微生物的能量代谢

合集下载

第6章微生物的代谢

第6章微生物的代谢

又称厌氧呼吸,指一类呼吸链末端的氢受体为外源 无机或有机氧化物的生物氧化。 特点:底物经常规途径脱氢后,经部分呼吸链递氢, 最终由氧化态的无机物或有机物受氢,并完成氧化 磷酸化产能反应。
(1)硝酸盐呼吸 在厌氧条件下,兼性厌氧菌以硝酸盐作为最终电子受 体的生物氧化过程,也称为异化性硝酸盐还原作用、 反硝化作用。
第 六 章
微生物的代谢
代谢: 泛指发生在活细胞中的各种分解代谢(catabolism) 和合成代谢(anabolism)的总和 分解代谢酶系
复杂分子 简单分子 + ATP (有机物) 合成代谢酶系
分解代谢 物质代谢 合成代谢
+ [H]
代谢
能量代谢
产能代谢 耗能代谢
第一节 微生物的能量代谢
能量代谢: 是新陈代谢中的核心问题。 中心任务:把外界环境中的各种初级能源转换成 对一切生命活动都能使用的通用能源——ATP。
氧 化 磷 酸 化 与 质 子 梯 度 差
P/O比: 表示电子 传递链氧 化磷酸化 的产能效 率。
抑制氧化磷酸化的因素:
1)抑制电子传递链:KCN、NaN3、和CO等 细胞色素氧化酶抑制剂; 2)解偶联剂阻断ADP磷酸化:2,4二硝基 苯酚、短杆菌肽等
2. 无氧呼吸(anaerobic respiration)
1mol葡萄糖
1mol 乳酸+
1.5mol乙酸+ 2.5molATP
发酵途径的比较
2. 发酵类型
划分依据:发酵产物的种类 (1)乙醇发酵
类型:酵母菌乙醇发酵(EMP)和细菌乙醇发酵(ED)
A. 酵母菌乙醇发酵: 酵母的一型发酵 CO2 NADH
EMP
NAD+ 乙醇

微生物学第五章微生物的代谢

微生物学第五章微生物的代谢
细胞膜透性的调节
通过改变细胞膜的通透性,控制代谢底物和产物的进出,从而调 节代谢过程。
微生物代谢的基因调控
01
原核生物的基因调 控
通过操纵子模型实现基因表达的 调控,包括正调控和负调控两种 方式。
02
真核生物的基因调 控
通过转录因子和顺式作用元件的 相互作用,实现基因表达的精确 调控。
03
基因表达的诱导和 阻遏
03 氮的转化代谢
微生物还可以通过氮的转化代谢将一种含氮化合 物转化成另一种含氮化合物,如硝酸盐还原成氨 的过程。
04Βιβλιοθήκη 微生物代谢的调节与控制代谢调节的方式与机制
酶活性的调节
通过改变酶的构象或修饰酶活性中心,从而调节代谢途径中关键 酶的活性。
代谢物浓度的调节
代谢物浓度的变化可以影响酶的活性,从而调节代谢速率。
用、液相色谱-质谱联用等。
核磁共振法
利用核磁共振技术对微生物代 谢产物进行结构和构象分析, 可以获得代谢产物的详细化学
信息。
生物信息学分析
利用生物信息学方法对微生物 代谢组学数据进行处理和分析, 包括代谢途径分析、代谢网络 构建、代谢物鉴定和代谢调控 研究等。
THANKS
感谢观看
微生物代谢产物的生物活性与应用
抗生素
由微生物代谢产生的具有抗菌活 性的化合物,用于治疗细菌感染。

微生物代谢产生的生物催化剂,广 泛应用于食品、医药、化工等领域。
激素
某些微生物代谢产物具有激素活性, 可用于调节动植物生长发育。
微生物代谢在环境保护和能源领域的应用
污水处理
利用微生物代谢降解污水中的有机污染物,净化水质。
02
微生物的能量代谢
能量代谢的基本过程

微生物的能量代谢

微生物的能量代谢

广。如戌糖可用作碳源。
3. ED 途径
ED途径是在研究嗜糖假单孢菌时发现的另一条分解 葡萄糖形成丙酮酸和3-磷酸甘油醛的途径。少数EMP途径 不完整的细菌所特有的利用葡萄糖的替代途径。
1分子葡萄糖经ED途径最后生成2分子丙酮酸、1分子 ATP、1分子NADPH和1分子NADH。 ED途径可不依赖于EMP和HMP途径而单独存在。
ED途径的意义
ED途径可与EMP、HMP和TCA等相连接,因此可相互协 调,以满足微生物对能量、还原力和各种中间代谢产物的 需求。细菌酒精发酵:运动发酵单胞菌(Zymomonas mobilis),微好氧从丙酮酸到乙醇。
具有ED途径的细菌
在G-细菌中分布广泛,如假单胞菌属、根瘤菌、固氮菌, 很少有革兰氏阳性细菌有这条途径。
底物脱氢
•递氢与受氢
–EMP途径
–HMP途径 –ED途径 –TCA循环
–呼吸
–无氧呼吸 –发酵
(一)底物脱氢的四条主要途径
生物体内葡萄糖作为生物氧化的典型底物,主要 分为四种途径脱氢: 1. EMP途径:主要产物、特点、意义 2. HMP途径:主要产物、特点、意义 3. ED途径:主要产物、特点、意义 4. TCA循环:主要产物、特点、意义
HMP 途径
5-磷酸-木酮糖
5-磷酸-木酮糖 6-磷酸-景天庚酮糖
6-磷酸-果糖 6-磷酸-葡萄糖
5-磷酸-核酮糖
5-磷酸-核酮糖
3-磷酸-甘油醛 4-磷酸-赤藓糖 6-磷酸-果糖 6-磷酸-葡萄糖
5-磷酸-核糖
5-磷酸-核糖
3-磷酸-甘油醛
HMP途径的三个阶段
从6-磷酸-葡萄糖开始,通过几步氧化反应产生核酮糖-5-磷酸和二氧化 碳。 核酮糖-5-磷酸发生结构变化形成核糖-5-磷酸和木酮糖-5-磷酸。 几种戊糖磷酸在没有氧参与的条件下发生碳架重排,产生了己糖磷酸 和丙糖磷酸,丙糖磷酸可通过EMP途径转化成丙酮酸再进入TCA循环

