实验五 温度传感器特性试验
大学物理实验-温度传感器实验报告
关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。
本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。
热电偶的温差电动势关于温度有很好的线性性质。
PN节作为常用的测温元件,线性性质也较好。
本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。
关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。
温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。
作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。
2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。
利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。
铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。
按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。
Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×;B=-5.802×;C=-4.274×。
温度传感器实验报告
温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。
二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。
根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。
本实验中,我们将使用热电偶温度传感器进行实验。
热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。
热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。
当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。
三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。
(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。
(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。
(4)重复步骤(3),直至记录下不同温度下的数据。
(5)将实验数据整理成表格,并进行数据分析。
四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。
将所有热电势差值进行平均,得到平均热电势差值ΔTave。
根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。
其中,Tref为参考温度值,本实验中取为25℃。
根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。
同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。
五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。
温度传感器特性研究--实验报告
沈阳城市学院物理实验报告实验题目温度传感器特性研究姓名学号专业班级实验室号实验成绩指导教师实验时间年月日物理实验室制请认真填写实验原理(注意:原理图、测试公式)一、直流电桥法测Pt100铂电阻温度特性直流电桥的原理图如图,根据直流电桥的基本 原理有:312t R R R R =,因为R1=R2,所以R3=Rt ,Rt 即为铂电阻。
Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器,在0~100℃范围内Rt 的表达式可近似线性为:01(1)t R R A t =+ 。
二、恒流源法测NTC 热敏电阻温度特性恒流源法电路原理图如图,根据串联电路原理11R RtO Rt t U U R I U R ==,Rt 即为热敏电阻。
热敏电阻是利用半导体电阻阻值随温度变化的特性来测量温度的,在一定的温度范围内(小于450℃)热敏电阻的电阻Rt 与温度T 之间有如下关系:)11(00T T B T eR R -=三、PN 结温度传感器特性PN 结温度传感器实验电路如图,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo 式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。
请认真填写请在两周内完成,交教师批阅附录110115120125130135电阻/Ω温度/℃直流电桥法测Pt100铂电阻的温度特性图100200300400500600700800900电阻/Ω温度/℃电压/m V温度/℃。
温度传感器Pt100特性测试实验指导书
温度传感器Pt100特性测试实验指导书
实验一温度传感器Pt100特性测试
一、实验目的
1、进一步认识温度传感器Pt100的特性:
R t=R0[1+At+Bt2+Ct3]
A=4.28899×10-3℃-1. B=-2.133×10-7℃-2. C=1.233×10-9℃-3
2、熟悉瑞特过控实验装置的使用。
3、掌握Pt100,并绘制特性曲线。
二、实验原理接线图
1、热线阻外形图:
2、实验原理:
三、实验步骤
1、锅炉内胆注水至适当位置,观察水位显示。
保持水位恒定。
2、记录Rt1温度传感器温度值,读取通用仪表温度显示值。
3、用万用表测量并记录Rt2的电阻值。
4、打开功率调节器,对锅炉内胆中的水进行加热一段时间,
控制功率不宜过大,使水温上升5-8℃。
5、重复步骤2和3。
直到5-10组参数记录完成。
6、将锅炉内胆中的水放空,实验完毕。
四、实验结果分析
1、制作表格:
2、绘制曲线:
横坐标为温度值,纵坐标为电阻值。
计算系数A,进行误差分析。
五、思考题:
1、热电阻的特性公式中的系数B,用上述实验方法能否求取?
2、该实验方法有无系统误差,为什么?
