小学六年级数学竞赛试题及 详细答案(C级)

合集下载

小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案一.计算下面各题,并写出简要的运算过程(共15分,每小题5分)二.填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米.25厘米.15厘米,并且它的下底是最长的一条边.那么,这个等腰梯形的周长是_ _厘米.3.一排长椅共有90个座位,其中一些座位已经有人就座了.这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻.原来至少有_ _人已经就座.4.用某自然数a去除1992,得到商是46,余数是r.a=_ _,r=_ _.5.“重阳节”那天,延龄茶社来了25位老人品茶.他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000.其中年龄最大的老人今年_ ___岁.6.学校买来历史.文艺.科普三种图书若干本,每个学生从中任意借两本.那么,至少__ __个学生中一定有两人所借的图书属于同一种.7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分.那么得分最少的选手至少得__ __分,至多得__ __分.(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管.那么,只有当锯得的38毫米的铜管为__ __段.90毫米的铜管为_ ___段时,所损耗的铜管才能最少.三.解答下面的应用题(要写出列式解答过程.列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米.现由甲工程队先修3天.余下的路段由甲.乙两队合修,正好花6天时间修完.问:甲.乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂.他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米.又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程.3.一个长方体的宽和高相等,并且都等于长的一半(如图12).将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米.求这个大长方体的体积.4.某装订车间的三个工人要将一批书打包后送往邮局(要求每个包内所多35本.第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包.这批书共有多少本?四.问答题(共35分)1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输.问:保证一定获胜的对策是什么?(5分)2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒.现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?(6分)3.个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a).(b)两种形状的铁皮毛坯.现有甲.乙两块铁皮下脚料(如图14.图15),图13.图14.图15中的小方格都是边长相等的正方形.金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a).(b)两种铁皮同样多),并且一点材料也不浪费.问:(1)金师傅应当从甲.乙两块铁皮下脚料中选哪一块?(3分)(2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)(5分)4.只修改21475的某一位数字,就可以使修改后的数能被225整除.怎样修改?(6分)5.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(5分)(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?(5分)详解与说明一.计算题说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面.,马上就应该知道它可以化为3.6;而3.6与36只差一个小数点,于是,又容易想到把“654.3×36”变形为“6543×3.6”,完成了这步,就为正”采用了同样的手段,这种技巧本报多次作过介绍.说明:解这道题可以从不同的角度来观察.解法一是先观察.比较分子部分每个加数(连乘积)的因数,发现了前后之间的倍数关系,从而把“1×3×24”作为公因数提到前面,分母部分也作了类似的变形.而解法二,是着眼于整个繁分数,由分子看到分母,发现分子部分的左.中.右三个乘分子部分括号内三个乘积的和约去了.本题是根据《数学之友》(7)第2页例5改编的.3.解法一:解法二:说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱”栏中曾作过介绍.由于本题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍”,也就是它前面的一个加数,这就不难想到解法二.二.填空题1.解:(1×9×9+2)×(1+9-9+2)×(19-9-2)=83×3×8=1992或(1×9×9+2)×(1×9÷9×2)×(19-9+2)=83×2×12=1992(本题答案不唯一,只要所填的符号能使等式成立,都是正确的)说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个已知数,这是选手们熟悉的“算式谜”题.而这道题却不容易一下子判断括号内的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=83×3×2×2×2,因为83.3.2.2.2组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了.2.解:55+15+25×2=120(厘米)说明:要算周长,需要知道上底.下底.两条腰各是多长.容易判断:下底最长,应为55厘米.关键是判断腰长是多少,如果腰长是15厘米,15×2+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米.读者从本报190期第三版《任意三根小棒都能围成三角形吗》一文中应当受到启发.3.解:最少有说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有两个空位.但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个(最右边一个)既可以坐在左边(右边)起第一个座位上,也可以坐在左边(右边)起第二个座位上(如图16所排出的两种情况,“●”表示已经就座的人,“○”表示空位)”.不过,题目中问“至少”有多少人就座,那就应选第二种情况,每三人(○●○)一组,每组中有一人已经就座.(1)●○○●○○●……(2)○●○○●○○●○……图164.解法一:由1992÷46=43 (14)立即得知:a=43,r=14解法二:根据带余除法的基本关系式,有1992=46a+r(0≤r<a)由r=1992-46a≥0,推知由r=1992-46a<a,推知因为a是自然数,所以a=43r=1992-46×43=14说明:本题并不难,因此应尽可能运用简单的方法,迅速地算出答案.解法一是根据1992÷a的商是46,因而直接用1992÷46得到了a和r.解法二用的是“估值法”.5.解法一:先算出这25位老人今年的岁数之和为2000-25×2=1950年龄最大的老人的岁数为[1950+(1+2+3+4+……+24)]÷25=2250÷25=90(岁)解法二:两年之后,这25位老人的平均年龄(年龄处于最中间的老人的年龄)为2000÷25=80(岁)两年后,年龄最大的老人的岁数为80+12=92(岁)年龄最大的老人今年的岁数为92-2=90(岁)说明:解法一采用了“补齐”的手段(详见本报241期第一版《“削平”与“补齐”》一文).当然,也可以用“削平”法先求年龄最小的老人的岁数,再加上24.解法二着眼于25人的平均年龄,先算年龄处于最中间的老人的岁数,算起来更简便些.6.解:根据“抽屉原理”,可知至少7个学生中有两人所借图书的种类完全相同.说明:本题是抽屉原理的应用.应用这个原理的关键是制造抽屉.从历史.文艺.科普三种图书若干本中任意借两本,共有——(史,史).(文,文).(科,科).(史,文).(史,科).(文,科)这六种情况,可把它们看作六只“抽屉”,每个学生所借的两本书一定是这六种情况之一.换句话说,如果把借书的学生看作“苹果”,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内.本题是由本报234期“奥林匹克学校”拦的例2改换而成的.7.解:得分最低者最少得404-(90+89+88+87)=50(分)得分最低者最多得[404-90-(1+2+3)]÷4=77(分)说明:解这道题要考虑两种极端情形:(1)要使得分最低的选手的得分尽可能地少,在五名选手总分一定的条件下,应该使前四名领先于第五名的分数尽可能多才行.第一名得分是已知的(90分),这就要求第二.三.四名的得分尽可能靠近90分,而且互不相等,只有第二.三.四名依次得89分.88分.87分时,第五名得分最少.(2)要使得分最低的选手得分最多,在总分和第一名得分一定的条件下,应当使第二.三.四.五名的得分尽可能接近.考虑到他们的得分又要互不相等,只有当第二.三.四.五名的得分为四个连续自然数时才能做到,用“削平”的方法可以算出第五名最多得多少分.本题是根据《数学之友》(7)第46页第13题改编的.8.解:设38毫米.90毫米的铜管分别锯X段.Y段,那么,根据题意,有38X+90Y+(X+Y-1)=100039X+91Y=1001要使损耗最少,就应尽可能多锯90毫米长的铜管,也就是说上面式中的X应尽可能小,Y尽可能大.由于X.Y都必须是自然数,因而不难推知:X=7,Y=8.即38毫米的铜管锯7段,90毫米的铜管锯8段时,损耗最少.说明:选手们读题之后,可以马上想到:要使损耗最少,应尽可能多锯90毫米长的铜管,但必须符合“两种铜管都有”.“两种铜管长度之和加上损耗部分长度应等于1米”两个条件,这样算起来就不那么简单了.这种题目,借助等量关系式来进行推理比较方便,不过,列方程时可别忘掉那损耗的1毫米,而且损耗了几个“1毫米”也不能算错,应该是“总段数-1”.列出方程式之后,还有两点应当讲究:(1)变形要合理;(2)要选用简便算法.如上面解法中,把1001写成7×11×13,39写成3×13,91写成7×13,使分子部分和分母部分可以约分,对于迅速推知最后结果是大有帮助的.本题是《数学之友》(7)第51页练习六中的原题.三.应用题1.解法一:假设乙工程队每天与甲工程队修的路同样多,那么两队一共修的路就要比4200米少600米,这3600米就相当于甲工程队用15天(15=3+6×2)修完的,列式为(4200-600)÷(3+6×2)=3600÷15=240(米)240+100=340(米)解法二:设甲工程队每天修路X米,那么乙工程队每天修路“X+100”米,根据题意,列方程3X+6×(X+X+100)=4200解得X=240从而X+100=340(米)答:甲工程队每天修路240米,乙工程队每天修路340米.说明:“假设”是我们解应用题时经常采用的算术方法,它体现了机智.敏捷,能迅速得到答案.本题根据本报第234期第二版“思考题解答”一栏中的例题改编而成.2.解:从题目可知,前30分钟行完总路程的一半,后20分钟没有把另一半行完,比总路程的一半少2千米.换句话说,后20分钟比前30分钟少行了2000米.为什么会少行呢?原因有两方面:(1)后20分钟比前30分钟少行10分钟;(2)后20分钟比前30分钟每分钟多行50米.这样,容易推知前30分钟里每10分钟所行的路程是20×50+2000=3000(米).前30分钟每分钟行3000÷10=300(米)总路程为300×30×2=18000(米)答:县城到乡办厂之间的总路程为18千米.说明:解本题的关键是:(1)通过比较,知道这个人前30分钟比后20分钟多行多少路程;(2)找出前30分钟比后20分钟多行2000米的原因是什么.详见本报209期《抓住矛盾找原因》一文.3.解法一:设大长方体左(右)面面积为X平方分米,则大长方体表面积为10X.切成12个小长方体后,新增加的表面积为(3X+2×2X)×2=14X12个小长方体表面积之和为10X+14X=600X=25V=25×10=250(立方分米)解法二:把大长方体的表面积看作——“1”,则切成12个小长方体后,V=25×5×2=250(立方分米)答:这个大长方体的体积为250立方分米.说明:这道题比较简单,只要明白把一个几何体切成两部分后,“新增加的表面积等于切面面积的2倍”这个关系,不过,在计算新增加表面积时,稍不留心就会弄错.本题根据本报第226期第一版“教你思考”栏中的例题改编的.又因为10包+25本+35本←→11包所以1包←→60本(14+11)×60=1500(本)解法二:(列方程解)则有7X=14Y+35 (1)5X=11Y-35 (2)(1)-(2),得ZX—3Y+70 (3)(1)+(2),得12X=25Y (4)(3)×6,得12X=18Y+420 (5)比较(4).(5)两式,有25Y=18Y+420解得Y=6012X=25×60=1500(本)答:这批书共有1500本.说明:这道题目里的数量关系其实很容易看出,解法一几乎是心算出结果的.所以,不能把问题想得很复杂.解法二比较容易想到,但设“未知数”也很有讲究,如果设这批书有X本,变形就比较麻烦了.四.问答题1.答:保证一定获胜的对策是:(1)先取1粒钮扣,这时还剩1991粒钮扣.(2)下面轮到对方取,如果对方取n粒(1≤n≤4),自己就取“5-n”粒,经过398个轮回后,又取出398×5=1990(粒)钮扣,还剩1粒钮扣,这1粒必定留给对方取.说明:本题只是把本报233期“奥林匹克学校”栏对策问题的“例1”改掉一个字——“胜”改为“输”.一字之差,对策就要改变.我们知道,解对策问题有一个基本思路:把失败(输)的可能留给对手.本题中,谁取到最后一粒钮扣谁就算输,因而,要想获胜,就必须抢到第1991粒.想到这一点,就容易找到保证获胜的对策了.2.答:剪去的小正方形边长应为4厘米.说明:要回答这道题,可以先到一个表来比较一下.通过比较,容易知道剪去的小正方形边长是几厘米时,做成的纸盒容积最大.从上面表中一下子可以看出结果.还可以设被剪去的小正方形边长(纸盒的高)为h,那么,纸盒底面边长为24-2h.它的容积为因为24-2h+24-2h+4h=48(定数),根据《数学之友》(7)第23页所介绍的结论,当24-2h=4h时,(24-2h)×(24-2h)×4h乘积最大.也就是说,当h=4时,V 最大.3.答:(1)应选甲铁皮料.(2)剪法如图17.说明:题中要求选一块铁皮料适合做“成套”的铁皮制品,这就要求所选的铁皮料中包含的(a)(b)两种毛坯同样多;又因为不能浪费材料,所以,只要算一算(数一数甲.乙两块材料中各有多少小正方形),看甲(或乙)材料中小正方形的总数能不能被(10+7=17)整除.在回答第(2)个问题时,可以把(a)(b)两块毛坯拼成图18,再根据上面所算出的结果,从中心处向四个方向剪开,就得到4个图18的形状.仔细观察图17,容易发现图中的对称美,这种美也能启发你找到剪裁铁皮的方法.4.答:可以把“1”改为“0”,也可以把“4”改为“3”,还可以把“1”改为“9”,把“2”改为“1”.说明:本题有四种符合要求的答案,就看你考虑问题是不是全面了.因为225=25×9,所以要修改后的数能被225整除,就是既能被25整除,又能被9整除.被25整除不成问题,末两位数75不必修改,只要看前面三个数字.有2+1+4+7+5=19=18+1=27-8,不难排出上面四种答案.5.答:(1)把9块中的三块各分为两部分:说明:这个分糖的问题很有趣.先得算一算,9块糖平分给4个孩子,因为题中有一句话限制了分的方法,这就是“每块糖至多只能切成两部分”. 注意这条“限制”.。