微生物的代谢途径和调控机制

微生物的代谢途径和调控机制

微生物的代谢途径和调控机制微生物是一种非常常见而又重要的生物,它们在生态系统中有着重要的作用。

微生物的代谢途径和调控机制是微生物研究中不可忽视的一部分。

本文将从微生物的代谢途径和调控机制两个方面展开论述。

微生物的代谢途径微生物的代谢途径是指微生物在自身体内进行能量代谢的一系列反应,包括有氧呼吸、厌氧呼吸和发酵等。

其中,有氧呼吸是指微生物利用氧气作为终端电子受体,将有机物完全氧化成为二氧化碳和水,并产生能量。

厌氧呼吸则是指微生物在氧气不足的条件下,利用其他物质作为电子受体,将有机物部分氧化,并产生能量。

而发酵则是指微生物在氧气缺乏时,将有机物在不需要外部电子受体的条件下,分解成酸、醇和气体等产物,并产生能量。

微生物的代谢途径对于微生物的生存和繁殖有着至关重要的作用。

不同的微生物对于不同种类物质的代谢能力不同,这也是微生物能够适应不同环境的原因之一。

例如,某些微生物能够代谢硫、铁等金属离子,从而在海洋底部形成硫化物流,而某些细菌则能够将氮气转化为氨,提供生态系统的必需氮源。

微生物的调控机制微生物的代谢途径需要受到调控才能保证生命过程的正常。

微生物的调控机制包括转录调控、翻译调控和代谢调控等。

其中,转录调控是指微生物可以通过正反馈和负反馈机制,调控基因的表达量。

翻译调控则是指微生物可以通过启动子和转录因子等控制RNA的合成和mRNA的稳定性,影响蛋白质的表达量。

而代谢调控则是指微生物通过代谢产物的反馈和前体物的调节,调控酶的活性和基因表达,从而控制代谢途径的进行。

微生物的调控机制不仅对维持其生命活动有着重要的作用,同时也对于人类的健康有着深远的影响。

以大肠杆菌为例,它是肠道中普遍存在的微生物,当体内钙浓度过低时,大肠杆菌就会通过感应系统调控Calcium Transporter (CaT)的表达量,从而增加体内钙的吸收,保证人体的健康。

总结微生物的代谢途径和调控机制是微生物研究中的重要内容。

通过对微生物的代谢途径和调控机制的研究,不仅可以更好地了解微生物对环境的适应性和生命活动的本质,同时也可以为生物技术和人类健康等方面提供有益的参考和支持。

第六章微生物代谢

第六章微生物代谢

TCA循环的重要特点
为糖类、脂类、蛋白质三大物质转化中心枢纽。 循环中的某些中间产物是一些重要物质生物合成的前体; 生物体提供能量的主要形式; 为人类利用生物发酵生产所需产品提供主要的代谢途径。如 柠檬酸发酵;Glu发酵等。
(二)递氢和受氢 经过上述4条途径脱氢后,通过呼吸链等方式 传递,最终可与氧、无机氧或有机物等氢受体相结
2、HMP途径
磷酸戊糖进一步代谢有两种结局:
①磷酸戊糖经转酮—转醛酶系催化,又生成磷酸己糖 和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径 的一些酶,进一步转化为丙酮酸。称为不完全HMP途 径。
②由六个葡萄糖分子参加反应,经一系列反应,最后 回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化 成CO2 和水),称完全HMP途径。
CO2、H2O 还原型中间代谢 产物醇、酸 NO2、N2 次之 少
电子传递链
完整
不完整
无,底物水平磷 酸化
二、自养微生物产ATP和产还原力 按能量来源不同可分为:
化能自养型
光能自养型
(一)化能自养微生物 还原CO2所需要的ATP和[H]是通过氧化无机物而获得的
硝化细菌、铁细菌、硫细菌、氢细菌
自养微生物氧化磷酸化效率低
葡萄糖 磷酸二羟丙酮
②异型乳酸发酵
乙醇
ATP ADP NAD+ NADH
乙醛
乙酰CoA
NAD+ NADH
乙酰磷酸
葡萄糖
6-磷酸 葡萄糖
6-磷酸葡 5-磷酸 萄糖酸 -CO2 木酮糖 3-磷酸 -2H 甘油醛
2ADP 2ATP
乳酸
(3)Stickland反应
1934年Stickland发现Closterdium sporogenes(生孢梭菌)能 利用一些氨基酸同时作为碳源、氮源和能源, 以一种氨基酸作供氢体,以另一种氨基酸作为受氢体而实现 产能的独特发酵类型。 CH3 CHNH2 + 2 CH2NH2 COOH ADP+Pi