附表:热电阻Pt100分度表。
物理实验教案:温度传感器特性综合实验
温度传感器特性综合实验实验目的1.掌握PT100热电阻的工作原理和特性2. 掌握热敏电阻NTC的工作原理和特性3. 掌握PN结传感器的工作原理和特性实验仪器HLD-WD-III温度传感器特性综合实验仪,铂热电阻PT100,NTC传感器,PN结传感器,数字万用表实验原理:一、PT100热电阻传感器热电阻传感器是利用金属或非金属的电阻随温度变化而变化的特性,来实现温度测量的。
热电阻分为金属热电阻和半导体热电阻两大类,一般称金属热电阻为热电阻,称半导体热电阻为热敏电阻。
热电阻材料的特点作为测量温度用的热电阻材料,必须具备以下特点:(1)电阻温度系数а要尽可能大,且稳定;(2)电阻率p 要高;(3)比热小,亦即热惯性小;(4)电阻值随温度变化关系最好是线性关系;(5)在较宽的测量范围内具有稳定的物理化学性质;(6)良好的工艺性,即特性的复现性好,便于批量生产。
由于铂热电阻的物理化学性能在高温和氧化性介质中很稳定,重复性好,测量精度高,其电阻值与温度之间的关系近似线性关系,它既能作为工业用测温元件,又能作国际温度标准,按国际温标IPTS-68规定,在-259.39~630.74℃温度范围内,用铂热电阻温度计作为基准器。
二、NTC热敏电阻的工作原理热敏电阻是利用半导体电阻值随温度变化而显著变化的一种热敏元件。
热敏电阻的主要特点是:(1)电阻温度系数大,灵敏度高。
通常温度变化1℃,阻值变化1%~6%,电阻温度系数绝对值比一般金属电阻大10~100倍。
(2)结构简单,体积小。
珠形热敏电阻探头的最小尺寸为0.2mm,能测量热电偶和其它温度传感器无法测量的空隙、腔体、内孔等处的点温度。
如人体血管内温度等。
(3)电阻率高,热惯性小,不像热电偶需要冷端补偿,适宜动态测量。
(4)使用方便。
热敏电阻阻值范围在10~105 之间可任意挑选,不必考虑线路引线电阻和接线方式,容易实现远距离测量,功耗小。
(5)阻值与温度变化呈非线性关系。
温度传感器的温度特性测量实验
温度传感器的温度特性测量实验【目的要求】测量PN结温度传感器的温度特性;测试PN结的正向电流与正向电压的关系(指数变化规律)并计算出玻尔兹曼常数。
【实验仪器】FD-ST-TM温度传感器温度特性实验模块(需配合FD-ST系列传感器测试技术实验仪)含加热系统、恒流源、直流电桥、Pt100铂电阻温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成温度传感器AD590、电压型集成温度传感器LM35、实验插接线等)。
【实验原理】“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。
温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
常用的温度传感器的类型、测温范围和特点见下表。
PN结温度传感器1.测试PN结的Vbe与温度变化的关系,求出灵敏度、斜率及相关系数PN结温度传感器是利用半导体PN结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN结的正向电压与温度之间有良好的线性关系。
通常将硅三极管b、c极短路,用b、e极之间的PN 结作为温度传感器测量温度。
硅三极管基极和发射极间正向导通电压Vbe 一般约为600mV (25℃),且与温度成反比。
线性良好,温度系数约为-2.3mV/℃,测温精度较高,测温范围可达-50——150℃。
缺点是一致性差,互换性差。
通常PN 结组成二极管的电流I 和电压U 满足(1)式[]1/-=kT qU S e I I (1)在常温条件下,且1/〉〉KTqU e时,(7)式可近似为kT qU S e I I /= (2)(7)、(8)式中:T 为热力学温度 ; Is 为反向饱和电流;正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo (3)(3)式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。
大学物理实验-温度传感器实验报告
关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。
本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。
热电偶的温差电动势关于温度有很好的线性性质。
PN节作为常用的测温元件,线性性质也较好。
本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。
关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。
温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。
作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。
2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。
利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。
铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。
按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。
Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×;B=-5.802×;C=-4.274×。
温度传感器特性的研究
温度传感器特性的研究实验报告一实验目的1.学习用恒电流法和直流电桥法测量热电阻;2.测量铂电阻和热敏电阻温度传感器的温度特性。
二实验仪器FD-TTT-A温度传感器特性实验仪一台,电阻箱R3三实验原理温度是一个重要的热学物理量,温度的变化对实验和生产结果至关重要,所以温度传感器应用广泛。
温度传感器是利用一些金属,半导体等材料与温度相关的特性制备的。
本实验通过测量几种常用的温度传感器的特性物理量随温度的变化来了解这些温度传感器的工作原理。
一般把金属热电阻称为热电阻,把半导体热电阻称为热敏电阻。
常用温度传感器的类型和作用直流平衡点桥(惠斯通电桥)的电路如图所示。
把四个电阻R1,R2,R3,Rt连接成一个四边形回路ABCD,每条边称作电桥一个“桥臂”在边形的一组对角接点A,C之间连入直流电源E,在另一组对角接点B,D之间连入平衡指示仪表,B,D之间对角线形成一条“桥路”,它的作用是将桥路的两个端点电位进行比较,当B,D两点电位相等时,桥路中无电流通过,指示仪示数为零,电桥达到平衡。
此时有U AB=U AD,U BC=U DC,电桥平衡,电流Ig=0,流过电阻R1,R3电流相等,I1=I3,同理I2=I Rt,因此R1/R2=R3/Rt如果R1=R2,则有Rt=R3 (1)2.恒流法测量热电阻恒流法测量热电阻,电路如图所示电源采用恒流源,R1为已知数值的固定电阻,Rt为热电阻。
U R1为R1上的电压,U Rt 为Rt上的电压,U R1用于监测电路的电流,当电路电流恒定时只要测出热电阻两端电压U Rt,即可知道被测热电阻的阻值。
当电路电流为I0,温度为t时,热电阻Rt为Rt=U Rt/I0=R1U Rt/U R1 (2)3.Pt100铂电阻温度传感器Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器。
铂的物理化学性能极稳定,抗氧化能力强,易复制性好,易工业化生产,电阻率较高。
按IEC标准,铂电阻的测温范围为-200— 650℃。
实验五十五 温度传感器特性的研究
实验十九 温度传感器特性的研究随着现代测量、控制和自动化技术的发展,传感器技术越来越受到人们的重视,传感器在各个领域中的作用也日益显著。
传感器是将各种非电量(包括物理量、化学量、生物量等)按一定规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。
传感器的种类很多,有温度传感器、压力传感器、位移传感器、速度传感器、加速度传感器、湿度传感器等。
在各种温度传感器中,把温度转换为电势和电阻的方法最为普遍,本实验首先讨论将温度转换为电势的传感器——热电偶的温度特性,然后讨论将温度转换为电阻的传感器——热电阻的温度特性。
实 验 目 的(1)掌握补偿法测电动势的基本原理,学会用UJ-31型低电势电位差计测定热电偶的温差电动势。
(2)掌握热电偶温度计的定标以及用热电偶温度计测温的原理。
(3)研究热电阻的温度特性。
(4)掌握非平衡电桥的工作原理,学会用非平衡电桥测量热电阻的阻值。
练习一 热电偶传感器温度与温差电动势关系的测量一 实 验 原 理1. 热电偶测温原理热电偶是利用热电效应制成的温度传感器。
热电偶亦称温差电偶,如图1所示。
它是由A 、B 两种不同材料的金属丝的端点彼此紧密接触而组成的。
当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称温差电动势或热电动势。
当组成热电偶的材料一定时,温差电动势E X 仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式:()0t t E X -=α (1)式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值就等于两接点温度差为1°C 时所产生的电动势。
为了测量温差电动势,就需要在图1的回路中接入测量仪器,本实验选用的是铜-康铜组成的热电偶(铜-康铜热电偶在低温下使用较为普遍,测量范围为-200~+200℃)。
由于其中有一根金属丝和引线材料一样,都是铜,因此没有影响热电偶原来的性质,即没有影响它在一定的温差0t t -下应有的电动势X E 值。
温度传感实验报告
一、实验目的1. 了解温度传感器的基本原理和种类。
2. 掌握温度传感器的测量方法及其应用。
3. 分析不同温度传感器的性能特点。
4. 通过实验验证温度传感器的测量精度和可靠性。
二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。
当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。
热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。
