八年级数学上册 15.3 分式方程教案 (新版)新人教版

合集下载

新人教版八年级数学上册教案:15.3分式方程

新人教版八年级数学上册教案:15.3分式方程
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
例:某商店进行打折促销,原价与折后价之间的分式关系。
2.教学难点
-分式方程的识别:学生在面对实际问题时,难以准确识别出分式方程,需通过典型例题进行讲解。
例:识别速度、浓度等实际问题中的分式方程。
-分式方程的转化:将复杂的分式方程转化为简单的线性方程或整式方程,以便于求解。
例:将分式方程1/(x+1) + 1/(x-1) = 2/(x^2-1)转化为整式方程。
2.培养学生运用逻辑推理和数学运算解决分式方程问题的能力,加强学生对数学工具和方法的理解;
3.培养学生的数据分析素养,使学生能够从实际问题中提取信息,建立分式方程模型,并解决相关问题;
4.培养学生的合作意识和探究精神,通过小组讨论和问题解决,提高学生的交流协作能力;
5.培养学生将数学知识应用于实际生活中的意识,增强学生对数学实用性的认识,激发学生学习数学的兴趣。
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分母的方程,其特点是方程中至少有一个未知数出现在分母中。它在解决按比例分配、速度、浓度等问题中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,两个同学A和B一起做作业,A每小时完成1/3份,B每小时完成1/4份,问他们一起工作2小时能完成多少份作业?这个案例展示了分式方程在实际中的应用,以及它如何帮助我们解决问题。

分式方程(第一课时)教案-初二数学第十五章15.3人教版

分式方程(第一课时)教案-初二数学第十五章15.3人教版

第十五章分式的方程15.3分式的方程第一课时 15.3.1分式的方程(认识、解法)1教学目标1.1知识与技能:[1]理解分式方程的意义。

[2]使学生掌握可化为一元一次方程的分式方程的一般解法。

[3]理解解分式方程时可能无解的原因,并掌握分式方程的验根方法。

1.2过程与方法:经历“实际问题---分式方程---整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。

1.3 情感态度与价值观:[1]在活动中培养学生乐于探究﹑合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.[2]结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气。

2教学重点/难点/易考点2.1 教学重点[1]可化为一元一次方程的分式方程的解法。

[2]分式方程转化为整式方程的方法及其中的转化思想。

2.2 教学难点[1]理解解分式方程时可能无解的原因。

[2]解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根。

3 专家建议本节课内容难度不大,但是难点在于灵活运用。

在讲授分式方程解法时,老师应该尽量说清楚以下知识点:(1)类比整式方程与分式方程的区别。

(2)在进行解分式方程时,注意出现曾根的情况。

从下一节起将开始分式方程的应用。

因此,可以在课下带领同学进行分式的乘除、加减、幂运算以及混合运算进行专题练习,锻炼同学综合运用分式运算知识进行解题的技能。

4 教学方法[1]分组讨论。

[2]类比推理。

[2]启发引导探索的教学方法。

5 教学用具多媒体,黑板6教学过程6.1复习提问【师】同学们好。

同学们看一下大屏幕上的这个题,我们一起回亿一下之前我们学过哪些方程?我们该如何求解它呢?【生】答:(1)前面已经学过了一元一次方程.(2)一元一次方程是整式方程.(3)一元一次方程解法步骤是:①去分母②去括号③移项④合并同类项⑤系数化一。