微生物的代谢过程

微生物的代谢过程

微生物的代谢过程微生物是一类广泛存在于地球各个环境中的微小生物体,包括细菌、真菌、病毒等。

它们具有独特的代谢过程,通过分解和转化有机物质,维持了地球生态系统的平衡和物质循环。

本文将着重探讨微生物的代谢过程,从其能量获取、营养物质利用等方面展开,以便更好地理解微生物的生活方式。

一、微生物的能量获取微生物的能量获取主要通过两种方式:化学能和光能。

一些微生物通过化学反应来获得能量,这被称为化学合成。

比如许多细菌利用硫化氢等无机物质进行化学反应,产生能量来维持其生存。

另一些微生物则利用光合作用,将阳光转化为化学能以供自身使用。

光合作用是一种利用光能合成有机物质的过程,典型的代表就是光合细菌和光合蓝藻。

二、微生物的营养物质利用微生物对于营养物质的利用非常广泛,可以利用各种有机物质和无机物质进行代谢。

其中,碳源的利用尤为重要。

微生物可以根据对碳源的利用方式将其分为两类:自养微生物和异养微生物。

自养微生物能够利用无机碳源如二氧化碳来合成有机物质,比如细菌中的类固醇合成细菌;而异养微生物则需要从外部获取有机碳源,例如许多病原菌依赖于宿主提供的有机物质来生存。

微生物的氮源利用也非常重要,因为氮是构成蛋白质等生物大分子的关键元素。

微生物可以利用无机氮源如氨、硝酸盐等,也可以利用有机氮源如氨基酸、蛋白质等。

通过利用不同的氮源,微生物可以满足自身的生长和繁殖需求。

除了碳源和氮源,微生物还需要其他一些微量元素,如磷、硫、钾等。

这些微量元素在细胞代谢中起到重要的作用,比如作为酶的辅助因子、参与细胞信号传递等。

三、微生物的代谢途径微生物在代谢过程中通过一系列酶催化的化学反应来完成对营养物质的分解和合成。

常见的代谢途径包括糖酵解、无氧呼吸、有氧呼吸、脂肪酸合成等。

糖酵解是一种将葡萄糖分解为乳酸或乙醇等产物的过程,常见于一些厌氧微生物。

无氧呼吸则是一种在缺氧条件下,微生物将有机物质通过无氧反应代谢产生能量的方式。

有氧呼吸是一种需氧条件下进行的代谢途径,微生物通过将有机物质氧化为二氧化碳和水,释放大量能量。

微生物笔记-微生物的代谢调节

微生物笔记-微生物的代谢调节

微生物的代谢新陈代谢:发生在活细胞内的所有化学反应的总称微生物的能量代谢1.新陈代谢的核心问题能量代谢的中心任务:生物体如何将环境中多种形式的最初能源转换称为对一切生命活动都能使用的通用能源。

实质:ATP 的生成和利用能源的转化a.最初能源有机物日光无机物微生物化能异养菌光能营养菌化能自养菌通用能源ATPATP ATP生物氧化反应的三个阶段脱氢:一种失去电子或氢的过程电子供体:被氧化的物质电子受体:接受电子的物质i.递氢:电子供体氧化脱下的氢交给氢载体,并通过多个载体完成电子从供体到受体的传递一般不直接交给电子受体ii.受氢:最终电子受体接受载体上电子的过程iii.b.生物氧化的产能途径底物水平磷酸化生物氧化过程中生成的含有高能键的化合物在酶的作用下,直接将能量转给ADP(GDP)生成ATP(GTP)1)存在于呼吸和发酵过程中2)发酵过程中唯一的能量获取方式3)微生物代谢中的底物水平磷酸化4)底物水平磷酸化反应偶联形成的高能分子1,3-二磷酸甘油酸—>3-磷酸甘油酸ATP 磷酸烯醇式丙酮酸—>丙酮酸ATP 琥珀酰辅酶A —>琥珀酸GTP 乙酰磷酸—>乙酸ATP ATPi.c.微生物的能量代谢2022年4月7日21:49丙酰磷酸—>丙酸ATP 丁酰磷酸—>丁酸ATP甲酰四氢叶酸—>甲酸ATP(电子传递)氧化磷酸化生物氧化中伴随着电子传递发生的磷酸化作用1)发生在呼吸作用(有氧或无氧)中呼吸时大多数伴随ATP 的合成a)2)典型的呼吸链:3分子ATP ,2分子ATP(黄素蛋白起始)a)3)ii.光和磷酸化只发生在光合细胞中1)循环式光合磷酸化:反应产物只有ATP2)非循环式光合磷酸化:反应的产物是ATP 、氧和NADPH3)iii.生物氧化的类型发酵:没有外源的最终电子受体的生物氧化方式电子受体和供体都是有机物1)无电子传递链2)i.呼吸:有外源的最终电子受体的生物氧化方式有氧:以分子氧作为最终电子受体的呼吸方式无机物氧化脱氢a)细菌氢细菌铁细菌硫化细菌硝酸盐细菌能源物质氢气铁硫或硫化物氨或亚硝酸1)无氧:以除氧外的物质作为最终电子受体的呼吸a)2)ii.化能营养型微生物的代谢产能方式iii.产能方式有氧呼吸无氧呼吸发酵环境条件有氧无氧无氧最终电子受体来源环境,外源性环境,外源性胞内,内源性最终电子受体分子氧化合物(通常中间代谢产物d.性质为无机物)能进行该代谢产能方式的微生物专性好氧微生物、兼性厌氧微生物、微嗜氧微生物兼性厌氧微生物、专性厌氧微生物兼性厌氧微生物、耐氧厌氧微生物、专性厌氧微生物呼吸作用和发酵作用的比较相同点:氧化时,底物上脱下的氢和电子都和相同的载体结合,形成NADH 和FADH1)不同点:NADH 和FADH 上的电子和氢的去路不同2)iv. 消耗一分子葡萄糖产生的ATP 数量不同葡萄糖的分解代谢和发酵产物葡萄糖——>丙酮酸1.四种途径:EMP、HMP、ED、PK丙酮酸——>?产物进行各种发酵,一般以产物来命名乙醇发酵酵母菌乙醇发酵i.EMP途径乙醇发酵类型类型条件受氢体ATP主要产物酸性乙醛2乙醇亚硫酸氢钠磷酸二羟丙酮0甘油碱性磷酸二羟丙酮0甘油、乙醇、乙酸细菌的乙醇发酵ii.运动发酵单胞菌ED 途径a.乳酸发酵同型乳酸发酵:产物只有乳酸的乳酸发酵i.b.2.异型乳酸发酵:产物中除乳酸外还有乙醇和二氧化碳的乳酸发酵ii.混合酸发酵c.微生物将葡萄糖转变为琥珀酸、乳酸、甲酸、乙酸、氢气、二氧化碳等多种产物的生物学过程甲基红试验(MR 试验)将细菌接种至葡萄糖蛋白胨水培养基中,置37摄氏度培养48小时,然后沿管壁加入甲基红指示剂,呈红色者为阳性,不呈红色者为阴性。

