理论力学_动能定理例题

合集下载

动能定理典型分类例题经典题型

动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。

2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。

3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。

答案为1.95m。

4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。

答案为0.98m。

5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。

求刹车前汽车的行驶速度。

答案为10.95m/s。

6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离为L×m/(M+m)。

模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。

答案为6.31m/s。

基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。

答案为6.31m/s。

基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。

已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。

答案为3.46m/s和6.71m/s。

典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。

动能定理(3) 山东建筑大学理论力学

动能定理(3) 山东建筑大学理论力学

1 2
m1vE2
1 2
1 12
m1l 2
2 AB
vA
1 12
(9m2
2m1
sin 2
)v
2 A
A
m1g
m2g
ABC
B
E
vB
vE
A
T
1 12
(9m2
2m1
sin 2
)vA2
系统的总功率:
P m1g vE cos
m1g
vA 2
cot
代入功率方程:
dT = dt i
dWi dt
i
Pi
B E
v2
0
Ws
v W
将上式对时间求导,并注意 dv a, ds v
dt
dt
解得:
a
WR 2
(JO
W g
R2 )
O
sP
v W
例 题 已知: m ,R, f , 。
求: 纯滚时盘心的加速度。
解:取系统为研究对象
T1 0
T2
1 2
mvC2
1 2
JC 2
T2
3 4
mvC2
vC
R
s
C
vC
F mg
FN
结论与讨论
关于几个动力学定理 的综合应用
动量定理、动量矩定理和动能定理的比较
分析和解决复杂系统的动力学问题时,选择哪一个定理的 原则是:
1、所要求的运动量在所选择的定理中能不能比较容易地 表达出来;
2、在所选择的定理表达式中,不出现相关的未知力。
对于由多个刚体组成的复杂系统,求解动力学问题时,如 果选用动量定理或动量矩定理,需要将系统拆开,不仅涉及 的方程数目比较多,而且会涉及求解联立方程。