小学六年级数学竞赛试题及详细答案C级

小学六年级数学竞赛试题及详细答案C级

小学六年级数学竞赛试题及具体答案(C级)一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上适宜的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。

则,这个等腰梯形的周长是_ _厘米。

3.一排长椅共有90个座位,其中一些座位已经有人就座了。

这时,又来了一个人要坐在这排长椅上,好玩的是,他无论坐在哪个座位上都及已经就座的某个人相邻。

原来至少有_ _人已经就座。

4.用某自然数a去除1992,得到商是46,余数是r。

_,_。

5.“重阳节”那天,延龄茶社来了25位老人品茶。

他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。

其中年龄最大的老人今年_ 岁。

6.学校买来历史、文艺、科普三种图书若干本,每个学生从中随意借两本。

则,至少个学生中确定有两人所借的图书属于同一种。

7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。

则得分最少的选手至少得分,至多得分。

(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。

则,只有当锯得的38毫米的铜管为段、90毫米的铜管为_ 段时,所损耗的铜管才能最少。

三、解答下面的应用题(要写出列式解答过程。

列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的马路,乙工程队每天比甲工程队多修100米。

现由甲工程队先修3天。

余下的路段由甲、乙两队合修,正好花6天时间修完。

问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。

他从县城骑车动身,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。

小学六年级数学竞赛试卷(附答案)

