的思想,将输入和输出之间的关系用模糊集合表示。
神经网络控制算法则利用神经网络的学习能力,通过训练网络来实现控制效果。
3. 实时控制倒立摆的控制需要实时采集传感器数据,并根据这些数据计算控制信号。
在实际应用中,我们可以使用编码器来测量杆的旋转角度,使用加速度计来测量质点的加速度,然后通过控制器来计算电机的控制信号。
为了实现实时控制,我们可以使用嵌入式系统来实现。
嵌入式系统是一种专门设计用于控制和处理实时数据的计算机系统,它通常由微处理器、存储器和输入输出设备组成。
通过将控制算法和传感器接口集成到嵌入式系统中,我们可以实现倒立摆的实时控制。
总结本文介绍了一阶倒立摆控制的基本原理和实现方法。
倒立摆是一个复杂的动力学系统,控制它需要建立动力学模型,并设计合适的控制算法。
通过实时采集传感器数据并计算控制信号,我们可以实现倒立摆的控制。
希望本文对读者理解一阶倒立摆控制有所帮助,同时也希望读者能够进一步探索和研究这个有趣的控制问题。
一级倒立摆系统分析
![一级倒立摆系统分析](https://img.taocdn.com/s3/m/a12cfebef605cc1755270722192e453611665b6f.png)
一级倒立摆系统分析一级倒立摆系统由一个垂直的支撑杆和一个质量为m、长度为l的摆杆组成。
摆杆的一端通过一个旋转关节连接在支撑杆的顶端,另一端可以自由地在重力作用下摆动。
我们将摆杆的摆动角度定义为θ,并假设摆杆的运动是平面运动,不考虑摆杆在垂直方向上的移动。
首先,我们需要建立一级倒立摆系统的动力学方程。
根据牛顿第二定律和角动量守恒定律,可以得到以下方程:1.支撑杆垂直方向受力平衡方程:-mgl sinθ = 0其中g为重力加速度。
2. 摆杆绕旋转关节的转动惯量为I = ml^2/3,根据转动惯量的定义可以得到角加速度α与力矩τ之间的关系:τ=Iα其中τ = ml^2/3α。
3.摆杆绕旋转中心的转动方程:τ = Iα = ml^2/3α = -mgl sinθ可以得到α与θ之间的关系:α = -3g/(2l)sinθ。
以上方程可以描述一级倒立摆系统在垂直方向上的平衡和旋转运动。
其中,第一条方程表示摆杆在垂直方向上的受力平衡,第二条方程表示摆杆的转动惯量及其与角加速度之间的关系,第三条方程表示摆杆绕旋转中心的转动方程。
接下来,我们可以通过线性化分析来研究一级倒立摆系统的稳定性。
线性化是一种将非线性系统近似为线性系统的方法,通过计算系统在一些平衡点附近的一阶导数来实现。
我们首先要找到一级倒立摆系统的平衡点。
根据第一条方程,当θ=0时,系统达到平衡。
在这个平衡点,摆杆不再摆动,所有受力均平衡。
接下来,我们对系统进行线性化。
首先将θ分解为平衡点的偏差值Δθ和小量δθ,即:θ=θ_e+Δθ+δθ其中θ_e为平衡点的角度。
将上述表达式带入到第三条方程中,并只保留一阶项,可以得到线性化的转动方程:α = -3g/(2l)(sinθ_e + cosθ_e Δθ +cosθ_e δθ)。
我们可以进一步线性化该方程,即将sinθ_e和cosθ_e在一阶项展开,并忽略二阶项,得到:α=-3g/(2l)(θ_e+Δθ+δθ)。
一阶倒立摆系统模型分析、状态反馈与观测器设计 ppt课件
![一阶倒立摆系统模型分析、状态反馈与观测器设计 ppt课件](https://img.taocdn.com/s3/m/85082d1d10661ed9ad51f357.png)
•
21.4174 28.3480 计算 A GC 6.3224 122.1830
1 3.9281 0 0 78.5615 0 0 27.9079 1 0 152.8225 0.6747
ppt课件
21
• 带状态观测器的状态反馈系统为
• 比较 p(s) a s • 可求得
0.6747 5.9747k 4 k 2 24.2 58.6118 5.9747k 0.6747k k 193 3 2 1 0.6747k1 58.6118k 2 600 - 58.6118k1 900
ppt课件 17
• 解得 k1 15.3551 , k2 10.4136 , k3 45.8588 , k4 5.6804 • 则反馈增益阵为
K -15.3551-10.4136 45.8588 5.6804
• 状态反馈通过调整K能任意配置闭环系统的极点 ,有效地改善系统的性能。同时,系统解耦、镇 定、渐近跟踪以及最优控制等都离不开状态反馈 。但状态反馈的前提条件是必须得到系统内部的 各个状态变量,而系统的状态变量往往比较难获 取,甚至是无法测量,因此需要设计状态观测器 来重构系统的状态。
一阶倒立摆系统模型分析、状态反馈与 观测器设计
ppt课件
1
1.建立一级倒立摆数学模型
•
图1过程中忽略了空 气阻力和弹性形变等。
ppt课件 2
• 首先对摆杆进行受力分析,如图2所示。其中H表 示摆杆受到的水平方向力,N表示摆杆所受的竖直 方向的力,摆杆所受的旋转摩擦力矩用 c 表示, 则得到摆杆平面运动微分方程。
• 可知系统完全能观,满足全维观测器极点配置条 件。
直线一级倒立摆建模
![直线一级倒立摆建模](https://img.taocdn.com/s3/m/2f04346f852458fb770b56f4.png)
一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。
也可以利用非线性控制理论对其进行控制。
倒立摆的非线性控制正成为一个研究的热点。
2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
由于机构的限制,如运动模块行程限制,电机力矩限制等。
为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。
由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。
一级直线倒立摆的控制策略与仿真分析
![一级直线倒立摆的控制策略与仿真分析](https://img.taocdn.com/s3/m/285cb0647fd5360cbb1adb17.png)
一级直线倒立摆的控制策略与仿真分析一、引言倒立摆系统是研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,参数和结构易于调整的优点。
然而倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合特性,是一个绝对不稳定系统。
倒立摆实物仿真实验是控制领域中用来检验某种控制理论或方法的典型方案,它对一类不稳定系统的控制以及对深入理解反馈控制理论具有重要意义。