15.3 分式方程【教案】八年级上册数学

15.3  分式方程【教案】八年级上册数学

第1课时分式方程课时目标1.让学生经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.2.通过探究分式方程解法的过程,让学生感受增根产生的合理性及验根的必要性,提升学生思维的深度认知.3.通过使学生经历运用所学知识解分式方程的过程,让学生体会化归的数学思想和数学知识之间的内在联系,进一步提高学生的运算能力.学习重点分式方程的解法.学习难点理解解分式方程时可能无解的原因.课时活动设计新知引入一艘轮船在静水中的最大航速为30千米/时,它以最大航速沿江顺流航行90千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,(1)轮船顺流航行速度为30+v千米/时,逆流航行速度为30-v千米/时;(2)顺流航行90千米的时间为9030+v 小时,逆流航行60千米的时间为6030−v小时;(3)根据题意可列方程为9030+v =6030−v.想一想,像这样的方程属于什么方程,应该怎样解呢?设计意图:通过经历实际问题→列分式方程,让学生体会分式方程是一种有效描述现实世界的模型,发展学生分析问题和解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备.探究新知探究1 分式方程的概念问题1:什么是方程?我们学习过哪些方程?它们都是怎么定义的? 学生代表发言,教师总结.教师引导学生通过类比的方法得到分式方程的概念.分式方程的概念:分母中含有未知数的方程叫做分式方程. 分式方程的特征:①是等式;②分母中含有未知数. 问题2:下列关于x 的方程中哪些是分式方程? (1)1x =5;(2)x5=1;(3)x 2-x +13=0; (4)2x+2-1x ;(5)4x +3y =7;(6)12x 2-2a =1. 学生独立完成.探究2 分式方程的解法 1.解方程:2x -13-3x -12=116.请两名学生上台板演,教师给出正确的解答过程. 解:去分母,得2(2x -1)-3(3x -1)=11. 去括号,得4x -2-9x +3=11. 移项,得4x -9x =11+2-3. 合并同类项,得-5x =10. 系数化为1,得x =-2. 2.解分式方程:9030+v =6030−v .分析:先将分式方程转化为整式方程.解:9030+v =6030−v去分母,两边同乘(30+v )(30-v )90(30-v )=60(30+v )去括号2 700-90v =1 800+60v移项-90v -60v =1 800-2 700合并同类项-150v =-900系数化为1v =6思考:v =6是原分式方程的解吗?将v =6代入原方程中,左边=52=右边,因此v =6是原分式方程的解.总结:解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母.探究3 增根 解方程:1x -5=10x 2-25.解:方程两边同乘最简公分母(x -5)(x +5),得整式方程x +5=10. 解得x =5.将x =5代入原分式方程检验,分母x -5和x 2-25的值都为0,相应的分式无意义. 所以这个分式方程无解.思考:上面两个分式方程中,为什么9030+v =6030−v ①去分母后所得整式方程的解就是①的解,而1x -5=10x 2-25②去分母后所得整式方程的解却不是②的解呢?学生分小组进行交流,学生代表发言,教师总结.总结:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.设计意图:引导学生观察、反思、对比方程①②的解法,得出解分式方程时检验的必要性和具体检验方法.让学生经历这样的探究过程,促使学生深刻地领悟数学知识、数学方法产生的合理性,有利于提升学生的思维能力.典例精讲 例 解方程:(1)2x -3=3x ; (2)xx -1-1=3(x -1)(x+2).解:(1)方程两边同乘x (x -3),得2x =3x -9.解得x =9. 检验:当x =9时,x (x -3)≠0. 所以,原分式方程的解为x =9.(2)方程两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3.解得x =1. 检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.设计意图:通过例题,使学生熟悉解分式方程的步骤以及检验方法,规范解题步骤及书写格式,加深学生对分式方程解法的认识.课堂小结1.分式方程的概念是什么?2.怎样解分式方程?设计意图:让学生自己总结本节课的内容,帮助学生巩固所学知识,培养学生的总结概括能力.课堂8分钟.1.教材第150页,152页练习,第154页习题15.3第1题.2.作业.第1课时分式方程一、分式方程的概念.二、解分式方程的基本思想——化归.三、解分式方程的一般步骤:1.化——化分式方程为整式方程(去分母);2.解——解整式方程;3.检验——检验所得整式方程的解是否为原分式方程的解.四、例题讲解.教学反思第2课时分式方程的实际应用——工程、行程问题课时目标1.让学生经历用分式方程解决实际问题的过程,体会分式方程是刻画现实世界问题的有效数学模型,培养学生的建模思想.2.通过让学生列分式方程解决具体实际问题,培养学生的数学应用意识,提高学生分析问题和解决实际问题的能力.3.通过列分式方程解应用题,使学生进一步掌握列方程解应用题的方法和步骤,体会检验的必要性,渗透方程思想.学习重点会列分式方程解决实际问题. 学习难点实际问题中相等关系的提炼及转化为方程的过程. 课时活动设计回顾旧知1.解分式方程:1x -2+1=x+12x -4.2.列方程解决实际问题的一般步骤: 审、设、列、解、验、答 .3.常见等量关系式:路程=时间×速度;工作总量=工作效率×工作时间;顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度;利润=售价-进价.设计意图:复习解方程的步骤、列方程解决实际问题的步骤和常见等量关系式,唤醒学生已有的知识体系,为本节课的学习作铺垫.探究新知问题:一艘轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流速度为3千米/时,求轮船在静水中的速度.分析:设轮船在静水中的速度为x 千米/时,则顺水航行的速度为 x +3 千米/时,逆水航行的速度为 x -3 千米/时,顺水航行的时间为 40x+3 小时,逆水航行的时间为 30x -3 小时,根据题意,可得方程 40x+3=30x -3 .解:设轮船在静水中的速度为x 千米/时,则40x+3=30x -3,解得x =21. 检验:当x =21时,(x +3)(x -3)≠0, 所以,x =21是原分式方程的解. 答:轮船在静水中的速度为21千米/时.对比列整式方程解应用题的步骤,学生交流讨论、教师归纳总结出列分式方程解实际问题的步骤:审、设、列、解、验、答.设计意图:用同学们熟悉的实际问题引入分式方程的模型,激发学生对本节课学习的兴趣.通过这道实际问题的解决,加深学生对解分式方程的步骤及解应用题的步骤的认识.典例精讲例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?解:设乙队单独施工1个月能完成总工程的1x .记总工程量为1,根据工程的实际进度,得13+16+12x =1.方程两边乘6x ,得2x +x +3=6x.解得x =1. 检验:当x =1时,6x ≠0. 所以,原分式方程的解为x =1.由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成任务的13,可知乙队的施工速度快.例2 某次列车平均提速v km/h .用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度是多少?解:设提速前这次列车的平均速度为x km/h,则提速前它行驶s km 所用时间为s xh;提速后列车的平均速度为(x +v )km/h,提速后它行驶(s +50)km 所用时间为s+50x+vh .根据行驶时间的等量关系,得s x =s+50x+v .方程两边乘x (x +v ),得s (x +v )=x (s +50).解得x =sv50. 检验:由v ,s 都是正数,得x =sv50时,x (x +v )≠0. 所以,原分式方程的解为x =sv 50. 答:提速前列车的平均速度为sv 50 km/h .设计意图:通过例题让学生巩固解题步骤,规范书写格式,亲身体验建立分式方程解决实际问题的过程,提高学生分析问题和解决问题的能力.课堂小结1.列分式方程解决实际问题的一般步骤是什么?2.工程、行程问题中都存在哪些等量关系式?设计意图:通过小结,让学生回顾本节课所学内容,提高学生的归纳总结能力.课堂8分钟.1.教材第154页练习第1,2题,第154页习题15.3第3题.2.作业.第2课时分式方程的实际应用——工程、行程问题一、列分式方程解决实际问题的一般步骤:审、设、列、解、验、答.二、例题讲解.教学反思第3课时 分式方程的实际应用——销售及其他问题课时目标1.通过使学生经历用分式方程解决销售问题的过程,体会分式方程是刻画现实世界问题的有效数学模型,培养学生的建模思想.2.通过让学生列分式方程解决销售问题,培养学生的数学应用意识,提高学生分析问题和解决实际问题的能力. 学习重点会列分式方程解决销售问题. 学习难点销售问题中相等关系的寻找及转化为方程的过程. 课时活动设计回顾旧知1.列分式方程解决实际问题的一般步骤: 审、设、列、解、验、答 ;2.销售问题中基本量之间有什么关系? 利润= 售价-进价 ;利润率= 利润进价;总价= 单价×数量 ;打折后的销售价= 单价×折扣 ;……设计意图:通过复习列分式方程解决实际问题的步骤和销售问题中常见的基本量之间的关系,唤起学生已有的知识体系,为本节课的学习做好准备.探究新知问题:在某“爱心义卖”活动中,商家购进甲、乙两种文具,甲每个进货价比乙高10元,90元购买乙的数量与150元购买甲的数量相同.求甲、乙的进货价.分析:设甲的进货价为x 元,则乙的进货价为 x -10 元,150元可以购买甲的数量为 150x 个,90元可以购买乙的数量为 90x -10 个,根据题意,可得方程150x=90x -10 .解:设甲的进货价为x 元/个,则150x=90x -10,解得x =25.经检验,当x =25时,x (x -10)≠0,所以x =25是原分式方程的解. x -10=25-10=15.答:甲的进货价为25元/个,乙的进货价为15元/个.设计意图:用同学们熟悉的实际问题题引入分式方程的模型,激发学生们对本节课学习的兴趣,加深学生对解分式方程的步骤和解应用题步骤的认识.典例精讲例 某超市用5 000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又用11 000元购进该品种的苹果,但这次的进货价比试销时的进货价每千克多了0.5元,购进苹果的数量是试销时的2倍.(1)试销时该品种的苹果的进货价是每千克多少元?(2)如果超市将该品种的苹果每次都按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市两次销售该品种苹果共赢利多少元?解:(1)设试销时该品种的苹果的进货价是每千克x 元. 根据题意,得2×5000x=11000x+0.5,解得x =5.经检验,x =5是原分式方程的解.答:试销时该品种的苹果的进货价是每千克5元. (2)试销时购进苹果的数量为50005=1 000(千克),第二次购进苹果的数量为2×1000=2 000(千克).赢利为(1 000+2 000-400)×7+400×7×0.7-5 000-11 000=4 160(元). 答:超市两次销售该品种苹果共赢利4 160元.设计意图:通过例题引导学生再次体会建立分式方程解决销售问题的过程,增强学生对销售问题中基本量之间关系的深刻理解,培养学生的应用意识.教学中,教师应注意鼓励学生积极探究,充分发挥学生的主观能动性,让学生经过自己的努力,最终解决实际问题,体验到获得成功后的喜悦.巩固训练某商城销售一种商品,第一个月将此商品的进价提高25%作为销售价,共获利6 000元.第二个月商场搞促销活动,将商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.此商品的进价是每件多少元?商场第二个月共销售此商品多少件?解:设此商品的进价为每件x 元.根据题意,得6000+40025%x =600025%x +80,解得x =500.经检验,x =500是原分式方程的解.6000+40010%×500=128(件).答:此商品的进价是每件500元,商场第二个月共销售此商品128件.设计意图:通过练习巩固所学,提高学生分析和解决问题的能力.课堂小结1.列分式方程解决实际问题的步骤是什么?2.销售问题中常见量之间有什么关系?设计意图:通过小结,让学生回顾本节课所学内容,提高学生的归纳总结能力.课堂8分钟.1.教材第155页习题15.3第7,8题.2.作业.第3课时 分式方程的实际应用——销售及其他问题一、列分式方程解决实际问题的一般步骤:审、设、列、解、验、答.二、销售问题中常见量之间的关系.三、例题讲解教学反思。