小学六年级数学竞赛试卷(附答案)

小学六年级数学竞赛试卷(附答案)一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).3.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.4.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).5.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).6.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.7.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.8.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.13.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.14.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.3.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.4.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.5.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.6.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.7.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.8.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.11.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.13.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.14.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:915.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.。

小学数学知识竞赛六年级决赛试题(附答案)

小学数学知识竞赛六年级决赛试题(附答案)

小学数学知识竞赛六年级决赛试题(附答案)班级 姓名 得分一、填空。

(每空3分,共27分)1、小明做20朵花用去23 小时,则她平均做一朵花用__ ___分钟。

2、一块长方形耕地如图所示,已知其中三块小长方形的面积分别是15、16、20亩,则阴影部分的面积是___ ___亩。

3、一项工作,甲独做10天完成,乙独做5天只能完成全部任务的13,现在两人合作 天才能完成全部工作。

4、甲、乙、丙三个数的比是3 :4 :5,已知丙是50,这三个数的平均数是 _5、甲、乙两辆汽车同时从A 地去B 地。

甲车去时每小时行30千米,返回时每小时行20千米;乙车往返都是每小时25千米。

甲、乙两车往返A 、B 两地所用的时间比是 。

6、某小学举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣3分。

小炜得了60分,问他做对了 道题。

7、一批货物第一次降价20%,第二次按降价后的价格又降价15%,这批货物的价格比原价格降低 。

8、在右边括号中填上相同的数,使等式成立:17+( )33+( ) =359、十字路口东西方向的交通指示灯中,绿灯、黄灯、红灯亮的时间之比为6:1:3,则一天中东西方向亮红灯的时间共_____ _____小时。

二、选择题,将答案填在括号中。

(每题3分,共24分) 1、从甲堆煤取出15 给乙堆,这时两堆煤的质量相等,原来甲、乙两堆煤的重量比是( )。

A 、5 :3B 、4 :5C 、2 :5D 、5 :12、已知MN=C ,CB =A ,(A ,B ,C ,D ,M ,N 都是自然数),那么下面的比例式中正确的是( )。

A 、M N =B A B 、M N =B AC 、A N =B MD 、M A =B N 3、一根绳子剪成两段,第一段长为711 米,第二段长占全长的611 ,那么下列结论正确的是( )。

A 、第一段长B 、第二段长C 、两段一样长D 、以上都不对 4、一项工作,原计划8天完成任务,由于改进操作技术,结果提前3天完成任务,工作效率提高了( )%。

小学六年级数学竞赛试卷(附答案)图文百度文库

小学六年级数学竞赛试卷(附答案)图文百度文库

小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.7.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.7.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30013.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。

小学六年级数学竞赛试卷(参考答案)

小学六年级数学竞赛试卷(参考答案)

小学六年级数学竞赛试卷(参考答案)小学六年级数学竞赛试卷(参考答案)一、填空题,(每题4分,共80分)1、42、363、884、575、1306、367、51,7 8、四 9、2 10、28 11、6812、630 13、15,5 14、10,60 15、52,25616、100,150 17、18 18、45 19、2 20、4.5二、应用题,(每题4分,共20分)21、车速:12000÷(75-15)=20(米/秒)车长:20×15=300(米)22、23、3.5×9÷(14-5)=6.3(吨)24、解:在△ABC与△ADE中,∠BAC=∠DAE。

因为AB=6AD,AC=3AE,所以S△ABC=6×3×S△ADE=18×1=18(平方厘米)。

25、解答:由于运费是以每吨货物运输1千米为单位(即吨·千米)计量的,因此要使运费最省,就要把所有货物运往离货物最多的仓库适当近的地方集中。

我们依次计算以一、二、…、五号仓库为集中点所需的运费:0.8×(20×100+40×400)=14400(元),0.8×(10×100+40×300)=10400(元),0.8×(100×200+20×100+40×200)=9600(元),0.8×(10×300+20×200+40×100)=8800(元),0.8×(10×400+20×300)=8000(元)。

因此,把所有货物集中到五号仓库所需的运费最少,运费为8000元。

小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案本文为小学六年级数学竞赛试题及详细答案,旨在提供有关数学竞赛的示范题目以及解答方法。

以下将按照试题的难易程度进行排列。

一、选择题1. 下面哪个数是1的百分之十?A. 0.001B. 1.001C. 0.01D. 10.001答案:C. 0.01解析:百分之十可以用小数表示为十分之一,即0.1。

转化为十进制数则为0.01。

2. 将下列数写成整数:$2 \times 10^{-5}$A. 0B. 0.0002C. 200D. 0.02答案:D. 0.02解析:$2 \times 10^{-5}$的意思是将小数点向左移动五位,因此为0.00002,可以简化为0.02。

3. 一个正整数加上自身的倒数等于19,这个正整数是多少?A. 7B. 8C. 9D. 10答案:C. 9解析:设该正整数为$x$,则$x + \frac{1}{x} = 19$。

将等式两边乘以$x$得到$x^2 + 1 = 19x$,整理得到$x^2 - 19x + 1 = 0$。

通过解一元二次方程可得$x = 9$或$x = 10$,因为$x$为正整数,所以答案为9。

二、填空题1. 用1、1、5、6四个数能组成多少个两位数?答案:11个解析:根据排列组合的原理,首位可以选取1、5或6,个位有3个数可选。

所以总共可以组成3个两位数。

2. 在三角形ABC中,顶角A的平分线和底边BC相交于点D,若BD=4 cm,DC=6 cm,那么AC的长度是多少?答案:10 cm解析:根据平分线的性质,AD:DC = AB:BC。

设AC的长度为x,则由题意可得$\frac{x}{6} = \frac{4}{10}$,通过交叉相乘解得x = 10。

三、解答题1. 已知三角形ABC中,∠ACB = 90°,CD是AB的中线,若AB =8 cm,那么CD的长度是多少?答案:4 cm解析:由题意可知AC = BC = $\frac{AB}{2}$ = 4 cm,AD =$\frac{AB}{2}$ = 4 cm。