第五章 微生物的新陈代谢——第一节 微生物的能量代谢

第五章 微生物的新陈代谢——第一节 微生物的能量代谢

ED EMP HMP 途径 途径 途径 [H] [H] TCA 循环
[H]
[H]
[H]
[H]
H2O(或有机、无机还原物) [H] ADP ATP
[H]
CO2 底物脱氢的4条途径及其与递氢、受氢的联系
1.EMP途径(Embden-Meyerhof-Parnas pathway)
• EMP途径(Embden-Meyerhof-Parnas pathway)又称糖酵解途 径(glycolysis)或己糖二磷酸途径,是细胞将葡萄糖转化为丙酮酸 的代谢过程。 • 是绝大多数生物所共有的一条主流代谢途径。
葡萄糖
UDP-半乳糖 UDP-葡萄糖
半乳糖-1-磷酸 UDP-半乳糖
ATP ADP
G-1-P G-6-P
ATP ADP
甘露糖-6-磷酸
EMP途径
ATP ADP
果糖-6-磷酸
• 以葡萄糖作为生物氧化的典型底物,在生物氧化的脱氢阶段中,可通 过四条途径完成其脱氢反应,并伴随还原态[H]和能量的产生。
脱氢 C6H12O6 递氢 受氢
3.ED途径(Entner-Doudoroff pathway)
• ED途径又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)途径。 • ED途径最早由 N .Entner 和 M .Doudoroff 两人(1952 年)在 Pseudomonas saccharophila(嗜糖假单胞菌)中发现,接着许多学 者证明它广泛在细菌中存在。 • 这是存在于某些缺乏完整 EMP 途径的微生物中的一种替代途径, 为微生物所特有(革兰氏阴性菌中分布较广)
葡萄糖三条降解途径在不同微生物中的分布
菌名 酿酒酵母 产朊假丝酵母 灰色链霉菌 产黄青霉 大肠杆菌 铜绿假单胞菌 EMP(%) 88 66~81 97 77 72 — HMP(%) 12 19~34 3 23 28 29 ED(%) — — — — — 71

微生物的代谢

微生物的代谢
1)无机底物脱下的氢(电子)从相应位置 直接进入呼吸链
2)存在多种呼吸链 3)产能效率低; 4)生长缓慢,产细胞率低。
3、光能自养或异氧微生物的产能代谢
指具有捕捉光能并将它用于合成ATP和产生NADH或 NADPH的微生物。 分为不产氧光合微生物和产氧光合微生物 。 前者利用还原态无机物H2S,H2或有机物作还原C02的 氢供体以生成NADH和NADPH。后者由H2O分子光解产物 H’和电子形成还原力(NADPH+H’)
乳酸脱氢酶 乳酸 丙酮酸甲酸解酶 乙酰-CoA +甲酸
1G
丙酮酸
磷酸转乙酰基酶
乙醛脱氢酶
乙酸激酶
乙醇脱氢酶
E.coli与志贺氏菌的区别:
葡萄糖发酵试验:
PEP羧化酶
E.coli、产气肠杆菌
甲酸(甲酸氢解酶、HC+O)2 + H2
乙酸 乙醇
草酰乙酸
丙酸
志贺氏菌无此酶,故发酵G 不产气。
b 丁二醇发酵(2,3--丁二醇发酵) —— 肠杆菌、沙雷氏菌、欧文氏菌等
丙酮酸
(乙酰乳酸脱氢酶)
乙酰乳酸
3-羟基丁酮
V.P.试验的原理:
(OH-、O2)
红色物质 精氨酸胍基乙二酰
丁二醇
中性
其中两个重要的鉴定反应:
1 、V.P.实验 2、甲基红(M.R)反应
产气肠杆菌: V.P.试验(+),甲基红(-) E.coli: V.P.试验(-),甲基红(+)
4)丙酮-丁醇发酵
生物氧化的形式:某物质与氧结合、脱氢或脱电子三种
生物氧化的功能为:
产能(ATP)、产还原力[H]和产小分子中间代谢物
微生物直接利用
生物 氧化