人教版八年级数学上册:15.3分式方程(教案)

人教版八年级数学上册:15.3分式方程(教案)
-对本节课所学内容进行总结,巩固知识点
-鼓励学生在日常生活中发现并解决分式方程问题,提高数学素养
7.课后作业(课后自主完成)
-针对本节课所学内容,布置课后习题,巩固所学知识
-鼓励学生自主探索、拓展学习,提高解题能力
五、教学反思
在本次分式方程的教学中,我发现学生们对于分式方程的概念和求解方法的理解总体上是不错的。他们能够跟随我的讲解,逐步掌握去分母、移项等基本操作。然而,我也注意到,部分学生在面对高次分式方程或者分式方程组时,会感到困惑,这成为了他们学习的难点。
举例:重点讲解分式方程2/(x-3) = 1/(x+2),突出求解过程中每一步的关键操作,如交叉相乘去分母,合并同类项等。
2.教学难点
-分式方程去分母的技巧:对于复杂的分式方程,如何选择合适的去分母方法,避免出现计算错误。
-高次分式方程的求解:涉及高次方程的求解,如何运用降次或其他数学方法简化问题。
人教版八年级数学上册:15.3分式方程(教案)
一、教学内容
人教版八年级数学上册:15.3分式方程
1.分式方程的定义与特点
2.分式方程的求解方法:去分母、去括号、移项、合并同类项、系数化为1
3.应用题:利用分式方程解决实际生活中的问题
4.分式方程的常见类型及解题技巧
a.简单分式方程
b.复杂分式方程
c.高次分式方程
三、教学难点与重点
1.教学重点
-分式方程的定义及其基本性质:理解分式方程中分子、分母的关系,掌握分式方程的基本形式。
-分式方程的求解方法:重点讲解去分母、去括号、移项、合并同类项、系数化为1的步骤,强调每一步的运算规则。
-分式方程的验根方法:教会学生如何检验求得的解是否满足原方程,确保解的正确性。

人教版八年级上册数学教案:15.3分式方程

人教版八年级上册数学教案:15.3分式方程
分式方程(第1课时)教学设计
设计教师
工作单位
学科
数学
课型
新授课
所教内容
新人教版数学八年级上册第十五章第三节第一课时
课程标准
讨论分式方程的概念及解法,主要涉及可以化为一元一次方程的分式方程.从章引言中的实际问题出发,分析分式方程的特点,给出分式方程的概念,接着从分式方程的特点入手,引出解分式方程的基本思路,即通过去分母将分式方程化为整式方程,再解出未知数.
教材分析
《分式方程》是人教版八年级数学《分式方程》第三节内容,从知识上讲,分式方程是在掌握方程、分式相关概念基础上的一次知识拓展,本节课为分式方程第一课时,让学生初步感知分式方程,认识分式方程,初步掌握分式方程的一般解法,为以后学习解打基础。从思想方法上讲,分式方程的求解是转化为已经学习的整式方程的解法,从而找到解分式方程的途径,让学生逐步理解并掌握应用转化的思想方法。
(师总结新的根的检验方法:将整式方程的解代入最简公分母,如果最简公分母不为0,则整式方程的解是原分式方程的解,否则,就不是原分式方程的解。
问:你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?
观察分式方程的两种检验方法,你发现了什么?
学生自愿上讲台解题,其他学生在下面独立完成.
学生自愿举手评价板书学生的解题过程.
1、如何把它化成整式方程?
2、如何去分母?
3、在方程两边乘什么样的式子才能把每一个分母都约去?
4、这样做的依据是什么?
师生共同分析解法,微视频展示系统地分析过程,师按照严格的格式板书详细的解方程过程)
再次展示规范的解题过程:
追问:x=6是原分式方程的解吗?怎样检验?
师总结道:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(分式方程转化为整式方程----化分为整)。

八年级数学上册15.3分式方程第1课时分式方程及其解法说课稿(新版)新人教版

八年级数学上册15.3分式方程第1课时分式方程及其解法说课稿(新版)新人教版

八年级数学上册 15.3 分式方程第1课时分式方程及其解法说课稿(新版)新人教版一. 教材分析八年级数学上册15.3分式方程是新人教版教材中的一节重要内容。

本节内容主要介绍了分式方程的概念及其解法。

在此之前,学生已经学习了分式的基本性质和运算,为本节内容的学习奠定了基础。

本节内容的学习,不仅有助于学生巩固分式的相关知识,还能提高他们解决实际问题的能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。

但是,他们在解决实际问题时,还存在着一定的困难。

因此,在教学过程中,我们需要关注学生的个体差异,针对不同层次的学生进行教学,使他们在原有基础上得到提高。

三. 说教学目标1.知识与技能:使学生掌握分式方程的概念,了解分式方程的解法,能运用分式方程解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决分式方程的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 说教学重难点1.重点:分式方程的概念及其解法。