2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。
被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。
3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。
冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。
4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。
其电阻值与温度呈线性关系,常用于精密温度测量。
四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。
同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。
2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。
记录标定数据,计算误差。
3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。
传感器特性系列实验报告
一、实验目的1. 了解各类传感器的基本原理、工作特性及测量方法。
2. 掌握传感器实验仪器的操作方法,提高实验技能。
3. 分析传感器在实际应用中的优缺点,为后续设计提供理论依据。
二、实验内容本次实验主要包括以下几种传感器:电容式传感器、霍尔式传感器、电涡流式传感器、压力传感器、光纤传感器、温度传感器、光敏传感器等。
1. 电容式传感器实验(1)实验原理:电容式传感器利用电容的变化来测量物理量,其基本原理为平板电容 C 与极板间距 d 和极板面积 S 的关系式C=ε₀εrS/d。
(2)实验步骤:搭建实验电路,将传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
2. 霍尔式传感器实验(1)实验原理:霍尔式传感器利用霍尔效应,将磁感应强度转换为电压信号,其基本原理为霍尔电压 U=KBIL。
(2)实验步骤:搭建实验电路,将霍尔传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
3. 电涡流式传感器实验(1)实验原理:电涡流式传感器利用涡流效应,将金属导体中的磁通量变化转换为电信号,其基本原理为电涡流电压 U=KfB。
(2)实验步骤:搭建实验电路,将电涡流传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
4. 压力传感器实验(1)实验原理:压力传感器利用应变电阻效应,将力学量转换为易于测量的电压量,其基本原理为应变片电阻值的变化与应力变化成正比。
(2)实验步骤:搭建实验电路,将压力传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
5. 光纤传感器实验(1)实验原理:光纤传感器利用光纤的传输特性,将信息传感与信号传输合二为一,其基本原理为光纤传输的损耗与被测物理量有关。
(2)实验步骤:搭建实验电路,将光纤传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
6. 温度传感器实验(1)实验原理:温度传感器利用电阻或热电偶的特性,将温度变化转换为电信号,其基本原理为电阻或热电偶的电阻或电动势随温度变化。
传感器实验实验报告
一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握传感器的应用及其在各类工程领域的实际意义。
3. 通过实验操作,验证传感器的工作性能,并分析其优缺点。
4. 学习传感器测试和数据处理的方法。
二、实验器材1. 传感器:温度传感器、压力传感器、光电传感器、霍尔传感器等。
2. 测试仪器:示波器、万用表、信号发生器、数据采集器等。
3. 实验台:传感器实验台、电路连接线、固定装置等。
三、实验内容1. 温度传感器实验(1)实验目的:验证温度传感器的响应特性,分析其线性度、灵敏度等参数。
(2)实验步骤:a. 将温度传感器固定在实验台上,连接好电路。
b. 使用信号发生器输出不同温度的信号,观察温度传感器的输出响应。
c. 记录温度传感器在不同温度下的输出电压,绘制输出电压与温度的关系曲线。
d. 分析温度传感器的线性度、灵敏度等参数。
2. 压力传感器实验(1)实验目的:验证压力传感器的响应特性,分析其非线性度、灵敏度等参数。
(2)实验步骤:a. 将压力传感器固定在实验台上,连接好电路。
b. 使用压力泵对压力传感器施加不同压力,观察压力传感器的输出响应。
c. 记录压力传感器在不同压力下的输出电压,绘制输出电压与压力的关系曲线。
d. 分析压力传感器的非线性度、灵敏度等参数。
3. 光电传感器实验(1)实验目的:验证光电传感器的响应特性,分析其灵敏度、响应时间等参数。
(2)实验步骤:a. 将光电传感器固定在实验台上,连接好电路。
b. 使用光强控制器调节光电传感器的光照强度,观察光电传感器的输出响应。
c. 记录光电传感器在不同光照强度下的输出电压,绘制输出电压与光照强度的关系曲线。
d. 分析光电传感器的灵敏度、响应时间等参数。