动能定理的典型例题

动能定理的典型例题

“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。

动能定理题型及例题讲解

动能定理题型及例题讲解

动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与力的关系。

根据动能定理,物体的动能的变化等于作用在物体上的合外力的做功。

动能定理题型主要包括以下几类:1. 给定物体的质量、速度和加速度,求物体所受合外力的大小和方向。

例题:一个质量为2kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体所受合外力的大小和方向。

2. 给定物体的质量、速度和作用在物体上的合外力,求物体的加速度。

例题:一个质量为3kg的物体受到作用力为15N的力,使其速度从5m/s增加到15m/s,求物体的加速度。

3. 给定物体的质量、速度和加速度,求物体在某段距离上所做的功。

例题:一个质量为4kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体在这段距离上所做的功。

4. 给定物体的质量、速度和作用在物体上的合外力,求物体在某段距离上所做的功。

例题:一个质量为5kg的物体受到作用力为20N的力,使其速度从8m/s增加到20m/s,求物体在这段距离上所做的功。

解题时,首先需要根据题目给出的条件,利用动能定理的公式进行计算。

公式为:物体的动能变化等于作用在物体上的合外力的做功,即ΔKE = W。

然后,根据题目所求的量,进行代入计算。

注意单位的转换,确保计算结果的准确性。

最后,根据题目所给的信息,判断物体所受合外力的方向以及物体在某段距离上所做的功的正负。

通过练习动能定理题型,可以帮助学生巩固对动能定理的理解,并提高解题能力。

在解题过程中,需要灵活运用物理学的知识,结合实际情况进行分析和计算,培养学生的物理思维能力和解决问题的能力。

物理动能与动能定理题20套(带答案)及解析

物理动能与动能定理题20套(带答案)及解析

物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。

动能定理经典题型

动能定理经典题型

动能定理经典题型动能定理是物理学中的一个重要定理,用来描述物体的运动情况和能量转化过程。

它可以帮助我们理解物体的速度、质量和能量的关系,解决各种与动能相关的问题。

动能定理的表述可以简单地理解为:物体的动能的增量等于物体所受合外力的功。

使用公式表示为:K = Wext,其中K表示物体的动能,Wext表示物体所受合外力的功。

根据动能定理,我们可以通过计算物体所受的合外力的功来求解物体的动能变化。

动能定理的应用范围非常广泛,下面将介绍几个与动能定理相关的经典题型。

1. 通过动能定理计算物体的速度:题目描述:一个质量为2kg的物体从静止开始沿直线运动,受到一个合外力使得该物体的动能增加100J,求物体的末速度。

解题思路:根据动能定理可以得到:K = Wext = ΔKE = 100J。

根据动能的定义:K = 1/2mv^2,其中m为物体的质量,v为物体的速度。

代入已知条件,可以得到:1/2 * 2kg * v^2 =100J,通过化简可以得到物体的末速度:v = 10m/s。

2. 利用动能定理分析物体的运动情况:题目描述:一个小球从竖直向上抛出,并在顶点处停止运动,求小球的初始速度。

解题思路:在小球上抛运动过程中,只有重力对小球做功,物体的动能变化量等于重力所做的负功。

根据动能定理可得:K= Wext = ΔKE = -mgH,其中m为小球的质量,g为重力加速度,H为小球的抛高度。

由于小球在顶点处停止运动,所以动能变化量为0,即-mgH = 0,解得初始速度v = √(2gH)。

3. 利用动能定理解决碰撞问题:题目描述:一个质量为0.5kg的物体和一个质量为0.2kg的物体发生弹性碰撞,已知0.5kg物体的初速度为10m/s,0.2kg物体的初速度为-5m/s,求碰撞后两个物体的末速度。

解题思路:根据动能定理可以得到:K1i + K2i = K1f + K2f。

其中K1i和K2i分别为两个物体碰撞前的动能,K1f和K2f分别为两个物体碰撞后的动能。

动能定理解题方法

动能定理解题方法

动能定理解题方法一、水平面上的动能定理应用。

题目1。

一个质量为m = 2kg的物体,在水平恒力F= 5N的作用下,沿粗糙水平面由静止开始运动,物体与水平面间的动摩擦因数μ=0.2,运动距离x = 4m。

求物体的末速度。

解析。

1. 首先分析物体的受力情况:- 水平方向受到拉力F = 5N,摩擦力f=μ mg,其中m = 2kg,g = 10m/s^2,则f=μ mg=0.2×2×10 = 4N。

2. 根据动能定理W=Δ E_k,合外力对物体做的功等于物体动能的变化量。

- 合外力F_合=F - f=5 - 4 = 1N。

- 合外力做的功W = F_合x,x = 4m,所以W=1×4 = 4J。

- 初动能E_k1=0,设末速度为v,末动能E_k2=(1)/(2)mv^2。

- 由W=Δ E_k=E_k2-E_k1,即4=(1)/(2)×2× v^2-0。

- 解得v = 2m/s。

题目2。

质量m = 3kg的物体在水平面上,受到与水平方向成θ = 30^∘角斜向上的拉力F = 10N的作用,物体在水平面上移动的距离s=5m,物体与水平面间的动摩擦因数μ = 0.1。

求物体的末速度。

解析。

1. 对物体进行受力分析:- 将拉力F沿水平和竖直方向分解,F_x=Fcosθ,F_y=Fsinθ。

- 则F_x=10×cos30^∘=5√(3)N,F_y=10×sin30^∘=5N。

- 物体对水平面的压力N = mg - F_y=3×10 - 5 = 25N。

- 摩擦力f=μ N=μ(mg - F_y)=0.1×25 = 2.5N。

2. 根据动能定理W=Δ E_k:- 合外力做的功W=(F_x-f)s。

- F_x-f = 5√(3)-2.5,s = 5m,所以W=(5√(3)-2.5)×5。

- 初动能E_k1=0,设末速度为v,末动能E_k2=(1)/(2)mv^2。

(完整版)动能定理习题(附答案)

(完整版)动能定理习题(附答案)

A1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆Q ”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅o()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-o o3.74m/s v ∴==(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-o o100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-o270m s ∴=则总位移12100m s s s =+=.v t v vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅o0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-oB 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=- 克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-o o又1cos l s θ=Q 、12s s s =+ 则11:0h s μ-= 即: hsμ=9也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。

理论力学课后习题答案-第10章--动能定理及其应用-)

理论力学课后习题答案-第10章--动能定理及其应用-)