2.难点:分式方程在实际问题中的应用。

五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究分式方程的解法。

2.利用多媒体课件,为学生提供丰富的学习资源,提高课堂效果。

3.学生进行小组讨论,培养他们的合作意识。

4.通过课后练习,巩固所学知识。

六. 说教学过程1.导入新课:以生活实例引入分式方程的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究分式方程的解法,培养学生独立解决问题的能力。

3.合作交流:学生进行小组讨论,分享各自的解题心得,互相学习,共同进步。

4.课堂讲解:对分式方程的解法进行讲解,重点讲解实际问题中的运用。

5.练习巩固:布置课后练习,让学生巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,突出重点。

主要包括以下内容:1.分式方程的概念2.分式方程的解法3.分式方程在实际问题中的应用八. 说教学评价1.课堂表现:关注学生在课堂上的参与程度、思维品质和合作意识。

15.3分式方程--利润问题教学设计2022-2023学年人教版八年级数学上册

15.3分式方程--利润问题教学设计2022-2023学年人教版八年级数学上册

15.3 分式方程-利润问题教学设计一、教学目标通过本节课的学习,学生应能够: 1. 理解利润的概念,能够运用分式方程解决利润问题; 2. 理解利润的计算方法,掌握利润的计算公式; 3. 学会分析利润问题并运用数学方法解决实际问题; 4. 提高学生的综合运算能力、逻辑思维能力和问题解决能力。

二、教学重难点1.利润的概念与计算;2.利润问题的分析与求解。

三、教学内容1.利润的概念与计算;2.利润问题的分析与求解。

四、教学过程及方法步骤一:导入新知识•利润是指企业在销售产品或提供服务后,获得的超过成本的收入。

请同学们回答一下问题:如何计算利润?(引导学生回答:利润 = 收入 - 成本)步骤二:引入实际问题•引入一个实际问题:某商店出售一批货物,每个商品进价为50元,商家希望以每件商品利润为10元的价格出售。

请问商家每件商品的售价应为多少?步骤三:引导学生解决问题•将问题抽象为分式方程:(售价 - 进价)/ 进价 = 利润率•根据给定的条件,利用分式方程求解售价:(售价 - 50)/ 50 = 10/50•整理方程并求解:售价 - 50 = 0.2 × 50,售价= 0.2 × 50 + 50步骤四:拓展应用•针对更多实际问题,引导学生进行分析和解决,如:某公司在某种商品上的进价为150元,利润率为30%,请问该商品的售价应为多少?步骤五:总结归纳•本节课主要学习了利润的概念与计算方法,以及利润问题的分析与求解方法。

五、教学评估1.在课堂上,通过发问和学生的回答来评估学生对利润概念的理解;2.设计合适的练习题,检测学生对利润问题的解决能力。

六、教学反思通过本节课的教学,学生对利润概念有了更深入的理解,并学会了如何运用分式方程解决利润问题。

但同时也发现,对于一些复杂的利润问题,学生还需要进一步提高他们的综合运算能力和分析问题的能力。

在以后的教学中,应该注意加强练习的设计,提高学生的解决问题的能力。

人教版八年级上册数学15.3分式方程第1课时分式方程及其解法课件

人教版八年级上册数学15.3分式方程第1课时分式方程及其解法课件

(4) 5 1 0 x2 x x2 x
(4)方程两边乘 x(x+1)(x-1),得5(x-1)-(x+1) =0.
解得:x = 3 .
2
检验:当 x =
3
时, x(x+1)(x-1) ≠ 0.
2
所以 x = 3 是原分式方程的解.
2
5.解关于x 的方程 a b 1( b ≠ 1). xa
分式方程和整式方程的区别与联系
区别 联系
分式方程
整式方程
分母中含有未知数
分母中不含未知数
分式方程可以转化为整式方程
< 针对训练 > 下列方程哪些是分式方程?
① x1 5 ② 1 4
3
x x1

x π
2x
1
π是常数, 不是未知数
⑤ x2 4
x
③ x2 1
x
知识点2 分式方程的解法
如何解分式方程
(1) 1 2 2x x 3
(2) x 2x 1 x 1 3x 3
(2)方程两边乘 3(x+1),得3x = 2x + 3(x+1).
解得:x = 3 .
检验:当
x
2
=
3
时,3(x+1) ≠ 0.
2
所以 x = 3 是原分式方程的解.
2
4. 解下列方程:
【选自教材P152 练习】
(3) 2 4 x 1 x2 1
2 x 1
2 1
x x
1
两边同乘
(x-1),约去分母后,得( D )
A.2-(2-x)=1
B.2+(2-x)=1
C.2-(2-x)=x-1 D.2+(2-x)=(x-1)