全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.2.如图所示,正方形的边长为厘米,长方形的长为厘米,那么长方形的宽为几厘米?3.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?4.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.5.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少6.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为.7.已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)8.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形的面积是.9.如图在中,分别是上的点,且,,平方厘米,求的面积.10.如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?11.如图,三角形ABC被分成了甲(阴影部分)、乙两部分,,,,乙部分面积是甲部分面积的几倍?12.如图在中,在的延长线上,在上,且,,平方厘米,求的面积.13.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.14.如图所示的四边形的面积等于多少?15.如图所示,中,,,,以为一边向外作正方形,中心为,求的面积.16.如图,以正方形的边为斜边在正方形内作直角三角形,,、交于.已知、的长分别为、,求三角形的面积.17.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.18.如图,ABCD为平行四边形,EF平行AC,如果ADE的面积为4平方厘米.求三角形CDF的面积.19.如右图,在平行四边形中,直线交于,交延长线于,若,求的面积.20.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.21.如图,在中,延长至,使,延长至,使,是的中点,若的面积是,则的面积是多少?全国六年级小学数学竞赛测试答案及解析一、解答题1.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.【答案】33【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面积的二倍.三角形DEF的面积等于正方形的面积减去三个三角形的面积,,所以长方形EFGH面积为33.2.如图所示,正方形的边长为厘米,长方形的长为厘米,那么长方形的宽为几厘米?【答案】6.4【解析】本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接.(我们通过把这两个长方形和正方形联系在一起).∵在正方形中,边上的高,∴(三角形面积等于与它等底等高的平行四边形面积的一半)同理,.∴正方形与长方形面积相等.长方形的宽(厘米).3.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【答案】13.5【解析】解法一:寻找可利用的条件,连接、,如下图:可得:、、,而即;而,.所以阴影部分的面积是:解法二:特殊点法.找的特殊点,把点与点重合,那么图形就可变成右图:这样阴影部分的面积就是的面积,根据鸟头定理,则有:.4.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.5.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.6.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为.【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.7.已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)【答案】43【解析】因为、、分别为三边的中点,所以、、是三角形的中位线,也就与对应的边平行,根据面积比例模型,三角形和三角形的面积都等于三角形的一半,即为200.根据图形的容斥关系,有,即,所以.又,所以.8.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形的面积是.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.9.如图在中,分别是上的点,且,,平方厘米,求的面积.【答案】70【解析】连接,,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.10.如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?【答案】15【解析】连接.∵∴又∵∴,∴.11.如图,三角形ABC被分成了甲(阴影部分)、乙两部分,,,,乙部分面积是甲部分面积的几倍?【答案】5【解析】连接.∵,∴,又∵,∴,∴,.12.如图在中,在的延长线上,在上,且,,平方厘米,求的面积.【答案】50【解析】连接,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比13.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1:18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.14.如图所示的四边形的面积等于多少?【答案】144【解析】题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形绕顶点逆时针旋转,使长为的两条边重合,此时三角形将旋转到三角形的位置.这样,通过旋转后所得到的新图形是一个边长为的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为.(也可以用勾股定理)15.如图所示,中,,,,以为一边向外作正方形,中心为,求的面积.【答案】10【解析】如图,将沿着点顺时针旋转,到达的位置.由于,,所以.而,所以,那么、、三点在一条直线上.由于,,所以是等腰直角三角形,且斜边为,所以它的面积为.根据面积比例模型,的面积为.16.如图,以正方形的边为斜边在正方形内作直角三角形,,、交于.已知、的长分别为、,求三角形的面积.【答案】2.5【解析】如图,连接,以点为中心,将顺时针旋转到的位置.那么,而也是,所以四边形是直角梯形,且,所以梯形的面积为:().又因为是直角三角形,根据勾股定理,,所以().那么(),所以().17.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.【答案】33【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面积的二倍.三角形DEF的面积等于正方形的面积减去三个三角形的面积,,所以长方形EFGH面积为33.18.如图,ABCD为平行四边形,EF平行AC,如果ADE的面积为4平方厘米.求三角形CDF的面积.【答案】4【解析】连结AF、CE.∴;;又∵AC与EF平行,∴.∴(平方厘米).19.如右图,在平行四边形中,直线交于,交延长线于,若,求的面积.【答案】1【解析】本题主要是让学生并会运用等底等高的两个三角形面积相等(或夹在一组平行线之间的三角形面积相等)和等量代换的思想.连接.∵∥,∴同理∥,∴又,,∴,即.20.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【答案】8【解析】.21.如图,在中,延长至,使,延长至,使,是的中点,若的面积是,则的面积是多少?【答案】3.5【解析】∵在和中,与互补,∴.又,所以.同理可得,.所以。

小学六年级数学竞赛试卷【含答案】

小学六年级数学竞赛试卷【含答案】

小学六年级数学竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数字是偶数?A. 3B. 4C. 5D. 62. 一个正方形的四条边长相等,那么它的周长是?A. 边长的两倍B. 边长的三倍C. 边长的四倍D. 边长的五倍3. 下列哪个图形不是立体图形?A. 球B. 正方体C. 圆柱D. 三角形4. 下列哪个运算符表示除法?A. +B. -C. ×D. ÷5. 如果a=2,b=3,那么a+b等于多少?A. 1B. 3C. 5D. 6二、判断题(每题1分,共5分)1. 1+1=3 ()2. 一个三角形的内角和等于180度。

()3. 任何数乘以0都等于0。

()4. 圆的周长等于直径乘以π。

()5. 9是3的平方。

()三、填空题(每题1分,共5分)1. 一个等边三角形的三个角都是____度。

2. 如果一个数是12的倍数,那么这个数一定能被____整除。

3. 5的立方是____。

4. 一个圆的半径是5厘米,那么这个圆的面积是____平方厘米。

5. 下列数中,____是质数。

四、简答题(每题2分,共10分)1. 请简述平行四边形的性质。

2. 请解释什么是因数和倍数。

3. 请简述分数的基本性质。

4. 请解释什么是方程。

5. 请简述圆的周长公式。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的面积。

2. 一个班级有20名学生,其中有10名男生,请计算女生的人数。

3. 一个数加上4等于9,请计算这个数是多少。

4. 一个数的2倍加上3等于11,请计算这个数是多少。

5. 一个正方形的周长是24厘米,请计算这个正方形的边长。

六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个长方体的长、宽、高分别是10厘米、5厘米、2厘米,请计算这个长方体的体积。

2. 请分析并解答以下问题:一个班级有30名学生,其中有18名女生,请计算男生的人数。

小六数学竞赛试题及答案

小六数学竞赛试题及答案

小六数学竞赛试题及答案试题一:计算题题目:计算下列各题的结果。

1. 36 × 252. 87 - 493. 56.8 + 34.24. 1234 ÷ 65. (23 + 19) × 12试题二:应用题题目:小明和小红一起买了一些水果,小明买了3千克苹果,每千克苹果的价格是8元,小红买了2千克橙子,每千克橙子的价格是6元。

请问他们一共花了多少钱?试题三:几何题题目:一个长方形的长是12厘米,宽是8厘米,求这个长方形的周长和面积。

试题四:逻辑推理题题目:有5个盒子,编号为1到5。

每个盒子里都装有不同数量的球,分别是1个、2个、3个、4个和5个。

现在有5个人,每个人随机选择一个盒子并打开它,每个人只能打开一个盒子。

如果第5个人打开的盒子里正好是5个球,那么第4个人打开的盒子里有几个球?试题五:数列题题目:给定一个数列:2, 4, 8, 16, 32, ...。

这个数列的第6项是多少?答案:试题一:1. 36 × 25 = 9002. 87 - 49 = 383. 56.8 + 34.2 = 914. 1234 ÷ 6 = 205...4(余数4)5. (23 + 19) × 12 = 42 × 12 = 504试题二:小明买苹果花费3 × 8 = 24 元,小红买橙子花费2 × 6 = 12 元,他们一共花费 24 + 12 = 36 元。