倒立摆系统在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。
二、一级直线倒立摆模型的建立图1 一级直线倒立摆物理模型图2 小车和摆杆的受力分析图2.1 传递函数模型图1、2是系统中小车和摆杆的受力分析图。
设小车质量为M,摆杆质量为m,小车摩擦系数为b,摆杆转动轴心到杆质心的长度为l,摆杆的转动惯量为I,根据牛顿第二定律,可以得到系统的两个运动方程:F ml ml x b x m M =-+++∙∙∙∙∙∙θθθθsin cos )(2(1)θθθcos sin )(2∙∙∙∙-=++x m l m gl m l I (2)设φπθ+=, 假设φ与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。
用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:2()()I ml mgl ml x M m x b x ml uϕϕϕ∙∙∙∙∙∙∙∙∙+-=++-= (3)假设初始条件为0,对式(3)进行拉普拉斯变换得到:22222()()()()()()()()()I ml s s mgl s mlX s s M m X s s bX s s ml s s U s +Φ-Φ=++-Φ=(4)由于输出为角度φ,求解方程组的第一个方程,可以得到:mgl s ml I mls s X s -+=Φ222)()()((5)令∙∙=x v ,则有:mgls ml I mls V s -+=Φ22)()()((6) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++(7)整理后得到传递函数:232()()()()mlss qb I ml M m mgl bmgl U s s s s q q qΦ=+++--(8) 其中])())([(22ml ml I m M q -++=。
环形一级倒立摆的建模与控制
![环形一级倒立摆的建模与控制](https://img.taocdn.com/s3/m/6274ac2b03020740be1e650e52ea551810a6c9d0.png)
环形一级倒立摆的建模与控制
环形一级倒立摆是一种基于完全线性模型动力学系统的重要机构。
它通过将一个简单
形状的圆环和两个非常简单的支撑结构放在环上,将圆环内外连接起来,从而实现倒立摆
运动的目的。
环形一级倒立摆机构在实验性机械力学研究以及实用机器设计中都有着广泛
应用。
首先,动力学建模的目的是确定环形一级倒立摆的运动学行为,特别是整个系统在不
断变化外输入下的响应规律,在此基础上构造一种有效的控制策略进行控制。
准确确定环
形一级倒立摆机构的动力学参数也是实现接下来的控制过程的基础,因此一定要全面准确
地确定环形一级倒立摆的动力学参数。
其次,环形一级倒立摆的控制是机构动力学建模的核心,也是机构技术应用的关键。
为了确保系统实现预定的动作,实现系统的稳定运行,首先要给出环形一级倒立摆的数学
模型,考虑到机构参数量多,一定要注意合理地选择力学参数及控制参数,根据机构特性
进行有效地搭建。
此外,在搭建环形一级倒立摆的控制系统时,还要特别考虑抗干扰性能,通过优化控制技术,增大控制比例带下限,来实现机构的高精度控制。
环形一级倒立摆的建模与控制需要综合考虑动力学因素和控制因素。
根据物理实验和
数学建模的结果,设计并实施一种有效的控制策略,可以有效地实现环形式一级倒立摆的
控制,获得较高的控制效果。
总的来说,环形一级倒立摆的建模与控制有助于揭示机构的动力学特性,并帮助控制
者有效地实现控制目标,在实际工程中可以广泛应用。
直线一级倒立摆的数学建模和根轨迹控制
![直线一级倒立摆的数学建模和根轨迹控制](https://img.taocdn.com/s3/m/76eb44236d175f0e7cd184254b35eefdc8d315c8.png)
直线一级倒立摆的数学建模和根轨迹控制直线一级倒立摆是一种基于控制理论的研究对象,它可以通过数学建模来进行分析和控制。
数学建模的过程中,需要将倒立摆的动力学方程、控制器以及传感器等元器件进行建模。
根据建模结果可以分析系统的稳定性、响应速度等特征,并为设计控制策略提供参考。
根轨迹控制是一种常用于控制系统设计的方法,它通过分析控制系统的传递函数,绘制根轨迹图来评估控制系统的稳定性和性能。
对于直线一级倒立摆,可以根据其数学模型进行传递函数分析,得出控制系统的传递函数,并绘制根轨迹图。
在根轨迹图上,可以根据根轨迹的位置来判断系统的稳定性和响应速度,从而确定控制策略并调整控制参数,以实现目标控制效果。
因此,直线一级倒立摆的数学建模和根轨迹控制在控制理论研究和工程应用中具有重要意义,可以为控制系统设计提供有效的方法和手段。
(完整版)一级倒立摆系统分析
![(完整版)一级倒立摆系统分析](https://img.taocdn.com/s3/m/eb73d25b28ea81c759f57880.png)
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线一级倒立摆的建模及控制分析
摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
一、问题描述
倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。
它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。
倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。
由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。
二、方法简述
本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系
统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
三、模型的建立及分析
3.1 微分方程的推导
在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。
图1 直线一级倒立摆系统
假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。
图2是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。
(a) (b)
图2 小车和摆杆的受力分析图
分析小车水平方向所受的合力,可以得到以下方程:
N x b F x M --= (1)
由摆杆水平方向的受力进行分析可以得到下面等式:
θθθθs i n c o s 2
ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:
()F ml ml x b x m M =-+++θθθθsin cos 2 (3)
为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:
θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:
θθθ
I Nl Pl =--cos sin (5)
合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:
()
θθθ
c o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:
0d d s i n 1c o s 2
=⎪⎭
⎫ ⎝⎛-=-=t θφθθ
,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:
()
()⎩
⎨⎧=-++=-+u ml x b x m M x
ml mgl ml I φφφ 2 (8) 3.2 状态空间方程
方程组(8)对φ
,x 解代数方程,整理后的系统状态空间方程为: ()
()()()()()()()u Mm l m M I m l Mm l m M I m l
I x x Mm l m M I m M m gl Mm l m M I m lb
Mm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥
⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢
⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣
⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2
222
2
2
2
2
2
20000
10
0000001
0φφφφ u x x x y ⎥⎦
⎤⎢⎣⎡+⎥⎥⎥⎥
⎦
⎤
⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:
()
x ml mgl ml ml =-+φφ
223/ 化简得:x
l
l g 43
43+=φφ
设}
{x u x x X ==1
,,,,φφ ,则有:
1
430100430
0100
00000001
0u l x x l g x x
⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣
⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ
10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型
实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。
以小车加速度作为输入的系统状态方程:
1301004
.2900
100000000010u x x x x
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ 10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.4 状态空间极点的配置
对于直线一级倒立摆的极点配置转化来说: 要按上述系统设计控制器, 则要求具有较短,约3 s 的调整时间和合适的阻尼比ζ=0.5。
要使系统具备能控、能观且易验证。
步骤为:计算特征值。
根据要求,设调整时间为3 s, 并留有一定的余量, 选择期望的闭环极点:()4321,,,==i s i
μ,其中:,
,10-10
-21==μμ ,,j j 32232243--=+-=μμ其中43μμ,
是一对具有ζ=0.5,4=n w 的主导闭环极点。
21μμ,位于主导闭环极点的左边,其影响较小,因此期望的特征根方程
为: 0160072019624234=++++s s
s s 由此得到:1600,720,196,244321====a a a a 系统的特征方程为:
244.294.29001000
000
01s s s s s s A sI -=---=-,
因此:4.2902431-====b b b b ,。
系统的反馈增益矩阵为:[]1-112
2314
4T b a b a b a b a K ----=
确定使状态方程变为可空标准型的变换矩阵T =MW ,于是可得:
[
]
⎥
⎥
⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡==02.8803
2.88030000100103
2B A B
A A
B B
M ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000
101100104.2910
4
.29000
010********
123b b b b b b W 则有:
⎥⎥⎥⎥⎦⎤⎢
⎢⎢⎢⎣⎡--=
=30
00
0300104.29001
04
.29MW T ,⎥⎥
⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡--=-333.00000333.000011.00034.000011.00034
.01T 则反馈增益矩阵为:[]1633.162739.934898.244218.54--=K
控制量为:φφμ 1633.162739.934898.244218.54--+=-=x x KX 3.5 MATLAB 仿真分析
利用MATLAB 软件对直线一级倒立摆进行了仿真,仿真绘制的曲线图,如图3,4所示。
图3 小车位置随时间变化图
图4 摆角随时间变化图
采用极点配置法设计的用于直线型一级倒立摆系统的控制器, 可使系统在很小的振动范围内保持平衡, 小车振动幅值约为3-
5 m, 摆杆振动幅值约0.05
10
rad,系统稳定时间约3 s。
四、参考文献
[1] 固高倒立摆系统与实验指导书,2004,固高科技有限公司
[2] 胡寿松,自动控制原理(第三版),1994,国防工业出版社
[3] 崔怡,Matlab5.3实例详解,2000,航空工业出版社
[4] 李新,何传江,矩阵理论及其应用,2008,重庆大学出版社。