思南县第八中学八年级数学上册第十五章分式15.3分式方程第2课时分式方程的应用教案新版新人教版8

思南县第八中学八年级数学上册第十五章分式15.3分式方程第2课时分式方程的应用教案新版新人教版8

第2课时 分式方程的应用1.进一步熟练地解可化为一元一次方程的分式方程.2.使学生能较熟练地列可化为一元一次方程的分式方程解应用题.重点在不同的实际问题中审明题意设未知数,列分式方程,解决实际问题. 难点在不同的实际问题中,设未知数列分式方程.一、复习引入 1.解下列方程:(1)3-x x +1=4+x x +1-2;(2)2x +3+32=72x +6. 2.列方程解应用题的一般步骤:(1)审;(2)设;(3)列;(4)解;(5)答.[概括] 这些解题方法与步骤,对于解分式方程应用题也适用.这节课,我们将学习列分式方程解应用题.二、探究新知例 1 某校招生录取时,为了防止数据输入出错,2 640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用了2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?[分析] (1)如何设元?(2)题目中有几个相等关系?(3)怎样列方程? 本题有两个相等关系: (1)甲速=2乙速 (2)甲时+120=乙时其中(1)用来设,(2)用来列方程.[概括] 列分式方程解应用题的一般步骤: (1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是否符合题意; (5)写出答案(要有单位).例2 A ,B 两地相距135千米,两辆汽车从A 开往B ,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5∶2,求两车的速度.练习:(1)甲乙两人同时从A 地出发,骑自行车到B 地,已知AB 两地的距离为30 km ,甲每小时比乙多走3 km ,并且比乙先到40分钟.设乙每小时走x km ,则可列方程为( )A .30x -30x -3=23B .30x -30x +3=23C .30x +3-30x =23 D .30x -3-30x =23(2)我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必须是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度.例3(教材例3) 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队1个月完成工程的13,设乙队单独施工1个月能完成总工程的1x ,那么甲队半个月完成总工程的________,乙队半个月完成总工程的________,两队半个月完成总工程的________.本题是工程问题,注意基本公式是:工作量=工时×工效. 等量关系为:甲、乙两个工程总量总工程量.列方程:13+16+12x=1.例4(教材例4) 某次列车平均提速v km /h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?分析:这里的字母v ,s 表示已知数据,设提速前列车的平均速度为x km /h ,那么提速前列车行驶s km 所用时间为________h ,提速后列车的平均速度为________km /h ,提速后列车运行(s +50)km 所用时间为________h .本题是列含字母系数的分式方程,解这个方程并且检验是难点,在解题过程中注意把s ,v 当作已知数.等量关系:提速前行驶50 km 所用的时间=提速后行驶(s +50) km 所用的时间.列方程:sx=错误!.练习:教材第154页练习第1,2题. 三、课堂小结1.列分式方程解应用题的一般步骤: (1)审:审清题意;(2)设:设未知数(要有单位);(3)列:根据题目中的数量关系找出相等关系,列出方程; (4)解:解方程,并验根,还要看方程的解是否符合题意; (5)答:写出答案(要有单位). 2.几种基本题型: (1)行程问题; (2)数字问题; (3)工程问题; (4)顺水逆水问题; (5)利润问题. 四、布置作业教材第154~155页习题15.3第3,4,5题.本节课结合具体的数学内容采用“问题情境——建立数学模型——解释应用与拓展”的模式展开,选择有现实意义的,对学生具有一定挑战性的内容,使学生在自主探索和合作交流的过程中建立数学模型,让学生能够自觉的用数学的眼光观察世界,提高发现问题、分析问题、解决问题的能力.第2课时 线段的垂直平分线的有关作图1.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.(重点)2.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴.(重点)一、情境导入有时我们感觉两个平面图形成轴对称,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、合作探究探究点一:作线段的垂直平分线【类型一】 作某条线段的垂直平分线如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(注:作一对对应点的对称轴就是作线段AB 的垂直平分线)解析:本题其实就是作线段AB 的垂直平分线,根据线段垂直平分线的作法作出即可. 解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F两点;(2)作直线EF ,EF 即为所求的直线.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.方法总结:要熟练掌握线段垂直平分线的作法,作出的图形中的作图痕迹要保留.【类型二】 垂直平分线的作法与垂直平分线的性质的综合如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA =PB .(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM =PN ,BN =PM ,求证:∠MAP =∠NPB .解析:(1)利用线段垂直平分线的作法作出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.解:(1)如图所示:(2)在△AMP 和△BNP 中,∵⎩⎪⎨⎪⎧AM =PN ,PM =BN ,AP =BP ,∴△AMP ≌△PNB (SSS),∴∠MAP =∠NPB .方法总结:解决此类问题首先要正确作出图形,然后运用相关的知识解决其他问题.【类型三】 垂直平分线作法的应用如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB 的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A ,B 的距离相等.解:连接AB ,作AB 的垂直平分线交直线l 于O ,交AB 于E .∵EO 是线段AB 的垂直平分线,∴点O 到A ,B 的距离相等,∴这个公共汽车站C 应建在O 点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.【类型四】 线段垂直平分线与角平分线作法的综合运用如图,某地有两所大学和两条交叉的公路.图中点M ,N 表示大学,OA ,OB 表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)解析:到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.解:如图,点P为所求.方法总结:通过本题要熟练地掌握角平分线的作法以及线段垂直平分线的作法.探究点二:对称轴的画法【类型一】画出已知图形的对称轴画出下列轴对称图形的所有对称轴(不考虑颜色).解析:利用轴对称图形的性质分别得出其对称轴即可.解:如图所示:方法总结:画轴对称图形的对称轴,先找出对称点,然后作对称点的垂直平分线即可.【类型二】补全图形,并画出对称轴如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.解析:根据轴对称的性质画出图形即可.解:如图所示:方法总结:解答此类问题,一般要先设计出轴对称图形,然后根据图形的特点,画出对称轴.三、板书设计线段的垂直平分线的有关作图1.线段垂直平分线的作法.2.作轴对称图形的对称轴的方法.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.[菱形]说课稿一、教材分析1、在教材中的作用与地位[菱形]紧接[矩形]一节之后。

2024-2025学年人教版中学数学八年级(上)教案第十五15.3分式方程(第1课时)

2024-2025学年人教版中学数学八年级(上)教案第十五15.3分式方程(第1课时)