试题三:长方形的周长= (12 + 8) × 2 = 40 厘米,面积= 12 × 8 = 96 平方厘米。

试题四:如果第5个人打开的盒子里有5个球,那么第4个人打开的盒子里一定有4个球,因为1到5的数字是连续的,且每个人只能打开一个盒子。

试题五:这个数列是2的幂次方数列,第6项是 2^6 = 64。

结束语:本次小六数学竞赛试题涵盖了基础计算、应用题、几何题、逻辑推理题和数列题,旨在考察学生的综合数学能力。

全国数学竞赛小学六年级决赛试题汇编(共五份附答案)

全国数学竞赛小学六年级决赛试题汇编(共五份附答案)

全国数学竞赛小学六年级决赛试题汇编共五份全国数学竞赛小学六年级决赛试题(一)姓名____得分____一、填空题:(每小题6分,共60分)1.已知CCBA1111616161-1+++=++,其中A、B、C都是大于0且互不相同的自然数,则(A+B)÷C=。

2.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上的数字之和,如21347。

则这类自然数中,最大的奇数是。

3.如图1,△ABC中,点E在AB上,点F在AC上,BF与CE相交于点P,如果S四边形AEPF=S△BEP=S△CFP=4,则S△BPC=。

4.张老师带领六(1)班的学生去种树,学生恰好可平均分成5组。

已知师生每人种的树一样多,共种树527棵,则六(1)班有学生人。

5.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒。

已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。

则该自动扶梯长米。

6.有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,如图2,则至少需要绳子分米(结头处绳长不计,π取3.14)。

7.一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装有深27.5厘米的水。

现放人一个底面直径10厘米,高30厘米的圆锥形铁块,则将有立方厘米的水溢出。

8.新年联欢会共有8个节目,其中有3个非歌唱类节目。

排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目都是歌唱类节目。

则节目单可有种不同的排法。

9.为了创建绿色学校,科学俱乐部的同学设计了一个回收食堂的洗菜水来浇花草的水池,要求单独打开进水管3小时可以把水池注满,单独打开出水管4小时可以排完满池水。

水池建成后,发现水池漏水。

这时,若同时打开进水管与出水管14小时才能把水池注满。

则当池水注满,并且关闭进水管与出水管时,经过小时池水就会漏完。

10.甲、乙两人分别从A、B两地同时出发,相向而行。

六年级数学数学竞赛试题答案及解析

六年级数学数学竞赛试题答案及解析

六年级数学数学竞赛试题答案及解析1.瓶子里有同样大小的红球和黄球各5个.要想摸出的球一定有2个同色的,最少要摸出个球.【答案】3【解析】红、黄两种颜色相当于两个抽屉,要保证摸到的球有2个同色,摸的次数比颜色数多1,即假设第一次摸出绿色的,第二次摸出黄色的,第三次无论摸到哪一种都会有两个是同色的,所以至少要摸出三个球.解:2+1=3(个);答:最少要摸3球;故答案为:3.【点评】此题做题的关键是弄清把哪个量看作“抽屉”,把哪个量看作物体个数,进而结合题意进行分析,得出结论.2.一个不透明的盒子里装了红、黑、白玻璃球各2个,要保证取出的玻璃球三种颜色都有,他应保证至少取出个;要使取出的玻璃球中至少有两种颜色,至少应取出个.【答案】5,3.【解析】从最极端的情况进行分析:(1)假设把白球和黑球都取完,就是四个,这时,只要取出一个红球就可以符合题意,进而得出结论.(2)假设两次取出的都是同色(取完),然后再取一个,只能是其它的颜色;解:(1)2×2+1=5(个);(2)2+1=3(个);答:要保证取出的玻璃球三种颜色都有,他应保证至少取出5个,要使取出的玻璃球中至少有两种颜色,至少应取出3个.故答案为:5,3.【点评】此题做题的关键是从最极端情况进行分析,进而通过分析得出问题答案.3.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子.A.2B.3C.4D.6【答案】C【解析】把颜色的种类看作“抽屉”,把孩子的数量看作物体的个数,根据抽屉原理得出:孩子的个数至少比颜色的种类多1时,才能至保证少有两个孩子的颜色一样;解:3+1=4(个);故选:C.【点评】此题属于典型的抽屉原理习题,要明确:“若有n个笼子和n+1只鸽子,所有的鸽子都被关在鸽笼里,那么至少有一个笼子有至少2只鸽子.”然后根据抽屉原理进行解答即可.4.10个苹果分放进4个盘子,则至少有一个盘子里的苹果数不少于()个.A.1B.2C.3D.4【答案】C【解析】把4个盘子看作4个抽屉,把10个苹果看作10个元素,那么每个抽屉需要放10÷4=2(个)…2(个),所以每个抽屉需要放2个,剩下的2个不论怎么放,总有一个抽屉里至少有:2+1=3(个),据此解答.解:10÷4=2(个)…2(个)2+1=3(个)答:至少有一个盘子里的苹果数不少于3个苹果.故选:C.【点评】抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,然后根据“至少数=元素的总个数÷抽屉的个数+1(有余数的情况下)”解答.5.16支铅笔分给5个学生,其中有一个学生至少分得()A.3B.6C.4D.5【答案】C【解析】把5个学生看做5个抽屉,考虑最差情况:16支铅笔,最差情况是:每个人等分的话,会获得3支;那剩下1支,随便分给哪一个人,都会使得一个人分得4支,由此即可解答.解:16÷5=3(支)…1(支)3+1=4(支)答:其中有一个学生至少分得4支.故选:C.【点评】抽屉原理问题的重点是建立抽屉,关键是在考虑最差情况的基础上得出均分数(商);然后根据:至少数=商+1(在有余数的情况下).6.某班的小图书库,有诗歌、童话、小人书三类课外书,如果每位同学最多可以借阅两种不同类型的书.至少有多少位同学来借书,才一定有两位同学借阅的书的类型相同.【答案】7位【解析】首先把诗歌、童话、小人书三类课外书任意两本排列,一共有(诗歌,童话),(童话,小人书),(诗歌,小人书)三种情况;任意借1本,又有3种情况;一共是6种情况,看做6个抽屉,只要学生数比抽屉多1就可以使同学来借阅时就一定会有两位同学借阅图书的种类相同.解:一共有(诗歌,童话),(童话,小人书),(诗歌,小人书)三种情况;任意借1本,又有3种情况;一共是6种情况,构造6个抽屉,6+1=7(位),至少要7位学生借阅才能保证其中一定有2个人所借阅的图书属于同一种类.【点评】此题属于典型的抽屉原理习题,解答此类题的关键是找出把谁看作“抽屉个数”,把谁看作“物体个数”,然后根据抽屉原理解答即可.7.幼儿园买来了很多白兔、熊猫、长颈鹿塑料玩具,每个小朋友可以任意选择两件,那么不管怎样挑选,在任意7个小朋友中总有两个小朋友的玩具相同,请说明道理.【答案】见解析【解析】已知共有三种玩具,每个小朋友任意选择两件相同的玩具有3种情况;选择两件不同的玩具一共有3种不同的情况,所以一共有6种不同的拿法,最差情况是6个小朋友选择的玩具各不相同,此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的,所以在任意7个小朋友中总有两个小朋友的玩具相同;据此解答.解:每个小朋友可以任意选择两件,选择情况有:2个白兔、2个熊猫、2个长颈鹿、白兔和熊猫、白兔和长颈鹿、熊猫和长颈鹿,一共有6种拿法;最差情况是6个小朋友选择的玩具各不相同,分别是上面的6种情况;此时只要有一个要朋友再任意选择两个玩具,就能保证有两人选的玩具是相同的;6+1=7(个);所以,在任意7个小朋友中总有两个小朋友的玩具相同.【点评】完成本题要注意先要找出从三种玩具中选择两件共有几种组合方法,再据最差原理进行分析解答.8.一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?【答案】最少摸出3枚;至少摸出5枚。