理论力学课后习题答案-第10章--动能定理及其应用-)(a)v ϕABC rv 1v 1v 1ωϕ(a)CCωCvωO第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。

在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。

2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。

3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。

细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。

解:1.222222163)2(2121)2(212121BBB CCCmv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m vm T +=⋅++= 3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。

现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。

当杆与铅垂线的夹角为ϕ时,试求系统的动能。

解:图(a ) B AT T T +=)2121(21222211ωC CJ vgWv g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。

齿轮II 通过匀质的曲柄OC 带动而运动。

动能定理经典例题

动能定理经典例题

物体在动力F和阻力f作用下运动时,G和N不做功,F做正功, f做负功,因此,也可以用动能定理求解.
解法一:用牛顿定律和匀变速运动规律,对撤去F推力前、后 物体运动的加速度分别为
F f F μ mg 9 0.2 × 3×10 m / s2 1m / s2 a1 3 m m
例10、在h高处,以初速度v0向
水平方向抛出一小球,不计空
气阻力,小球着地时速度大小
为(
C )
W总
1 1 2 2 mv 2 mv1 2 2
物理过程中不涉及到加 速度和时间,而只与物 体的初末状态有关的力 学问题,优先应用动能 定理。
例11、如图4所示,AB为1/4圆弧轨道,半径为 R=0.8m,BC是水平轨道,长l=3m,BC处的摩擦 系数为μ=1/15,今有质量m=1kg的物体,自A点 从静止起下滑到C点刚好停止。求物体在轨道AB 段所受的阻力对物体做的功。
1 2 Ek mv 得 2
1
1 在A点时的动能为:Ek 2 10 2 J 100J 2 1 在B点时的动能为: Ek 2 20 2 J 400J 2
2
(2)从A到B动能的变化量为:
ΔEk Ek2 Ek1 300J
(3)由
W F S 得, AB过程重力做功为: W FS Gh 2 10 15J 300J
4.4 动能定理的应用
复习回顾
1、动能大小等于物体的质量和速度平方的乘积的一半。
1 E k mv 2 2
2、动能定理:合外力所做的功,等于物体在这个过程中 动能的变化。
1 2 1 2 W mv 2 mv1 2 2
3、动能定理的步骤 (1)明确研究对象和运动过程 (2)受力分析,确定各个力做的功 (3)明确初末态的动能 (4)列方程求解

理论力学-动能定理 案例

理论力学-动能定理 案例
上作用有力偶M ,摩擦力不计.
求:O1 , O2处的约束力.
解:
T
1 2
J
2
O1 1
1 2
JO2 JO3
22
1 2
mAvA2
其中
2
1
2
A
2r
1r
2
,
J O1
1 2
m1r 2 ,
JO2
1 2
m2R2 , JO3
1 2
m3r 2
δW Md mAdh
M
其中 dh 1 rd
2
dT
dt
δW
aA
T2
1 2
mvC2
1 2
J C 2
1 2
mAvA2
其中: vC R
vA (R r)
aC R aA (R r)
T2
1 2
m(C2
R2) mA(R r)2
2
力的功 W mAgs
mAgs
1 2
m(C2
R2) mA(R r)2
2
T1
函数式
两端对时间求导得
mAgvA m(C2 R2 ) mA (R r)2
1 J d 2
2 dt
1 2
m
J R2
ds dt
2
P重力
mg
ds dt
, P弹性力
ks
ds dt
dT dt P重力 P弹性力
m
J R2
ds dt
d2s dt 2
mg
ds dt
ks ds dt
m
J R2
d2s dt 2
mg
ks

为弹簧静伸长,即mg=k

高中物理动能定理练习题及讲解

高中物理动能定理练习题及讲解

高中物理动能定理练习题及讲解### 高中物理动能定理练习题及讲解动能定理是物理学中描述物体动能变化的重要定理,它表明物体动能的变化等于作用在物体上的外力所做的功。

以下是几道关于动能定理的练习题,以及相应的讲解。

#### 练习题一一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10秒后速度减为0。

求汽车受到的平均阻力。

解答:设汽车受到的平均阻力为 \( F \) 。

根据动能定理,汽车动能的变化等于阻力做的功,即:\[ \Delta E_k = -W = -F \cdot s \]其中 \( \Delta E_k \) 为动能的变化量,\( W \) 为阻力做的功,\( s \) 为汽车的位移。