15.3 分式方程15.3 分式方程(第1课时)教学目标1.理解分式方程的意义,了解解分式方程的基本思路和方法,理解解分式方程时可能无解的原因,会解分式方程.2.经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,感悟数学的转化思想,培养学生的应用意识.教学重点难点重点:解分式方程的基本思路和方法. 难点:理解分式方程可能无解的原因.教学过程导入新课导入一:西天取经路上,唐僧给徒弟们出了一道数学题目:某项工程要在规定的期限内完成,甲卫队单独做正好能够按期完成,乙卫队单独做则需要延期3天完成.现在这两个队合作2天后,再由乙卫队单独做,也正好按期完成.如果设规定的期限是x 天,工程总量为1,如何列方程呢?三个徒弟都给出了自己的答案:孙悟空:2x +3x x +=1;猪八戒:2x +23x +=1;沙和尚:1123x x ⎛⎫+ ⎪+⎝⎭+23x x -+=1.师傅表扬徒弟积极动脑,并说道:有一个徒弟的结论是错误的.你知道谁的错了吗?请同学们分析一下,解决这个问题所列出的方程还是整式方程吗?该如何解呢?导入二:某公司打字员小刚为了提高打字速度,决定到某电脑培训班培训,半个月后,打字速度相当于原来的3倍.现在打80字所用的时间比原来少用100秒,则小刚现在每分钟能打多少个字?如果设小刚现在每分钟打x 个字,你能列出方程吗?你列出的这个方程和我们学过的一元一次方程有什么不同?你会解这个方程吗?快跟我来学习本节吧,学了本节后问题就迎刃而解了.学生思考讨论,教师引入课题.引导学生分析:设小刚现在每分钟打x 个字,则小刚原来每分钟打3x个字,根据“现在打80字所用的时间比原来少用100秒”可以建立方程为803x -80x =10060. 导入三:教师提出问题,引入课题(出示多媒体课件) 活动一:教学反思问题:一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用的时间与以最大航速逆流航行60 km所用的时间相等,江水的流速为多少?分析:设江水的流速是v km/h.填空:(1)轮船顺流航行速度为(30+v)km/h,逆流航行速度为(30-v)km/h;(2)顺流航行90 km所用时间为9030v+h;(3)逆流航行60 km所用时间为6030v-h;(4)根据题意可列方程为9030v+=6030v-.在学生完成填空的过程中,教师应关注学生能否把实际问题转化成数学问题,能否找到相等关系列出方程,对于基础较差的学生应加以指导.探究新知活动二:1.议一议:方程9030v+=6030v-的特征.教师提出问题,学生思考、讨论后全班进行交流.学生归纳出:该方程的特征是分母中含有未知数.教师板演出分式方程的定义:分母中含有未知数的方程叫分式方程.2.想一想:方程x+13(x+1)=16是不是分式方程?如何区分分式方程和整式方程?学生交流讨论,教师点拨归纳:上式不是分式方程.主要是看分母中是否含有未知数,含未知数的是分式方程,不含未知数的是整式方程.3.做一做:在方程①73x-=8+152x-,②1626x-=x,③281x-=81xx+-,④x-112x-=0中,是分式方程的有()A.①和②B.②和③C.③和④D.①和④由学生代表回答:C.4.解一解:解方程24x+-236x-=1.由一位学生代表板演,其余学生独立完成,教师和学生一起得出答案. 解:方程两边同时乘12,得3(x+2)-2(2x-3)=12,去括号,得3x+6-4x+6=12,合并同类项,得-x=0,系数化为1,得 x=0.5.讨论:怎样解方程9030v+=6030v-?学生分小组讨论,让学生讨论后得出:通过去分母.教师继续问:怎么去分母?学生继续讨论得出:方程两边同乘各分式的最简公分母.(教师可帮助学生回忆最简公分母的定义)请学生代表板演,其余学生独立完成,教师点拨,对学习有困难的学生给予一定的帮助.解:方程的两边同乘(30+v)(30-v),得90(30-v)=60(30+v).解得v=6.(教师提醒学生注意检验)检验:将v=6代入原方程中,左边=右边,因此v=6是原分式方程的解.由以上可知,江水的流速为6 km/h.6.试一试:解方程15x-=21025x-.教师引导学生观察两个分母,x2-25能分解因式,这个方程的最简公分母是(x+5)(x-5).师生共同解这个分式方程,教师板书:解:方程的两边同乘(x+5)(x-5),得x+5=10,解得x=5.检验:将x=5代入原方程中,发现这时分母x-5和x2-25的值都为0.相应的分式是无意义的.因此,这个分式方程无解.7.再议一议:为什么分式方程有时会无解?学生先独立思考问题,然后提出自己的看法并在小组内讨论.在学生讨论期间,教师应到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验.师生合作达成共识:明确因为x=5使原方程没有意义,因此x=5不是原分式方程的根,所以原方程无解(提示:方程的解也可称为方程的根).①增根:将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的根(或解),这种根通常称为增根.②解分式方程时必须进行检验.③为什么会产生增根呢?对于原分式方程来说,方程中各分式的分母的值均不为零,但方程变形后得到的整式方程则没有这个要求,如果所得的整式方程的某个根使原分式方程中至少一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,那么它就不适合原方程,即是原方程的增根.④怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.8.你能结合解法,归纳出解分式方程的基本步骤吗?学生独立思考后,请学生代表回答,老师帮忙总结出解分式方程的一般步骤:(1)去分母(方程两边同乘最简公分母,化为整式方程).(2)解这个整式方程.(3)检验.把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,须舍去.可简单记作:一化、二解、三检验.新知应用例1 解方程:23x -=3x. 由学生在练习本上独立完成,同时找两名学生板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.解:方程两边同乘x (x-3),得 2x =3(x-3). 解得x =9.检验:将x =9代入x (x-3)得x (x-3)=54≠0, 因此x =9是分式方程的解.例2 解方程:1xx --1=3(1)(2)x x -+.由学生在练习本上独立完成,同时找两名学生板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.解:方程两边同乘(x+2)(x-1),得 x (x+2)-(x+2)(x-1)=3. 解得x =1.检验:当x =1时,(x+2)(x-1)=0,所以x =1不是原分式方程的解,原分式方程无解.解完例题后,教师和学生共同总结解分式方程需要注意的问题. 总结:1.解分式方程的过程,实质上是将方程的两边乘同一个整式,把分式方程转化为整式方程来解的过程,所乘的整式通常是方程中出现的各分式的最简公分母.2.解分式方程时必须进行检验,检验时,可将转化成的整式方程的根代入所乘的整式(即最简公分母)中,看它的值是否为零,如果为零,即为增根,应舍去.3.一个未知数的值是分式方程的增根应具备两个条件:一是该值应是去分母后所得到的整式方程的根,二是该值应使最简公分母的值为零.课堂练习(见导学案“当堂达标”) 参考答案1.D2.B3.D4.C5.B6.A7.解:(1)方程变形为13x ++23x -=2129x -. 两边同时乘(x 2-9),得x-3+2x+6=12, 解得x =3,经检验x =3是原方程的增根, 故原方程无解.(2)原方程去分母,得2+3(x-2)=-(1-x ), 解得x =32.经检验x=32是原分式方程的解,所以原分式方程的解为x=32.(3)方程两边乘x(x2-1),得5x-2=3x,解得x=1,经检验x=1是原方程的增根,故原方程无解.8.a<5且a≠3解析:去分母得1-(a-2)=x-2,整理得x=5-a.因为分式方程的解为正数,所以5-a>0,解得a<5.又因为x≠2,所以5-a≠2,即a≠3.所以a的取值范围是a<5且a≠3.课堂小结今天我们学习了:1.什么是分式方程.2.解分式方程的基本思路和一般步骤是什么.解分式方程应该注意什么问题.布置作业教材154页习题15.3第1题.板书设计。

15.3分式方程-增根(教案)-人教版八年级数学上册

15.3分式方程-增根(教案)-人教版八年级数学上册
在学生小组讨论环节,我注意到有些学生发言积极,但也有一些学生较为沉默。为了鼓励更多学生参与讨论,我将在下一次教学中尝试采取一些激励措施,如对积极发言的学生给予表扬和奖励,以提高学生的积极性。
举例:在去分母时,要注意将等式两边的每一项都乘以分母的最小公倍数,避免漏乘或乘错。
(3)解整式方程后的检验:学生在解整式方程后,容易忽视对解的检验。教师应强调检验的重要性,并教授具体的检验方法。
举例:求解分式方程$\frac{1}{x-2} = \frac{2}{x+1}$,解得$x=5$,需将$x=5$代入原方程检验是否成立。
1.教学重点
(1)理解增根的定义:增根是指使分式方程分母为零的根。这是本节课的核心概念,教师需通过实例讲解,使学生深刻理解增根的含义。
举例:分式方程$\frac{1}{x-a}= \frac{2}{a}$,当$x=a$时,分母为零,此时$x=a$为增根。
(2)掌握求解含增根分式方程的方法:包括识别增根、去分母、求解整式方程、检验解等步骤。教师需详细讲解并举例说明每个步骤的操作方法。
2.教学难点
(1)增根的识别:对于初学者来说,判断何时会产生增根是一大难点。教师可通过列举不同类型的分式方程,帮助学生识别增根。
举例:分式方程$\frac{1}{x-a} + \frac{1}{x-b} = \frac{2}{x-c}$,增根可能为$x=a$、$x=b$或$x=c$。
(2)去分母过程中易出现的错误:在求解含增根分式方程时,去分母是关键步骤,但学生容易在此过程中出现错误。教师应详细讲解并强调注意事项。
五、教学反思
在本次教学过程中,我发现学生们对增根的概念和求解含增根分式方程的方法掌握程度有所不同。有些学生能够迅速理解并运用到实际题目中,但也有一些学生在识别增根和处理分母为零的情况时遇到困难。这让我意识到,在教学过程中,我们需要针对不同水平的学生进行有针对性的指导。