数学六年级竞赛试题带答案

数学六年级竞赛试题带答案

数学六年级竞赛试题带答案数学竞赛试题通常包含多种类型的题目,如选择题、填空题、解答题等。

以下是一份模拟的六年级数学竞赛试题及答案:一、选择题(每题2分,共10分)1. 下列哪个数是最小的质数?- A. 0- B. 1- C. 2- D. 3答案:C2. 一个数的平方等于其本身,这个数可能是:- A. 0- B. 1- C. -1- D. 所有选项答案:D3. 如果一个圆的半径是5厘米,那么它的周长是:- A. 10π cm- B. 20π cm- C. 30π cm- D. 40π cm答案:B4. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,它的体积是:- A. 480立方厘米- B. 480平方厘米- C. 48立方厘米- D. 4800立方厘米答案:A5. 一个分数的分子和分母同时除以它们的最大公约数,这个分数的值: - A. 变大- B. 变小- C. 不变- D. 无法确定答案:C二、填空题(每题3分,共15分)1. 一个数的约数除了1和它本身外,没有其他约数,这个数叫做______。

答案:质数2. 一个数的平方根是它本身的数有两个,它们分别是______和______。

答案:0,13. 如果一个三角形的底是6厘米,高是4厘米,那么它的面积是______平方厘米。

答案:124. 一个数的立方等于它本身,这个数可能是______,______,______。

答案:1,-1,05. 一个数的最小公倍数是它自己,这个数是______。

答案:任何正整数三、解答题(每题5分,共20分)1. 一个长方体的长、宽、高分别是12厘米、10厘米和8厘米,求它的表面积和体积。

答案:表面积= 2(12×10 + 12×8 + 10×8) = 592平方厘米;体积= 12×10×8 = 960立方厘米。

2. 一个班级有48名学生,其中1/3是男生,2/3是女生。

全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、计算题1.若表示,求的值。

2.如果1※2=1+112※3=2+22+2223※4=3+33+333+333+3333计算(3※2)×5。

二、解答题1.定义新运算为a△b=(a+1)÷b,求值:6△(3△4).2.、表示数,表示,求3(68) .3.表示.4.对于任意的整数x与y定义新运算“△”:,求2△9。

5.“*”表示一种运算符号,它的含义是:,已知,求。

6.我们规定:符号表示选择两数中较大数的运算,例如:53=35=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:的结果是多少?7.对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。

8.定义新运算为,⑴求的值;⑵若则x的值为多少?9.对于任意的两个自然数和,规定新运算:,其中、表示自然数.如果,那么等于几?10.定义为与之间(包含、)所有与奇偶性相同的自然数的平均数,例如:,.在算术的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?11.有一个数学运算符号,使下列算式成立:,,,,求12.如果、、是3个整数,则它们满足加法交换律和结合律,即⑴a+b=b+a;⑵。

现在规定一种运算"*",它对于整数a、 b、c 、d 满足:(a,b)*(c,d)=(a×c+b×d,a×c-b×d)。

例:请你举例说明,"*"运算是否满足交换律、结合律。

13.x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.14.对于任意的两个自然数和,规定新运算:,其中、表示自然数.⑴求1100的值;⑵已知1075,求为多少?⑶如果(3)2121,那么等于几?15.两个不等的自然数a和b,较大的数除以较小的数,余数记为a☉b,比如5☉2=1,7☉25=4,6☉8="2." (8级)(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x=2,而x小于20,求x;(3)已知(19☉x)☉19=5,而x小于50,求x.16.设a,b是两个非零的数,定义a※b.(1)计算(2※3)※4与2※(3※4).(2)如果已知a是一个自然数,且a※3=2,试求出a的值.17.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.18.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。