微生物的能量代谢

微生物的能量代谢

微生物的能量代谢录入时间:2010-8-31 9:35:00 来源:青岛海博能量代谢的中心任务是生物体如何把外界环境中多种形式的最初能源转换成对一切生命活动都能使用的通用能源—— ATP 。

对微生物来说,它们可利用的最初能源有三大类即:有机物、日光和还原态无机物。

一、异养微生物的生物氧化生物氧化是发生在活细胞内的一系列产能性氧反应的总称。

生物氧化的形式包括某物质与氧结合、脱氢或失去电子;生物氧化的过程可分为脱氢(或电子)、递氢(或电子)和受氢(或电子)三个阶段;生物氧化的功能则有产能、产还原力和产小分子中间代谢物三种。

异养微生物氧化有机物的方式,根据氧化还原反应中电子受体的不同可分成发酵和呼吸两种类型,而呼吸以可分为有氧呼吸和无氧呼吸两种方式。

1 .发酵发酵是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完成氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。

在发酵条件下有机化合物只是部分地被氧化,因此只释放出一小部分的能量。

发酵过程的氧化是与有机物的还原偶联在一起的。

被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。

发酵的种类有很多,可发酵的底物有糖类、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。

生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解,主要分为四种途径: EMP 、 HMP 、 ED 、磷酸解酮酶途径。

2 . EMP 途径整个 EMP 途径大致可分为两个阶段。

第一阶段可认为是不涉及氧化还原反应及能量释放的准备阶段,只是生成两分子的主要中间代谢产物:甘油醛 -3- 磷酸。

第二个阶段发生氧化还原反应,合成 ATP 并形成两分子的丙酮酸。

在糖酵解过程中,有两分子 ATP 用于糖的磷酸化,但合成出四个分子的 ATP ,因此每氧化一个分子的葡萄糖净得两个 ATP 。

在两分子的 1 , 3- 二磷酯甘油酸的合成过程中,两分子 NAD + 被还成为 NADH 。

然而,细胞中的 NAD + 供应是有限的,假如所有的 NAD + 都转化为 NADH ,葡萄糖的氧化就得停止。

(完整版)微生物的代谢及其调控

(完整版)微生物的代谢及其调控

1微生物的代谢微生物代谢包含微生物物质代谢和能量代谢。

1.1 微生物物质代谢微生物物质代谢是指发生在微生物活细胞中的各样分解代谢与合成代谢的总和。

1.1.1 分解代谢分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。

—般可将分解代谢分为TP。

三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更加简单的乙酰辅酶 A 、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH 及 FADH2;第三阶段是经过三羧酸循环将第二阶段产物完好降解生成CO2,并产生ATP、NADH 及FADH2。