新人教版八年级数学上册《15.3分式方程应用(4) 》导学案

新人教版八年级数学上册《15.3分式方程应用(4) 》导学案

新人教版八年级数学上册《15.3分式方程应用(4) 》导学案学教目标:1.理解分式方程意义.掌握可化为一元一次方程的分式方程的解法.了解分式方程解的检验方法.2.熟练掌握解分式方程的技巧.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,3.渗透数学的转化思想.学教重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.学教难点:检验分式方程解的原因学教过程:一、温故知新:P29-301、前面我们学习了什么方程?如何求解?写出求解的一般步骤。

2、判断下列各式哪个是分式方程.(1)21-=x (2)22=-xx(3)1214112-=+--xxx (4)5432=---xx3、解分式方程:22121--=--xxx163242=--+xx4、解方程小亮同学的解法如下:解:方程两边同乘以x-2,得1-x=-1-2(x-2)解这个方程,得x=2小亮同学的解法对吗?为什么?二、学教互动例、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为()千米/时,逆流航行的速度为()千米/时,顺流航行100千米所用的时间为()小时,逆流航行60千米所用的时间为()小时。

三、随堂练习:1、某梨园 m 平方米产梨n千克,则平均每平方米产梨_____千克.2、为体验中秋时节浓浓的气息,我校小记者骑自行车前往距学校6千米的新世纪商场采访,10分钟后,小记者李琪坐公交车前往,公交车的速度是自行车的2倍,结果两人同时到达。

求两车的速度各是多少?自学提示:1)、速度之间有什么关系?时间之间有什么关系? 2)、怎样设未知数,根据哪个关系?3)、填表4)、怎样列方程,根据哪个关系?3、某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋出租金第一年为9.6万元,第二年为10.2万元。

人教版八年级数学上册15.3.2《列分式方程解决实际问题》教学设计

人教版八年级数学上册15.3.2《列分式方程解决实际问题》教学设计

人教版八年级数学上册15.3.2《列分式方程解决实际问题》教学设计一. 教材分析人教版八年级数学上册15.3.2《列分式方程解决实际问题》这一节主要讲述了如何利用分式方程来解决实际问题。

学生在学习了分式方程的知识后,需要运用这些知识解决一些实际问题,从而加深对分式方程的理解和应用。

本节内容是分式方程应用的一个例子,通过解决实际问题,让学生掌握分式方程在实际问题中的应用。

二. 学情分析学生在学习这一节之前,已经掌握了分式方程的基本知识,能够熟练地列出分式方程。

但是对于如何选择合适的等量关系,以及如何将实际问题转化为分式方程,可能还存在一些困难。

因此,在教学过程中,需要引导学生正确地选择等量关系,并将实际问题转化为分式方程。

三. 教学目标1.理解分式方程在解决实际问题中的应用。

2.能够正确选择等量关系,并将实际问题转化为分式方程。

3.通过解决实际问题,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:分式方程在解决实际问题中的应用。

2.教学难点:如何选择合适的等量关系,并将实际问题转化为分式方程。

五. 教学方法采用问题驱动的教学方法,通过解决实际问题,引导学生运用分式方程的知识。

在教学过程中,注重启发式教学,引导学生主动思考,提高学生解决问题的能力。

六. 教学准备1.准备相关的实际问题,用于引导学生运用分式方程。

2.准备多媒体教学设备,用于展示问题和解答过程。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何利用分式方程来解决问题。

例如:甲、乙两地相距100公里,甲地有一批货物需要运往乙地,如果每小时运60公里,则4小时可以运完。

如果每小时运80公里,则需要多少时间才能运完?2.呈现(10分钟)呈现更多的实际问题,让学生独立思考如何列出分式方程。

例如:一个长方形的周长是36厘米,长是10厘米,求宽是多少厘米?3.操练(15分钟)让学生分组讨论,尝试解决呈现的问题。

人教版八年级数学上册15.3.2《分式方程(第2课时)》

人教版八年级数学上册15.3.2《分式方程(第2课时)》

人教版义务教育教科书八年级数学上册
15.3 《分式方程(二)》第2课时教学设计
一、教材分析
1、地位作用:
本节“分式方程”是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。

本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。

因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

2、教学目标:
(1)、了解解分式方程的基本思路和解法;理解解分式方程产生增根的原因,并掌握分式方程的验根方法。

(2)、经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透数学的转化思想,培养学生的应用意识。

3、教学重、难点
重点:解分式方程的基本思路和解法。

难点:理解解分式方程产生增根的原因。

突破难点的方法:以典型例子为范,说明通过去分母得到的解必须经过验根.,当这个解使得分式方程分母不为0时,才是分式方程的解。

二、教学准备:多媒体课件、导学案
三、教学过程
- 4 -。

最新人教版初中数学八年级上册《15.3 分式方程(第2课时)》精品教学课件

最新人教版初中数学八年级上册《15.3 分式方程(第2课时)》精品教学课件

解:方程两边都乘以最简公分母 ( x 1)( x 1)
得: (x–1)+2(x+1)=4
∴x=1
检验:当x=1时,(x+1)(x–1)=0,
所以x=1不是原方程的根.
∴原方程无解.
课堂检测
能力提升题
某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯
片的单价少9元,已知该公司用3120元购买A型芯片的条数与
当x= –3时,(k+1)(–3)=4k,
所以当k=3或
时,原分式方程无解.
巩固练习
如果关于x的方程
A. –3
无解,则m的值等于( B )
B. –2
C. –1
D. 3
解析:方程的两边都乘x–3,得2=x–3–m,移项并合并同类项
得,x=5+m,由于方程无解,此时x=3,即5+m=3,
∴m = –2.
用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,
求购买了多少条A型芯片?
课堂检测
解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x–9)元/条,根
据题意得:


=



解得:x=35,经检验,x=35是原方程的解,
具备加工能力,公司派出相关人员分别到这两间工厂了解
情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工
完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的
1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多