全国六年级数学竞赛试卷(2022年上半期)带参考答案与解析

全国六年级数学竞赛试卷(2022年上半期)带参考答案与解析

全国六年级数学竞赛试卷(2022年上半期)带参考答案与解析选择题用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要用()杯子.A. 100B. 500C. 1000D. 5050【答案】D【解析】用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,所以又100种不同的装法,要求至少需要多少个杯子,那么可以从最少的个数装起:即每个盒子里的杯子数分别为1、2、3、4、5、6…100,由此可得出所需要的杯子数为:1+2+3+4+5+…+100,利用高斯求和的方法即可解决问题.需要的杯子数为:1+2+3+4+5+ (100)=(1+100)×(100÷2),=101×50,=5050(个)选择题你一定知道“少年高斯”速算的故事吧!那么1+2+3+4+…+999的结果是()A. 100000B. 499000C. 499500D. 500000 【答案】C【解析】算式1+2+3+4+…+999中的加数构成一个公差为“1”的等差数列,首项为1,末项为999,项数为999.因此本题根据高斯求和公式进行计算即可:等差数列和=(首项+末项)×项数÷2.1+2+3+4+…+999=(1+999)×999÷2,=1000×999÷2,=499500.选择题小猫咪咪第一天逮了1只老鼠,以后每天逮的老鼠都比前一天多1只,咪咪10天一共逮了()只老鼠.A. 45B. 50C. 55D. 60【答案】C【解析】本题其实是一个计算从1加到10的求和问题,小猫咪咪十天中的捕鼠量是一个等差数列:1、2、3…10.将它们相加就是:1+2+…+5+6+…+9+10.从中不难看出一个规律:1+10=2+9=3+8=4+7=5+6=11,5对得数是11的加数相加,加法就转换为乘法问题,即11×5的问题.从而1到10相加的和可以速算为:11×5=55.由此得解,咪咪前后十天一共逮了55只老鼠.咪咪十天的捕鼠量是:1+2+3+4+5+6+7+8+9+10=(1+10)+(2+9)+(3+8)+(4+7)+(5+6)=11×5=55;答:咪咪前后十天一共逮了55只老鼠.填空题一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________ .【答案】44【解析】本题中我们可设共有n页,被加了两次的页码为x,由题意可知页码总和一定小于等于1997,x小于等于总页数n.那么用特殊值法求得n=62.则被加了两次的页码x就等于错误结果1997减掉正确结果n(n+1)÷2的差.解:设共n页,被加了两次的页码是x则n(n+1)÷2≤1997,且x≤n用特殊值法求得n=62,则被加了两次的页码是:1997﹣62×(62+1)÷2=xx=1997﹣63×31x=1997﹣1953 x=44;填空题把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是________ .【答案】125000【解析】本题中,设每一组的平均数为x,则每一组的总和为33X.那么33X+33X+33X=1+2+3+…+99.解之得X=50,那么这三个平均数的乘积是503=125000.解:设每一组的平均数为x,则由题意得33x+33x+33x=1+2+3+ (99)即99x=(1+99)×99÷299x=99×50,x=50.故三个平均数之积为503=125000.填空题1+2+3+4+5…+2007+2008的和是________ (奇数或偶数).【答案】偶数【解析】2008÷2=1004,即1~2008中共有1004个偶数,1004个奇数.根据数的奇性可知,任意偶数相加的和为偶数,偶数个奇数相加的和为偶数,所以1+2+3+4+5…+2007+2008=1004个偶数+1004个奇数=偶数+偶数=偶数.即它们的和为偶数.2008÷2=1004,1+2+3+4+5…+2007+2008=1004个偶数+1004个奇数=偶数+偶数=偶数.即它们的和为偶数.填空题1﹣64的自然数中去掉其中两个数,剩下62个数的和是2012,去掉的那两个数共有________ 种可能.【答案】30【解析】先据高斯求和公式求出1﹣64的自然数和是多少,然后用这个和减2012所得的差即为去掉的两个自然数的和,根据这个差来分析去掉的这两个自然数共有多种可能性即可.1+2+3+…+64=(1+64)×64÷2,=2080;2080﹣2012=6868是去掉的两个自然数的和.即有:4+64=5+63=6+62=…=33+35 共有33﹣4+1=30(种)填空题100以内的偶数和是________ .【答案】2550【解析】100以内的偶数有2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、 40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、 88、90、92、94、96、98、100共50个,2+4+6+8+…+92+94+96+98+100=(2+100)×50÷2=102×50÷2=2550答:100以内的偶数和是2550.填空题用100个盒子装杯子,每个盒子装的个数都不相同,并且盒子不空,那么至少有________ 个杯子.【答案】5050【解析】因为每个盒子装的个数都不相同,并且盒子不空,那么求至少有多少个,所以第一个盒子放一个被子,第二个放2个,第三个放三个,以此类推,那么被子总数就是1+2+3+4+…+100即可.改算式的算法是:因为第一个数1加上最后一个数100,等于第二个数2加上倒数第二个数99,等于第三个数3加上倒数第三个数98,即为收尾对称着加,其和都相等,从1到100共100个数,一个和是由两个数构成,所以和的个数是100÷2,据此解答即可.因为每个盒子装的个数都不相同,并且盒子不空,要想让被子数量最少,那么只能是第一个盒子放一个被子,第二个放2个,第三个放3个,以此类推,第100个盒子放100个,1+2+3+4+…+100=(1+100)×100÷2=101×50=5050(个)答:那么至少有5050个被子.填空题已知2+4+6+8+…+100=2550,那么1+3+5+7+9+…+101=________ .【答案】2601【解析】本题可据这两个等差数列的项数及两个数列中数据的特点由2+4+6+8+…+100=2550推出1+3+5+7+9+…+101的和是多少.数列2+4+6+8+…+100共有50项,数列1+3+5+7+9+…+101共有51项,即多个101,通过观察可知,数列2+4+6+8+…+100中的第一项都比数列1+3+5+7+9+…+101的前50项多1,即多50,所以数列1+3+5+7+9+…+101=2550﹣50+101=2601.填空题1+3+5+7+…+97+99=________ =________ 2 .【答案】2500 50【解析】算式1+3+5+7+…+97+99中的加数构成一个公差为“2”的等差数列,首项为1,末项为99,项数为50.因此本题根据高斯求和公式进行计算即可:等差数列和=(首项+末项)×项数÷2.1+3+5+7+…+97+99=(1+99)×50÷2=100÷2×50=502=2500填空题9个连续自然数的和是2007,其中最小的自然数是________ .【答案】219 【解析】根据题意,把把这些数从小往大排,2007÷9=223是最中间的数,也就是第5个数是223,因为是连续的自然数,所以第5个数比最小的数大5﹣1=4,用223减去4就是要求的数.根据题意可得:中间的数是:2007÷9=223,即第5个数是223,因为第5个数比最小的数大5﹣1=4,所以最小数自然数是:223﹣4=219.答:最小的自然数是219.填空题1+3+5+…+99=________ .【答案】2500【解析】通过分析式中数据可以发现,式中的加数为一个公差为2的等差数列,即此算式是求一个等差数列和的运算.因此根据高斯求和公式计算即可:项数=(末项﹣首项)÷公差+1,等差数列和=(首项+尾项)×项数÷2.1+3+5+…+99=(1+99)×[(99﹣1)÷2+1]÷2,=100×(49+1)÷2,=100×50÷2,=2500.填空题27个连续自然数的和是1998,其中最小的自然数是________ .【答案】61【解析】根据题意,把把这些数从小往大排,1998÷27=74是最中间的数,也就是第十四个数是74,因为是连续的自然数,所以第十四个数比最小的数大14﹣1=13,用74减去13就是要求的数.根据题意可得:中间的数是:1998÷27=74,即第十四个数是74,因为第十四个数比最小的数大14﹣1=13,所以最小数自然数是:74﹣13=61.填空题自然数1、2、3…14、15的和是___ ,这15个自然数的平均数是________ .【答案】120 8【解析】根据高斯求和的方法:1+2+3+4+…+n=(n+1)×,代入数据即可求出这15个连续自然数的和,再除以15,就是它们的平均数.1+2+3+…+14+15,=(1+15)×,=16×,=120,120÷15=8,答:这15个自然数的和是120,它们的平均数是8.填空题已知:则:1+2+3+…+99+100+99+98+…+3+2+1=________ .【答案】10000【解析】方法一:通过已经给出的两个式子可以找出规律:几个对称排列的连续自然数的和等于中间数的平方,所以在算式1+2+3+…+99+100+99+98+…+3+2+1中,中间的数是100,因此1+2+3+…+99+100+99+98+…+3+2+1=1002=10000,据此解答;方法二:在算式1+2+3+…+99+100中,首项是1,末项是100,项数是100,根据高斯求和公式可得:(1+100)×100÷2×2﹣100=10000,据此解答.方法一:1+2+3+…+99+100+99+98+…+3+2+1,=1002,=10000;方法二:(1+100)×100÷2×2﹣100,=101×100﹣100,=10100﹣100,=10000;解答题有40块糖,把它分成4份,且后一份比前一份依次多2块,那么最少一份有________ 块.【答案】7【解析】设最少的一份为X,则其他三份依次为X+2;X+2+2;X+2+2+2;根据题意列出方程解答即可.解:设最少的一份为X,由题意得方程:X+(X+2)+(X+2+2)+(X+2+2+2)=40,4X+2×6=40,4X+12=40,4X=28,X=7;答:最少一份有7块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学竞赛试题及详细答案(C级) 一、计算下面各题,并写出简要的运算过程(共15分,每小题5分) 二、填空题(共40分,每小题5分) 1.在下面的“□”中填上合适的运算符号,使等式成立: (1□9□9□2)×(1□9□9□2)×(19□9□2)=1992 2.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。