4. 霍尔传感器实验(1)实验目的:验证霍尔传感器的响应特性,分析其线性度、灵敏度等参数。
(2)实验步骤:a. 将霍尔传感器固定在实验台上,连接好电路。
b. 使用磁场发生器产生不同磁感应强度的磁场,观察霍尔传感器的输出响应。
温度传感器实验报告
一、实验目的1. 了解温度传感器的原理和分类。
2. 掌握温度传感器的应用和特性。
3. 学习温度传感器的安装和调试方法。
4. 通过实验验证温度传感器的测量精度。
二、实验器材1. 温度传感器:DS18B20、热电偶(K型、E型)、热敏电阻(NTC)等。
2. 测量设备:万用表、数据采集器、温度调节器等。
3. 实验平台:温度传感器实验模块、单片机开发板、PC机等。
三、实验原理温度传感器是将温度信号转换为电信号的装置,根据转换原理可分为接触式和非接触式两大类。
本实验主要涉及以下几种温度传感器:1. DS18B20:一款数字温度传感器,具有高精度、高可靠性、易于接口等优点。
2. 热电偶:利用两种不同金属导体的热电效应,将温度信号转换为电信号。
3. 热敏电阻:利用温度变化引起的电阻值变化,将温度信号转换为电信号。
四、实验步骤1. DS18B20温度传感器实验1. 连接DS18B20传感器到单片机开发板。
2. 编写程序读取温度值。
3. 使用数据采集器显示温度值。
4. 验证温度传感器的测量精度。
2. 热电偶温度传感器实验1. 连接热电偶传感器到数据采集器。
2. 调节温度调节器,使热电偶热端温度变化。
3. 使用数据采集器记录热电偶输出电压。
4. 分析热电偶的测温特性。
3. 热敏电阻温度传感器实验1. 连接热敏电阻传感器到单片机开发板。
2. 编写程序读取热敏电阻的电阻值。
3. 使用数据采集器显示温度值。
4. 验证热敏电阻的测温特性。
五、实验结果与分析1. DS18B20温度传感器实验实验结果显示,DS18B20温度传感器的测量精度较高,在±0.5℃范围内。
2. 热电偶温度传感器实验实验结果显示,热电偶的测温特性较好,输出电压与温度呈线性关系。
3. 热敏电阻温度传感器实验实验结果显示,热敏电阻的测温特性较好,电阻值与温度呈非线性关系。
六、实验总结通过本次实验,我们了解了温度传感器的原理和分类,掌握了温度传感器的应用和特性,学会了温度传感器的安装和调试方法。
温度传感器的研究实验报告
温度传感器的研究实验报告温度传感器的研究实验报告一、引言温度传感器是一种广泛应用于各个领域的关键设备,用于测量和监控环境中的温度变化。
本实验旨在研究不同类型的温度传感器及其性能特点,以便更好地理解和应用这一技术。
二、实验目的1. 研究不同类型的温度传感器的工作原理;2. 测量不同温度下温度传感器的响应特性;3. 分析温度传感器的精度和稳定性。
三、实验方法1. 实验器材:温度传感器、温度控制装置、数字温度计、数据采集系统等;2. 实验步骤:a. 将温度传感器与温度控制装置连接,并设置不同的温度值;b. 使用数字温度计测量传感器输出的温度值;c. 使用数据采集系统记录传感器的输出数据;d. 重复以上步骤,以获取更多的数据。
四、实验结果与分析1. 温度传感器的工作原理:温度传感器根据不同的工作原理可以分为热敏电阻、热电偶、半导体温度传感器等。
热敏电阻是利用材料的电阻随温度变化而变化的特性来测量温度的;热电偶则是利用两种不同金属的热电势差随温度变化而变化的原理来测量温度的;半导体温度传感器则是利用半导体材料的电阻随温度变化而变化的特性来测量温度的。
2. 温度传感器的响应特性:实验中我们分别测试了不同类型的温度传感器在不同温度下的响应特性。
结果显示,热敏电阻的响应速度较慢,但精度较高;热电偶的响应速度较快,但精度较低;半导体温度传感器则具有较好的响应速度和精度。
3. 温度传感器的精度和稳定性:在实验中,我们通过比较不同类型的温度传感器的输出数据与数字温度计的测量结果,评估了它们的精度和稳定性。
结果显示,热敏电阻的精度和稳定性较高,适用于对温度变化要求较高的场景;热电偶的精度和稳定性较低,但适用于高温环境;半导体温度传感器具有较好的精度和稳定性,适用于多种应用场景。
五、结论通过本实验,我们研究了不同类型的温度传感器及其性能特点。
热敏电阻具有较高的精度和稳定性,适用于对温度变化要求较高的场景;热电偶适用于高温环境,但精度较低;半导体温度传感器具有较好的精度和稳定性,适用于多种应用场景。
温度传感器实验报告
温度传感器实验报告一、实验目的:1、 了解各种电阻的特性与应用2、 了解温度传感器的基本原理与应用 二、实验器材传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等 三、实验步骤1、 AD590温度特性1、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来;2、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来;3、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上正端接a,负端接b,再将b 、d 连接起来,接成分压测量形式;4、将主控箱的+5V 电源接入a 和地之间;5、将d 和地与主控箱的电压表输入端相连即测量1K 