新人教版数学八年级上册教案:15.3 分式方程

新人教版数学八年级上册教案:15.3 分式方程

§15.3 分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.从而渗透数学的转化思想.二、教学重点和难点1.教学重点:可化为一元一次方程的分式方程的解法.2.教学难点:检验分式方程解的原因三、教学过程(一)复习及引入新课提问:什么叫方程?什么叫方程的解?(二)新课板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.检验:把x=3代入原方程左边=右边 ∴x=3是原方程的解.例2:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时, 可列方程v 20100+=v 2060-解方程得:v =5检验:v =5为方程的解.所以水流速度为5千米/时.(三)课堂练习:(四)小结:谈谈你的收获(五)布置作业P154页习题15.3第1(1)、(2)、(3)、(4)、2题(六)板书设计四、教学反思:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.§15.3 分式方程(2)一、教学目标:1、使学生会按一般步骤解可化为一元一次方程的分式方程.2、使学生检验解的原因,知道解分式方程须验根并掌握验根的方法3、培养学生自主探究的意识,提高学生观察能力和分析能力二、重点难点:.1. 重点:会按一般步骤解可化为一元一次方程的分式方程;2. 难点:了解分式方程必须验根的原因三、教学过程:1.复习引入解方程:(1)51144x x x --=-- (2)22162242x x x x x -+-=+--思考:上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢?2.讨论(1)为什么要检验根?(2)验根的方法3.应用例1 解方程 x 33x 2=-4、课堂练习解方程 )2x )(1x (311x x +-=-- 5、小结:谈谈你的收获6、布置作业P154—P155习题15.3第3、5题7、板书设计四、教学反思:引导学生参与学习过程,掌握学习方法。

人教版八年级上册第15章15.3《分式方程复习课》教学设计

人教版八年级上册第15章15.3《分式方程复习课》教学设计

《分式方程复习》教课方案南宫第二中学陈建文本节课复习的主要内容是分式方程的观点、解法及应用 ||,是对分式方程单元学习的梳理、概括、深入和稳固 .解分式方程的基本思想是经过“转变”||,将分式方程转变为一元一次方程||,所以也是对一元一次方程的复习. 分式方程是将详细问题数学化的重要模型||,经过复习能够帮助学生更好的形成成立数学模型的意识||,加强数学与生活的亲密关系.||,增根的出现也将会使学生对字母表示数有更进一步的理解||,所以本节复习可起到稳固基础||,提高认识的作用 .教课目的知识与技术会解分式方程 ||,能列分式方程解决实质问题理解增根的含义 ||,能用增根的观点解决问题.过程与方法经过详细实例 ||,联合利用分式方程解决实质问题的实例||,进一步领会方程是刻画实质问题数目关系的一种重要模型.感情态度与价值观在问题解决的过程中进一步细解转变的数学思想和训练好规范解题的习惯.浸透数学的转变思想 ||,培育学生的应企图识.经过层层深入的列分式方程解决实质问题的练习||,经历“实质问题—成立分式方程模型—求解—解说解的合理性”的过程||,发展学生剖析问题、解决问题的能力||,培育应企图识 .教课要点分式方程的解法以及列分式方程解决实质问题.教课难点对分式方程增根的理解与运用难点诊疗:其一 ||,解分式方程较之解整式方程对学生来讲难度加大 ||,在将分式方程转变为整式方程的过程中 ||,简单出现去分母时漏乘整式项、符号变化错误等 .其二 ||,学生对于解分式方程时产生增根的原由有迷惑 ||,解整式方程的思想定势对于解分式方程的步骤、查验等会有负迁徙 .复习本单元知识时 ||,将以层层深入的练习为主线 ||,经过优选典型例题 ||,裸露学生的思想 ||,发现学生在学习过程中的问题和迷惑 ||,一方面稳固基础知识||,一方面解决新问题 ||,促使学生在该知识点的发展 ||,帮助学生形成完好的知识构造||,达到复习的目的 .同时将有效利用信息技术 ||,帮助学生剖析问题 ||,指导解题方法 ||。

人教版数学八年级上册15.3分式方程及其解法优秀教学案例

人教版数学八年级上册15.3分式方程及其解法优秀教学案例
2.分工协作:学生在小组内分工协作,共同完成任务,培养他们的团队协作能力。
3.互动评价:学生之间进行互动评价,取长补短,共同提高。
(四)反思与评价
反思与评价教学策略有助于培养学生自我反思的习惯,提高他们的自我评价能力。具体包括:
1.自我反思:学生在学习过程中进行自我反思,发现自己的不足,明确改进方向。
五、案例亮点
1.生活情境的创设:通过引入生活实例,使学生能够更好地理解分式方程的实际意义,提高学生的学习兴趣和积极性。
2.问题导向的教学策略:通过设计具有启发性的问题,引导学生主动探究分式方程的解法,培养学生的思考能力和解决问题的能力。
3.小组合作学习:通过组织学生进行小组合作探讨,培养学生的团队合作意识和沟通能力,提高学生的学习效果。
(四)总结归纳
在学生小组讨论结束后,我会对所学内容进行总结归纳。我会强调分式方程的基本概念和解法,以及解题时的一些注意事项。通过总结归纳,学生可以更好地梳理所学知识,形成体系。
(五)作业小结
最后,我会布置一些具有针对性的作业,让学生巩固所学知识。同时,我会提醒学生在做作业时要注意检查,培养他们的细心和耐心。在作业批改过程中,我会及时给予学生反馈,帮助他们发现并改正错误,提高他们的数学能力。
2.问题情境:我将设计一些具有启发性的问题,引导学生主动探究分式方程的解法,激发他们的思考。
3.操作情境:我将组织学生进行一些实际操作,如实验、演示等,让学生在操作过程中体验数学知识的具体应用。
(二)问题导向
问题导向教学策略旨在培养学生的问题意识,引导学生主动探究数学问题。具体包括:
1.问题发现:我将引导学生从实际情境中发现问题,激发他们提出问题的兴趣。
人教版数学八年级上册15.3分式方程及其解法优秀教学案例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
一、教学目标:
1.了解分式方程的概念, 和产生增根的原因.
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检
验一个数是不是原方程的增根.
二、重点、难点
1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是
原方程的增根.
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是
原方程的增根.
三、、课堂引入
1.回忆一元一次方程的解法,并且解方程
2.提出本章引言的问题:
一艘轮船在静水中的最大航速为20千米时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
分析:设江水的流速为v千米时,根据“两次航行所用时间相同”这一等量关系,得到方程.
像这样分母中含未知数的方程叫做分式方程.
五、例题讲解
[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化
为整式方程,整式方程的解必须验根
这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.
[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.
六、随堂练习
解方程
(1) (2)
(3)(4)
七、课后练习
1.解方程
(1) (2)
(3) (4)
2.X为何值时,代数式的值等于2?
八、答案:
六、(1)x=18 (2)原方程无解(3)x=1 (4)x=
七、1. (1) x=3 (2) x=3 (3)原方程无解(4)x=1 2. x= 课后反思:。

相关文档
最新文档