那么,这个等腰梯形的周长是_ _厘米。

3.一排长椅共有90个座位,其中一些座位已经有人就座了。

这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。

原来至少有_ _人已经就座。

4.用某自然数a去除1992,得到商是46,余数是r。

a=_ _,r=_ _。

5.“重阳节”那天,延龄茶社来了25位老人品茶。

他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。

其中年龄最大的老人今年_ ___岁。

6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。

那么,至少__ __个学生中一定有两人所借的图书属于同一种。

7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。

那么得分最少的选手至少得__ __分,至多得 __ __分。

(每位选手的得分都是整数) 8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。

那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。

三、解答下面的应用题(要写出列式解答过程。

列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分) 1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。

现由甲工程队先修3天。

余下的路段由甲、乙两队合修,正好花6天时间修完。

问:甲、乙两个工程队每天各修路多少米? 2.一个人从县城骑车去乡办厂。

他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。

又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。

3.一个长方体的宽和高相等,并且都等于长的一半(如图12)。

将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。

求这个大长方体的体积。

4.某装订车间的三个工人要将一批书打包后送往邮局(要求每个包内所多35本。

第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包。

这批书共有多少本? 四、问答题(共35分) 1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。

问:保证一定获胜的对策是什么?(5分)2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。

现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?(6分)3.个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。

现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。

金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。

问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(3分)(2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)(5分)4.只修改21475的某一位数字,就可以使修改后的数能被225整除。

怎样修改?(6分)5.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(5分)(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?(5分)详解与说明 一、计算题 说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面、,马上就应该知道它可以化为3.6;而3.6与36只差一个小数点,于是,又容易想到把“654.3×36”变形为“6543×3.6”,完成了这步,就为正”采用了同样的手段,这种技巧本报多次作过介绍。

说明:解这道题可以从不同的角度来观察。

解法一是先观察、比较分子部分每个加数(连乘积)的因数,发现了前后之间的倍数关系,从而把“1×3×24”作为公因数提到前面,分母部分也作了类似的变形。

而解法二,是着眼于整个繁分数,由分子看到分母,发现分子部分的左、中、右三个乘分子部分括号内三个乘积的和约去了。

本题是根据《数学之友》(7)第2页例5改编的。

3.解法一: 解法二: 说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱”栏中曾作过介绍。

由于本题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍”,也就是它前面的一个加数,这就不难想到解法二。

二、填空题 1.解:(1×9×9+2)×(1+9-9+2)×(19-9-2) =83×3×8 =1992 或(1×9×9+2)×(1×9÷9×2)×(19-9+2) =83×2×12 =1992 (本题答案不唯一,只要所填的符号能使等式成立,都是正确的) 说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个已知数,这是选手们熟悉的“算式谜”题。

而这道题却不容易一下子判断括号内的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=83×3×2×2×2,因为83、3、2、2、2组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了。

2.解:55+15+25×2=120(厘米) 说明:要算周长,需要知道上底、下底、两条腰各是多长。

容易判断:下底最长,应为55厘米。

关键是判断腰长是多少,如果腰长是15厘米,15×2+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米。

读者从本报190期第三版《任意三根小棒都能围成三角形吗》一文中应当受到启发。

3.解:最少有 说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有两个空位。

但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个(最右边一个)既可以坐在左边(右边)起第一个座位上,也可以坐在左边(右边)起第二个座位上(如图16所排出的两种情况,“●”表示已经就座的人,“○”表示空位)”。

不过,题目中问“至少”有多少人就座,那就应选第二种情况,每三人(○●○)一组,每组中有一人已经就座。

(1)●○○●○○●…… (2)○●○○●○○●○…… 图16 4.解法一:由 1992÷46=43 (14) 立即得知:a=43,r=14 解法二:根据带余除法的基本关系式,有 1992=46a+r(0≤r<a) 由 r=1992-46a≥0,推知 由r=1992-46a<a,推知 因为 a是自然数,所以 a=43 r=1992-46×43=14 说明:本题并不难,因此应尽可能运用简单的方法,迅速地算出答案。

解法一是根据 1992÷a的商是 46,因而直接用 1992÷46得到了a和r。

解法二用的是“估值法”。

5.解法一:先算出这25位老人今年的岁数之和为 2000-25×2=1950 年龄最大的老人的岁数为 [1950+(1+2+3+4+……+24)]÷25 =2250÷25 =90(岁) 解法二:两年之后,这25位老人的平均年龄(年龄处于最中间的老人的年龄)为2000÷25=80(岁) 两年后,年龄最大的老人的岁数为80+12=92(岁) 年龄最大的老人今年的岁数为92-2=90(岁) 说明:解法一采用了“补齐”的手段(详见本报241期第一版《“削平”与“补齐”》一文)。

当然,也可以用“削平”法先求年龄最小的老人的岁数,再加上24。

解法二着眼于 25人的平均年龄,先算年龄处于最中间的老人的岁数,算起来更简便些。

6.解:根据“抽屉原理”,可知至少7个学生中有两人所借图书的种类完全相同。

说明:本题是抽屉原理的应用。

应用这个原理的关键是制造抽屉。

从历史、文艺、科普三种图书若干本中任意借两本,共有——(史,史)、(文,文)、(科,科)、(史,文)、(史,科)、(文,科)这六种情况,可把它们看作六只“抽屉”,每个学生所借的两本书一定是这六种情况之一。

换句话说,如果把借书的学生看作“苹果”,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内。

本题是由本报234期“奥林匹克学校”拦的例2改换而成的。

7.解:得分最低者最少得 404-(90+89+88+87)=50(分) 得分最低者最多得 [404-90-(1+2+3)]÷4=77(分) 说明:解这道题要考虑两种极端情形: (1)要使得分最低的选手的得分尽可能地少,在五名选手总分一定的条件下,应该使前四名领先于第五名的分数尽可能多才行。

第一名得分是已知的(90分),这就要求第二、三、四名的得分尽可能靠近90分,而且互不相等,只有第二、三、四名依次得89分、88分、87分时,第五名得分最少。

(2)要使得分最低的选手得分最多,在总分和第一名得分一定的条件下,应当使第二、三、四、五名的得分尽可能接近。

考虑到他们的得分又要互不相等,只有当第二、三、四、五名的得分为四个连续自然数时才能做到,用“削平”的方法可以算出第五名最多得多少分。

本题是根据《数学之友》(7)第46页第13题改编的。

8.解:设38毫米、90毫米的铜管分别锯X段、Y段,那么,根据题意,有 38X+90Y+(X+Y-1)=1000 39X+91Y=1001 要使损耗最少,就应尽可能多锯90毫米长的铜管,也就是说上面式中的X应尽可能小,Y尽可能大。

由于X、Y都必须是自然数,因而不难推知:X=7,Y=8。

即38毫米的铜管锯7段,90毫米的铜管锯8段时,损耗最少。

说明:选手们读题之后,可以马上想到:要使损耗最少,应尽可能多锯90毫米长的铜管,但必须符合“两种铜管都有”、“两种铜管长度之和加上损耗部分长度应等于1米”两个条件,这样算起来就不那么简单了。

相关文档
最新文档