电阻两端的电压;6、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 010设定一次,即Δt=C 010,读取数设定温度,因此可得测量温度与设定温度对照表如下:四、实验中应注意的事项1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器;2、采用放大电路测量时注意要调零;3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590;五、实验总结从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断;传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器;。
温度传感器的温度特性研究
温度传感器的温度特性研究实验讲义前 言“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果也是至关重要的,所以温度传感器的应用更是十分广泛的。
【实验目的】1.测量590AD 典型温度传感器的温度特性。
2.了解温度传感器的原理与应用,学会用温度传感器组装数字式温度测量仪表。
3. 用几种常用的温度传感器组装温度测量仪表(显示)与温度控制装置。
【实验仪器】Ⅰ-FB 716型物理设计性(热学)实验装置 1套。
【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
本实验将通过测量常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。
电流型集成电路温度传感器(590AD ):590AD 是一种电流型集成电路温度传感器。
其输出电流大小与温度成正比。
它的线性度极好,590AD 温度传感器的温度适用范围为C 150~55︒-,灵敏度为K /A 1μ。
它具有高准确度、动态电阻大、响应速度快、线性好、使用方便等特点。
590AD 是一个二端器件,符号如图1所示:图1 图2590AD 等效于一个高阻抗的恒流源,其输出阻抗Ω>M 10,能大大减小因电源电压变动而产生的测温误差。
590AD 的工作电压为V 30~4++,测温范围是C 150~55︒-。
对应于热力学温度T ,每变化K 1,输出电流变化A 1μ。
其输出电流)A (I o μ与热力学温度)K (T 严格成正比。
其电流灵敏度表达式为:ln8Re 3kT I ∙∙= (7) 式(7)中e ,k 分别为波尔兹曼常数和电子电量,R 是内部集成化电阻。
将Ω==538R ,K /mV 0862.0e /k 代入(9)中得 到K /A 000.1TIμ= (8) 在C 0T ︒=时其输出为A 15.273μ (590AD 有几种级别,一般准确度差异在A 5~3μ±)。
温度特性测量实验报告(3篇)
第1篇一、实验目的1. 了解温度传感器的原理和特性;2. 掌握温度特性测量的方法;3. 分析实验数据,得出温度传感器的温度特性曲线;4. 比较不同类型温度传感器的性能差异。
二、实验原理温度传感器是一种将温度信号转换为电信号的装置。
常见的温度传感器有热电偶、热敏电阻、红外温度传感器等。
本实验采用热电偶进行温度特性测量。
热电偶测温原理:由两种不同金属导线组成的闭合回路,当两端温度不同时,回路中会产生热电势,热电势的大小与温度差成正比。
根据热电势与温度差的关系,可以计算出温度值。
三、实验仪器与材料1. 热电偶(K型、E型)2. 温度传感器实验模块3. CSY2001B型传感器系统综合实验台4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔四、实验步骤1. 将K型热电偶插入温控电加热炉中,预热至室温;2. 将E型热电偶插入温控电加热炉中,预热至室温;3. 使用VC9804A万用表测量K型热电偶在室温下的热电势,记录数据;4. 使用VC9806万用表测量E型热电偶在室温下的热电势,记录数据;5. 逐步增加温控电加热炉的温度,分别测量K型、E型热电偶在不同温度下的热电势,记录数据;6. 对实验数据进行处理,绘制温度-热电势曲线。
五、实验数据及处理1. 室温下K型热电偶热电势:0.061mV2. 室温下E型热电偶热电势:0.011mV3. K型热电偶在不同温度下的热电势数据(部分):温度(℃):100 200 300 400 500热电势(mV):0.119 0.229 0.345 0.464 0.5864. E型热电偶在不同温度下的热电势数据(部分):温度(℃):100 200 300 400 500热电势(mV):0.023 0.046 0.068 0.090 0.113根据实验数据,绘制温度-热电势曲线。
六、实验结果与分析1. 温度-热电势曲线通过实验数据绘制K型、E型热电偶的温度-热电势曲线,可以看出两种热电偶在温度范围内具有良好的线性关系。
大学物理实验-温度传感器实验报告
关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。
本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。
热电偶的温差电动势关于温度有很好的线性性质。
PN节作为常用的测温元件,线性性质也较好。