第二和第三阶段产生的ATP、NADH 及FADH2 经过电子传达链被氧化,可产生大批的 ATP。

1.1.1.1 大分子有机物的分解( 1)淀粉的分解淀粉是很多种微生物用作碳源的原料。

它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。

一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。

直链淀粉为α一 l、 4 糖苷键构成的直链分子;支链淀粉不过在支点处由α—1、6糖苷键连结而成。

微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。

淀粉酶是一类水解淀粉糖苷键酶的总称。

它的种类好多,作用方式及产物也不尽同样,主要有液化型淀粉酶、糖化型淀粉酶(包含β—淀粉酶、糖化酶、异淀粉酶)。

以液化型淀粉酶为例,这种酶能够随意分解淀粉的。

α-l、4 糖苷键,而不可以分解α-1、 6 糖苷键。

淀粉经该酶作用此后,黏度很快降落,液化后变为糊精,最后产物为糊精、麦芽糖和少许葡萄糖。

因为这种酶能使淀粉表现为液化,淀粉黏度急速降落,故称液化淀粉酶;又因为生成的麦芽糖在光学上是α型,所以又称为“ α—淀粉酶。

( 2)纤维素的分解纤维素是葡萄糖由β— 1,4 糖苷键构成的大分子化合物。

它宽泛存在于自然界,是植物细胞壁的主要构成成分。

微生物的代谢

微生物的代谢

TCA循环在微生物分解代谢和合成代谢中的枢纽地位
四种脱氢途径的比较
EMP途径: 许多微生物都利用该途径对糖类进行分解代谢,1分子葡 萄糖经10步反应产生2分子丙酮酸、2分子 H 和2个ATP; 该途径定位在微生物细胞质中,有氧和无氧都能进行;
HMP途径: 可与EMP途径或ED途径同时存在,也能在有氧和无氧条件 下发生,许多微生物通过该途径产能,但它的主要作用是 用于生物合成,
➢ 硝酸盐呼吸 ➢ 硫酸盐呼吸
比较各类无机盐呼吸的特点
➢ 硫呼吸
➢ 铁呼吸
➢ 碳酸盐呼吸
➢ 有机物呼吸
➢ 延胡索酸呼吸 ➢ 甘氨酸呼吸 ➢ 氧化三甲胺呼吸
3. 发酵
指在无氧的条件下,底物脱氢后所产生的还原力 H ,不经过呼吸 链传递,而直接交给某一内源性中间代谢产物接受,以实现底物 水平磷酸化产能的一类生物氧化反应;
ED途径: 少数细菌以该途径代替EMP途径, 1分子葡萄糖经4步反 应产生2分子丙酮酸、2分子 H 和1个ATP;
TCA循环: 有氧条件下,丙酮酸经TCA循环进一步代谢产能或用于合 成,
二 递氢 — 电子传递链
电子传递链
是指位于膜 原核生物在细胞质内膜,真核微生物在线粒体内 膜 上,由一系列氧化还原势呈梯度差的,链状排列的电子传递 体组成;
10.苹果酸脱氢酶
2.柠檬酸合成酶
9.延胡索酸酶
1丙酮酸 3.顺乌头酸酶
4.顺乌头酸酶
8.琥珀酸脱氢酶
5.异柠檬酸脱氢酶
15ATP
3CO2
7.琥珀酰CO A
6.-酮戊二酸脱氢酶
特点
TCA循环由10步酶促反应组成; 产能效率极高,是细胞产生ATP的主要场所; 在微生物代谢中占有枢纽的地位;

微生物第四章

微生物第四章

第四章微生物的代谢代谢(metabolism):也称新陈代谢,指生物体内进行的全部化学反应的总和。

(一)分解代谢:细胞将大分子物质降解成小分子物质,并在此过程中产生能量的过程。

不同营养类型的微生物进行分解代谢所利用的物质不同,异氧微生物利用的是有机物,自养微生物利用的是无机物。

(二)合成代谢:细胞利用简单的小分子物质合成复杂的大分子物质,并在此过程中贮藏能量的过程。

(三)物质代谢:物质在体内进行转化的过程。

(四)能量代谢:伴随物质转化而发生的能量形式相互转化的过程。

(五)初级代谢:能使营养物转化为结构物质、具生理活性物质或提供生长能量的一类代谢。

产物有小分子前体物、单体、多聚体等生命必需物质。

(六)次级代谢:某些微生物进行的非细胞结构物质和维持其正常生命活动的非必须物质的代谢。

产物有抗生素、酶抑制剂、毒素、甾体化合物等,与生命活动无关,不参与细胞结构,也不是酶活性必需,但对人类有用。

合成代谢和分解代谢的关系1.分解代谢为合成代谢提供能量和原料,保证正常合成代谢的进行,合成代谢又为分解代谢创造更好的条件。

2.合成代谢和分解代谢都是由一系列连续的酶促反应构成的,前一步反映的产物是后续反应的底物。

微生物代谢的特点1.代谢旺盛(代谢强度高、转化能力强)2.代谢类型多样化(导致营养类型的多样化)3.某些微生物在代谢过程中除产生其生命活动必须的初级代谢产物和能量外,还会产生一些次级代谢产物,次级代谢产物与人类生产与生活密切相关,是微生物学的重要研究领域。

4.微生物的代谢作用使得微生物在自然界的物质循环中起着极其重要的作用。

第一节微生物的能量代谢第二节微生物的物质代谢第三节微生物代谢的调节第四节微生物次级代谢与次级代谢产物第一节微生物的能量代谢微生物能量代谢是指微生物把环境提供的能源或本身储存的能源转变为微生物生命活动所需能源的过程。

微生物的产能代谢是指生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,又称生物氧化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物的能量代谢微生物进行生命活动需要能量,这些能量的来源主要是化学能和光能。

那么自然界的能量是怎样转变成微生物可利用的形式?能量是如何被利用的?这些都是微生物能量代谢的基本问题。

一、细胞中的氧化还原反应与能量产生物质失去电子称为氧化,含有氢的物质在失去电子的同时伴随着脱氢或加氧。

物质获得电子称为原,在获得电子的同时可能伴随着加氢或脱氧。

可见氧化和还原是两个相反而偶联的反应,二者不能分开独立完成,即一物质的氧化必然伴随着另一物质的还原,称为氧化还原反应,可以表示为:AH2→2H++2e+A(氧化)B+2H++2e→BH2(还原)AH2+B←→ A+BH2(氧化还原)在氧化还原反应中,凡是失去电子的物质称为电子供体;得到电子的物质称为电子受体。

如还伴随有氢的转移时则称为供氢体和受氢体。

上式中AH2就是电子供体(或供氢体),B是电子受体(或受氢体)。

实际上,生物体内发生的许多反应都是氧化还原反应。

生物氧化是物质在生物体内经过一系列连续的氧化还原反应逐步分解并放出能量的过程。

其中有机化合物的氧化还原反应是生物氧化的主要形式,在此过程中都包含有氢和电子的转移,称为脱氢作用。

各种基质给出电子而被氧化和接受电子而被还原的趋势是不同的,这种趋势称为基质的还原势(reductionpotential),用E0',表示,以伏(V)或毫伏(mV)为单位。