汽车的初始动能为 \( \frac{1}{2}mv^2 \),其中 \( m \) 为质量,\( v \) 为速度。

因此,动能的变化量为:\[ \Delta E_k = \frac{1}{2}m(0^2 - v^2) = -\frac{1}{2}mv^2 \]由于汽车速度从 \( v \) 减为0,所以 \( \Delta E_k = -\frac{1}{2} \times 1000 \times 20^2 \) J。

根据动能定理,我们有:\[ -\frac{1}{2} \times 1000 \times 20^2 = -F \cdot s \]汽车的位移 \( s \) 可以通过速度-时间公式 \( v = at \) 计算,其中 \( a \) 为加速度。

由于汽车做匀减速运动,\( a =\frac{\Delta v}{\Delta t} = \frac{0 - 20}{10} = -2 \) m/s²。

因此,\( s = \frac{1}{2}at^2 = \frac{1}{2} \times (-2) \times 10^2 \) m。

将 \( s \) 的值代入动能定理的公式中,我们可以求得 \( F \)。

动能和动能定理机械能守恒典型例题和练习

动能和动能定理机械能守恒典型例题和练习

学习目标1. 能够推导并理解动能定理知道动能定理的适用范围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。

3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s2)针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。

理论力学课后习题答案-第10章--动能定理及其应用-)

理论力学课后习题答案-第10章--动能定理及其应用-)

(a)A(a)O第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。

在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。

2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v(图b )。

3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。

细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。

解:1.222222163)2(2121)2(212121BB BC C C mv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。

现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。

当杆与铅垂线的夹角为ϕ时,试求系统的动能。

解:图(a )B A T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。

齿轮II 通过匀质的曲柄OC 带动而运动。

曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。

试求行星齿轮机构的动能。

理论力学第七版 第十二章 动能定理

理论力学第七版 第十二章  动能定理

T2 T1 Wi
质点系动能定理积分形式

32
探索系统全部力的功的问题 主动力 外力 全部力 外部约束力 内力
A O
B
A O
B
R
理想光滑面约束,约束力的功等于零。 为什么? 固定铰支座其约束力也不作功。 为什么? 当轮沿固定面作纯滚动时,摩擦力是静摩擦力 静摩擦力的功等于零。 为什么? 滚阻力偶作负功
刚体所有内力

36
三(质点系)动能定理的特点
1 标量方程----只能求解一个未知量 2 不考虑中间过程,对运动不加限制 3 可以解决什么问题? 思考 能否求出理想约束里面的外部约束力? 能否求出理想约束里面的内部约束力? 对于具有理想约束的刚体运动机构,若在主动 力(力矩)的作用下运动(隐含运动)。 求运动量(速度 角速度)、加速度(角加速度)
本章的第二个重点问题
要求:
质点系动能定理的内容 特点(记牢 理解) 2 质点系动能定理的应用 (重点掌握)
1

30
一、质点的动能定理(基础)
dv m dr F dr dt
F dr W
d v ma F m dt F
1 2 d mv W 2
20
1 平移刚体的动能 平移刚体的运动特点
1 1 2 1 2 2 T mi vi vC mi MvC 2 2 2