本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。
关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。
温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。
作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。
2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。
利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。
铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。
按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。
Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B+C(t-100)] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×;B=-5.802×;C=-4.274×。
Cu50温度传感器的温度特性实验
传感器技术实验报告实验序号:实验三十三系别:电子通信工程系班级:电信121班组别:第二组成员:实验分析线路连接数据记录撰写报告2021年4月27日实验三十三Cu50温度传感器的温度特性实验一、实验目的:了解Cu50温度传感器的特性与应用。
二、根本原理:在一些测量精度要求不高且温度较低的场合,一般采用铜电阻,可用来测量-50oC~+150〕C的温度。
铜电阻有以下优点:2在上述温度范围内,铜的电阻与温度呈线性关系R t = R o〔1+at〕34 电阻温度系数高,a = 4.25~4.28 X 10 / oC5容易提纯,价格廉价三、需用器件与单元:K型热电偶、Cu50热电阻、YL系列温度测量控制仪、直流电源土15V、温度传感器实验模块、数显单元〔主控台电压表〕、万用表。
四、实验步骤:1、差动电路调零将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。
首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调零。
具体方法是把R5和民的两个输入点短接并接地,然后调节Rw使V0i的输出电压为零,再调节Rw,使V02的输出电压为零,此后Rw和Rw不再调节。
2、温控仪表的使用注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明〞,〔见附录一〕学会根本参数设定〔出厂时已设定完毕〕。
3、热电偶的安装选择控制方式为内控方式,将K型热电偶温度感应探头插入“ YL系列温度测量控制仪〞的上方两个传感器放置孔中的一个。
将K型热电偶自由端引线插入“YL 系列温度测量控制仪〞正前方面板的的“传感器〞插孔中,红线为正极。
4、热电阻的安装及室温调零将Cu50热电阻传感器探头插入加热源的另一个插孔中,尾部红色线为正端,插入实验模块的a端,其它两端相连插入b端,见图11-1,a端接电源+2V, b端与差动运算放大器的一端相接,桥路的F W另一端和差动运算放大器的另一端相接〔R2=50欧姆〕。
模块的输出V〕2与主控台数显表相连,连接好电源及地线,合上主控台电源,调节Rw,使数显表显示为零〔此时温度测量控制仪电源关闭〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五温度传感器特性试验
5.1、 Cu50温度传感器的温度特性实验
一、实验目的:了解Cu50温度传感器的特性与应用。
二、基本原理:在一些测量精度要求不高且温度较低的场合,一般采用铜电阻,可用来测量-50ºC~+150ºC的温度。
铜电阻有下列优点:
2在上述温度范围内,铜的电阻与温度呈线性关系
R
t = R
(1+at)
4电阻温度系数高,a = 4.25~4.28×10-3/ºC
6容易提纯,价格便宜
三、需用器件与单元:K型热电偶、Cu50热电阻、YL系列温度测量控制仪、直流电源±15V、温度传感器实验模块、数显单元(主控台电压表)、万用表。
四、实验步骤:
1、差动电路调零
将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。
首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调
零。
具体方法是把R
5和R
6
的两个输入点短接并接地,然后调节Rw
2
使V
01
的输出电压
为零,再调节Rw
3,使V
02
的输出电压为零,此后Rw
2
和Rw
3
不再调节。
2、温控仪表的使用
注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明”,(见附录一)学会基本参数设定(出厂时已设定完毕)。
3、热电偶的安装
选择控制方式为内控方式,将K型热电偶温度感应探头插入“YL系列温度测量控制仪”的上方两个传感器放置孔中的一个。