在电化学上还原势以基质H2作参比而测定,因而各种物质的还原势可以相互比较。

按规定还原剂(电子供体)写在反应式的左边。

在pH:7时,氢和氧的还原势分别为:2H++2e→H2 E0'=-421mV1/2O2+2H++2e- → H2O E0'=+816mV在细胞内进行的氧化还原反应中,电子从最初供体转移到最终受体,一般都需经由中间载体(电子传递体) 全反应过程的净能量变化决定于最初供体和最终受体之间还原势之差。

表2-3列出了生物的一些常见氧化还原系统中电子载体的标准电位E0'值。

在分解代谢中,电子供体一般就是指能源,当电子供体与电子受体偶联起来发生氧化还原反应时能释放出能量,两个相偶联(氧化一还原分子对,或称O--R对)的反应之间还原势相差愈大,释放的能量就愈多。

中间电子载体有两类:一类是游离的,一类是牢固地结合在细胞膜中的辅酶上。

表中所列辅酶NAD+(烟酰胺腺嘌呤二核苷酸)和NADP+(烟酰胺腺嘌呤二核苷酸磷酸)就是细胞中常见的游离电子载体,它们是氢原子载体,能携带一个质子和两个电子,在反应中另一个质子(H+)来自溶液。

NAD+ +2e-+2H+产生NADH+H+,为简略起见一般将NADH+H+书写为NADH。

尽管NAD+和NADP+具有相同还原势(—320mV),但在细胞中前者直接用于产能反应(分解代谢),后者主要用于合成反应。

二、高能化合物和ATP的合成基质通过氧化还原反应产生的能量可以转变为高能化合物,供细胞用于作功。

高能化合物是在水解过程中能够释放大量自由能的有机物分子。

自由能以C表示,生化反应中自由能的变化表示为△GO',负值说明反应中有自由能释放,并且反应能自发进行,这时称为产能反应;正值说明反应不能自发进行,需外界能量,称为吸能反应。

生物学中表示能量的单位最常用的是千卡(kcal)和千焦耳(kJ),lkcal等于4.184kJ。

如果没有高能化合物则在一般氧化作用中会以放热的方式而浪费能量。

(一)细胞中的高能化合物许多高能化合物最少含有一个高能磷酸键。

有些化合物虽具有磷酸键,但所含能量不够高,不算高能化合物。

高能磷酸化合物水解时释放的自由能大于—29.3kJ/mol。

例如,葡萄糖-6—磷酸水解时仅放出—12.5kJ/mol自由能,而磷酸烯醇丙酮酸可释放—61.9kJ/mol自由能,几乎为前者的5倍,所以葡萄糖—6—磷酸(磷酸酯)不算高能化合物,而磷酸烯醇丙酮酸(磷酸酐)则是。

表2-4列举了细胞中常见的高能磷酸化合物。

上列诸化合物中,ATP是最常见的高能磷酸化合物,在生物新陈代谢中起重要作用。

(二)细胞合成ATP的途径 ATP含3个磷酸基,其中2个磷酸以高能健(符号~代表)相联。

当细胞需要能量时,ATP末端磷酸基水解,产生一分子ADP、一分子无机磷酸(P1)并释放能量。

ATP的化学结构式如图2-1所示。

微生物产生ATP有3种方式,即底物水平磷酸化、呼吸链(或氧化)磷酸化和光合磷酸化。

1.底物水平磷酸化这种磷酸化的特点即在底物氧化过程中生成含高能磷酸键的化合物,通过相应酶的作用将此高能磷酸根转移给ADP生成ATP。

这种类型的氧化磷酸化方式在生物代谢过程中普遍发生,其通式可写成:X~P+ADP→X+ATP碳水化合物是微生物最常用的能源,但蛋白质、类脂和核酸也可用作能源。

碳水化合物在氧化过程中可以提供大量电子。

图2-2为底物水平磷酸化常见过程的简化图式。

甘油醛—3—磷酸被磷酸化,并氧化成1,3-二磷酸甘油酸,这一高能磷酸化合物将其C-1磷酸传给ADP而产生ATP。

有关过程将在第二节详细阐述。

2.氧化磷酸化通过呼吸链产生ATP的过程称为电子传递水平磷酸化或氧化磷酸化。

这种磷酸化的特点是当由物质氧化产生的质子和电子向最终电子受体转移时需经过一系列的氢和电子传递体,每个传递体都是一个氧化还原系统。

这一系列氢和电子传递体在不同生物中大同小异,构成一条链,称其为呼吸链。

流动的电子通过呼吸链时逐步释放出能量,该能量可使ADP生成ATP。

在呼吸链中,氢和电子传递体主要由各种辅酶和辅基组成,呼吸链的这些酶系定向有序地、又是不对称地排列在真核微生物的线粒体内膜上,或排列在原核微生物的细胞质膜上。

原核生物和真核生物呼吸链含有类似的基本的氧化还原载体,就目前所知,呼吸链中最重要的中间电子传递体成员是泛醌(CoQ)和细胞色素系统。

泛醌及其衍生物是一类分子量较小的酯溶性氢载体。

在电子传递链中,由于其结构上的改变起氧化还原剂的作用(图2-3)。

存在于微生物中的主要是泛醌和萘醌。

细胞色素都是含有铁卟啉基团的电子传递蛋白,有多种,以细胞色素a、b和c等表示,并有a1、a2…b1、b2……等之分。

在所有真核生物的线粒体中发现的细胞色素类型是相同的,而细菌所含的细胞色素类型有很大差异。

例如,大肠杆菌有细胞色素a1、a2、b1和o;枯草芽胞杆菌含有细胞色素a、a3、b、c和c1。

以英文小写字母区别的各种细胞色素,其转移电子的顺序并非按字母顺序进行,而是cyt.b→cyt.c→cyt.a。

呼吸链的最末端细胞色素a称为细胞色素氧化酶(cytochrome oxidase),它将电子转移给氧分子。

电子传递水平磷酸化是经由呼吸链进行的。

底物氧化时脱下的氢和电子首先交给NAD+生成NADH+H+(烟酰胺腺嘌呤二核苷酸),或交给NADP+生成NADPH+H+(烟酰胺腺嘌呤二核苷酸磷酸),后者经过转氢酶的作用也可以将氢转给NAD+生成NADPH+H+。