2 定轴转动刚体的动能
1 T mi vi2 2
1 2 mi ( ri ) 2 1 2 2 mi ri 2
z

ri
1 2 J z 2

33
3 探索全部力的功的问题 外力 全部力 内力

理论力学-动能定理2

理论力学-动能定理2
M M
M0
M0
为零势能位置, 其中 M 0 为零势能位置, M 为所要考察的任意位置。 为所要考察的任意位置。
势能、 势能、机械能守恒定律
●势 能
由于零势位置(零势点)可以任选,所以, 由于零势位置(零势点)可以任选,所以,对于同一个所考 察的位置的势能,将因零势位置(零势点) 察的位置的势能,将因零势位置(零势点)的不同而有不同的 数值。 数值。 为了使分析和计算过程简便,对零势能位置(零势点) 为了使分析和计算过程简便,对零势能位置(零势点)要加 以适当的选择。 以适当的选择。 例如对常见的弹簧-质量系统,往往以其静平衡位置为零 静平衡位置 例如对常见的弹簧-质量系统,往往以其静平衡位置为零 势能位置,这样可以使势能的表达式更简明。 势能位置,这样可以使势能的表达式更简明。
M 1 3 5r ∑ W = x A + mg ( − ) fs − 2 2 12 R R
M 1 ρ2 r2 1 3 5r 2 ɺ mx A ( 1 + 2 + 2 ) = x A + mg( − fs − ) 2 2 12 R 2 R 4R R
5r 2M + g (1 − 3 f s − ) Rm 6R xA 2 2 ρ r 1+ 2 + 2 R 4R
动力学普遍定理的综合应用
动力学普遍定理 动量定理 动量矩定理
动能定理
矢量形式
标量形式
动力学普遍定理的综合应用
给出了质点系动量的变化与外力主矢之间的关系, 动量定理 给出了质点系动量的变化与外力主矢之间的关系, 可以用于求解质心运动或某些外力。 可以用于求解质心运动或某些外力。 动量矩定理 描述了质点系动量矩的变化与外力主矩之间的 关系,可以用于具有转动特性的质点系, 关系,可以用于具有转动特性的质点系,求解角加速度等运动 量和外力。 量和外力。 建立了作功的力与质点系动能变化之间的关系, 动能定理 建立了作功的力与质点系动能变化之间的关系, 可用于复杂的质点系、刚体系求运动。 可用于复杂的质点系、刚体系求运动。 应用动量定理和动量矩定理的优点是不必考虑系统的内力。 应用动量定理和动量矩定理的优点是不必考虑系统的内力。 应用动能定理的好处是理想约束力所作之功为零, 应用动能定理的好处是理想约束力所作之功为零,因而不必 考虑。 考虑。

第七章 动能定理经典例题(含答案)

第七章 动能定理经典例题(含答案)

h H 2-7-2 动能和动能定理经典例题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为多少?例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5某同学从高为h 处水平地投出一个质量为m 的铅球,测得成绩为s ,求该同学投球时所做的功.例6 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例7 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.2-7-3 θ F O PQ l例8如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。

理论力学18—动能定理

理论力学18—动能定理
(1 mv2) δW
2
质点动能的增量 等于作用在质点 上的力的元功。
18.3 动能定理
d(1 mv2) δW 2
积分上式,得
v2 v1
d(1mv2) 2
W12

12mv2212mv12 W12
在质点运动的某个过程中,质点动能的改变量 等于作用于质点的力作的功。
18.3 动能定理
解:分析系统,初瞬时的动能为 T1 0
设连杆OA运动到水平位置时的
角速度为,由于OA=AB,所以杆
AB的角速度也为,且此时B端为杆
AB的速度瞬心,因此轮B的角速度为
零,vB=0。系统此时的动能为
T2 12IO2 12IB2
a
O
1(1ml2)2 1(1ml2)2 1ml22
23
23
3
F A
vA
B vB
j v A O 1 A A B 2 a c o s a
TA
12mAvA2
ma22
2
v B O 1 B A B 2 a sin j3 a
O
TB12mBvB2
3ma22
2
vA
vC
j
AB
O1
C
vB B
对于曲柄OC:
IO13mOCa2 ma2
vA
TOC1 2IO21 6ma22
A
O1
规尺作平面运动,用绕速度瞬心转动的公 式求动能:
因此所有力的功为
W W T W F 2 0 0 1 5 0 5 0 N c m
18.2 质点和质点系的动能
1. 质点的动能 设质点的质量为m,速度为v,则质点的动能为
T 1 mv 2 2
动能是标量,在国际单位制中动能的单位是焦耳(J)。