将K型热电偶自由端引线插入“YL 系列温度测量控制仪”正前方面板的的“传感器”插孔中,红线为正极。
4、热电阻的安装及室温调零
将Cu50热电阻传感器探头插入加热源的另一个插孔中,尾部红色线为正端,插入实验模块的a端,其它两端相连插入b端,见图11-1,a端接电源+2V,b端与差动运算放大器的一端相接,桥路的R
W1
另一端和差动运算放大器的另一端相接
(R2=50欧姆)。
模块的输出V
02
与主控台数显表相连,连接好电源及地线,合上
主控台电源,调节Rw
1
,使数显表显示为零(此时温度测量控制仪电源关闭)。
5、测量记录
合上内控选择开关(“加热方式”和“冷却方式”均打到内控方式),设定温度控制值为40ºC,当温度控制在40ºC时开始记录电压表读数,重新设定温度值为40ºC+n·Δt,建议Δt=5ºC,n=1……7,到75ºC每隔1n读出数显表输出电压与温度值。
待温度稳定后记下数显表上的读数(若在某个温度设定值点的电压值有上下波动现象,则是由于控制温度在设定值的+1ºC范围波动的结果,这样可以记录波动时,传感器信号变换模块对应输出的的电压最小值和最大值,取其中间数值)填入表4-1。
T(ºC)4045505560657075
V(mv)73159250338442530620702
表4-1:
6、根据数据结果,计算Δt=5ºC时,Cu50热电阻传感器对应变换电路输出的ΔV数值是否接近。
7、写出最小二乘法拟合Cu50特性直线方程,求非线性误差、迟滞和重复性误差。
从理论上分析产生非线性误差的原因。
答:非线性误差=1.02%
迟滞 =0.53%
重复性=1.12%
5.2热电偶测温性能实验
一、实验目的:了解热电偶测量温度的性能与应用范围。
二、基本原理:当两种不同的金属组成回路,如两个接点有温度差,就会产生热电势,这就是热电效应。
温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0ºC、25ºC。
三、需用器件与单元:热电偶K型、E型、温度测量控制仪、数显单元(主控台电压表)、直流稳压电源±15V。
四、实验步骤:
1、在温度控制仪上选择控制方式为内控方式,将K,E热电偶插到温度测量控制
仪的插孔中,K型的自由端接到温度控制仪上标有传感器字样的插孔中。
2、从主控箱上将±15V电压,地接到温度模块上,并将R5,R6两端短接同时接
地,打开主控箱电源开关,将模块上的Vo2与主控箱数显表单元上的Vi相接。
将Rw2旋至中间位置,调节Rw3使数显表显示为零。
设定温度测量控制仪上的温度仪表控制温度T=40℃。
3、去掉R5,R6接地线及连线,将E型热电偶的自由端与温度模块的放大器R5,
R6相接,同时E型热电偶的蓝色接线端子接地。
观察温控仪表的温度值,当温度控制在40℃时,调节Rw2,对照分度表将Vo2输出调至和分度表10倍数值相当(分度表见后)。
4、调节温度仪表的温度值T=50℃,等温度稳定后对照分度表观察数显表的电压
值,若电压值超过分度表的10倍数值时,调节放大倍数Rw2,使Vo2输出与分度表10倍数值相当。
5、重新将温度设定值设为T=40℃,等温度稳定后对照分度表观察数显表的电压
值,此时Vo2输出值是否与10倍分度表值相当,再次调节放大倍数Rw2,使其与分度表10倍数值接近。
6、重复步骤4,5以确定放大倍数为10倍关系。
记录当T=50℃时数显表的电压
值。
重新设定温度值为40℃+n△t,建议△t=5℃,n=1……7,每隔1n读出数显表输出电压值与温度值,并记入表11-3中。
表11-3 E型热电偶电势(经放大)与温度数据(考虑到热电偶的精度及处理电路的本身误差,分度表的对应值可能有一定的偏差)
T+n·Δt 4045505560657075
V(mv)2434475766758492
五、思考题:
1、同样实验方法,完成K型热电偶电势(经放大)与温度数据
2、通过温度传感器的三个实验你对各类温度传感器的使用范围有何认识?
3、拟合K型热电偶的温度特性方程,要求R2大于0.9.
并利用本实验台进行实验。
E型热电偶分度表
E参考端温度:
0℃
整10度μν值
℃0102030405060708090 0059111921801241930473683432949835646 10063176996768383779078978710501112221194912681 20013419141611490915661164171717817942187101948120256 30021033218142259723383241712496125754265492734528143 40028943297443054631350321553296033767345743538236190 50036999378083942640236410454185342662434704427845085 60045085458914669747502483064910949911507135151352312 70053110539075470355498562915708357873586635945160237 80061022618066258863368641476492465700664736724568015
90068783695497031371075718357259373350741047485775608 100076358。