也有的底物将脱下的氢和电子交给FAD(黄素腺嘌呤二核苷酸)或FMN(黄素单核苷酸)生成FADH2或FMNH2。

然后NADH+H+或FADH2以及其它还原型载体上的氢原子以质子和电子的形式进入呼吸链,顺序传递至最终电子受体,同时偶联有ATP的产生。

图2-4表示一条呼吸链的作用过程。

电子传递磷酸化的效率通常用P/O来表示,P/O代表每消耗一个氧原子所形成的ATP数。

真核生物如酵母菌为3,而细菌大约只可达到1。

3.光合磷酸化光合磷酸化是将光能转变为化学能的过程。

在这种转化过程中光合色素起着重要作用。

微生物中蓝细菌、光合细菌以及嗜盐细菌的光合色素的光合磷酸化特点均有所不同。

(1)蓝细菌。

蓝细菌进行光合作用是靠叶绿素。

和高等植物一样,蓝细菌在光合作用中还原C02的电子是来自水的光解,并有氧的释放,把这类光合作用称为放氧型光合作用。

属非环式光合磷酸化(图2-5),其特点是有由光合色素组成的I与Ⅱ两个光反应系统。

蓝细菌中的非环式电子传递,不但能产生ATP,而且还能提供NADPH+H+。

系统I的光合色素为叶绿素P700,它吸收光能后释放电子,电子通过铁还蛋白将NADP+还原为NADPH +H+。

系统Ⅱ的P680吸收光能后释放电子,经质体醌(一种醌类衍生物)、细胞色素b、细胞色素f、质体蓝素等传递体,最后将电子交给系统I的P700。

系统Ⅱ失去的电子以水的光解所放出的电子来补充。

在整个电子传递过程中有ATP产生。

(2)光合细菌。

光合细菌包括紫细菌和绿细菌,它们是在厌氧条件下靠细菌叶绿素进行光合作用。

细菌叶绿素是光合细菌的光反应色素,它也具有镁卟啉环的中心结构,但侧链不同于叶绿素,目前已发现有a,b,c,d和e5种。

绿硫细菌的光反应中心色素主要是细菌叶绿素c,d和e。

而在紫细菌中光反应中心色素主要为细菌叶绿素a。

光合细菌在光合作用中还原C02的电子是来自还原型无机硫、氢或有机物,没有氧气的释放,称为非放氧型光合作用。

其光合磷酸化的方式为环式光合磷酸化(图2—6)。

首先,细菌叶绿素吸收光能处于激发状态,放出高能电子。

电子通过铁氧还蛋白、COQ、细胞色素b和细胞色素c的电子传递系统,最后返回细菌叶绿素。

在电子传递过程中产生ATP。

(3)嗜盐细菌。

其光合系统较一般光合细菌更简单,它不含细菌叶绿素,也不存在电子传递链,只具有唯一的色素蛋白,这就是存在于质膜中的细菌视紫红质(bacteriorhodopsin),它是由视黄醛以烯醇式碱基与蛋白质的赖氨酸残基通过共价键相连而构成。

当光照时,视黄醛放出H+到细胞膜外,失去H+的视黄醛又从细胞质内获得H+,在光照下又被排出。

如此反复进行,形成膜内外质子梯度,当膜外的H+通过膜中的H+-ATP酶返回时,合成ATP。

所以细菌视紫红质具有光驱动质子泵的作用。

再加上H+-ATP酶就构成了最简单的光合磷酸化体系(图2-7)。

三、微生物细胞中能量的释放和利用根据最终电子受体性质的不同,微生物产生能量的方式有3种,即发酵、有氧呼吸和无氧呼吸。

(一)发酵作用(fermentation) 在生理上,发酵作用是不需要分子态氧(02)作电子受体的氧化作用,为厌氧代谢,在此过程中电子供体和受体都是有机物分子。

作为基质的有机物质只是部分碳原子被氧化,所形成的某些中间产物又作为受氢体接受氢而形成新的产物。

酒精发酵和乳酸发酵就是这类作用的典型代表。

发酵产生ATP的机制主要是底物水平的磷酸化,即由底物氧化而产生的高能磷酸键被转移到ADP分子上形成ATP。

微生物的发酵作用最常见于糖类的厌氧降解作用中,特别是葡萄糖的代谢。

而一般工业发酵的含义则较广泛,凡是利用微生物进行生产的过程,无论是在有氧条件下还是无氧条件下,统称为发酵。

发酵是厌氧微生物在生长过程中获能的一种主要方式。

但这种氧化不彻底,只释放出一部分能量,大部分能量仍贮存在有机物中。

相关文档
最新文档