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
动力学普遍定理的综合应用
例 题 5
本例小结: 本例中几乎应用了三个定理的所有主要形式。还 可以发现,每种问题的解法都并不是唯一的。这说 明,对于具体问题,必须进行具体分析,没有统一 的方法可循。
14
动力学普遍定理的综合应用
例 题 6
均质细长杆长为 l ,质量为m,静止直立于光滑水平 面上。杆受微小干扰而倒下。 求:杆刚刚到达地面时的角速度和地面的约束力。
1 1 2 2 T I O 2 mL 2 18
K mR
3 LO mR 2 2
K mv
1 LC mR 2 2
2
T 3 mR 4
2
T 1 mv2 1 mR2 2 2 4
7
[例5] 均质杆OA,重P,长l,绳子突然剪断。求该瞬时,角加 速度及O处反力。
FN A
a
C
C

mg
l FN J C 2 1 2 J ml 其中 C 12 由运动学知
n aC a A aCA a CA
aC 铅直 其中 a A水平,
18
动力学普遍定理的综合应用
例 题 6
由运动学知
n aC a A aCA a CA
FN A
a
C
aC 铅直 其中 a A水平,
15
动力学普遍定理的综合应用
例 题 6

P
C
vAC Nhomakorabea解:杆在水平方向不受外力,且由静止倒下,则在倒下过 程中其质心将铅直下落。由运动学知,P为杆的瞬心。
杆刚到达地面时,A点成为杆的瞬心,杆的的动能为:
T
1 1 1 1 J A 2 ( ml 2 ) 2 ml 2 2 2 2 3 6
[例2] 均质圆盘A:m,r;滑块B: m;杆AB:质量不计,平行于斜 面。斜面倾角,摩擦系数f,圆盘
作纯滚动,系统初始静止。求:
滑块的加速度。 解:选系统为研究对象
W ( F ) 2mg S sin f mgScos mg S (2sin f cos )
T1 0 T2 1 mv2 1 mv2 1 1 mr2 2 2 2 2 2

10
动力学普遍定理的综合应用
例 题 5
d(J BB mC vC R ) mC gR FTR dt
JB mR R aC mgR F TR
B
解得
3 3 J FT mg B m a mg ma mg C C 2 2 4 R
1
W ( F ) 2mg S sin f mgScos mg S (2sin f cos )
T1 0 1 1 11 T2 mv2 mv2 mr2 2 2 2 22
T2 5 mv2 4
运动学关系: v r 由动能定理:
5 2 mv 0mgS(2sin f cos ) 4
B 0 0 ,圆盘平动。
3
(2)用动能定理求速度。 取系统研究。初始时T1=0 , 最低位置时:
1 1 G2 2 T2 I A 2 v B 2 2 g
1 1 G1 2 1 G2 2 G1 3G2 2 v B v B v B 2 3g 2 g 6g
解:取杆为研究对象, 由动量矩定理:
1 P l 2 P l 3g 2
由质心运动定理:
P aCx 0 X O g
3g / 2l
(∵初瞬时杆的角 速度0=0 )
P Pl aCy YO P g g2
1 YO P 4
8
动力学普遍定理的综合应用
例 题 5
12
动力学普遍定理的综合应用
例 题 5
解: 3.确定A轮与斜面之间的摩擦力
取轮A为研究对象,分析受力, 应用相对质心的动量矩定理,得到
J A A FR
注意到
a A aC R A
于是,得到摩擦力
1 2 aA mR J R 1 m g 1 mg F A A2 R R 2 6 12
代入数据,得 X A 0, YA 401N 相对质心动量矩守恒定理+动能定理+动量矩定理+质心运动定理。 可用对积分形式的动能定理求导计算,但要注意需取杆AB在
一般位置进行分析。
6
[例4] 基本量计算 (动量,动量矩,动能)
1 K mvC mL 6
1 2 L LO I O [ mL m( ) 2 ] 12 6 1 2 mL 9
a ( 4 sin 2 f cos ) g 5 5
对t求导,得
2
[例3] 重150N的均质圆盘与重60N、长24cm的均质杆AB在B处用
铰链连接。 系统由图示位置无初速地释放。求系统经过最低位
置B'点时的速度及支座A的约束反力。
解:(1)取圆盘为研究对象
mB (F )0 ;
I B B 0 B 0
均质圆轮A、B的质量均为m, 半径均为R,轮A沿斜面作纯滚动 ,轮B作定轴转动,B处摩擦不计 。物块C的质量也为m。A、B、C 用无质量绳相联,绳相对B 轮无 滑动。系统初始为静止状态。 试求: 1.轮A、轮B之间的绳子拉力 和B处的约束力;
2.轮A与地面的接触点处的摩擦力。
9
动力学普遍定理的综合应用
16
动力学普遍定理的综合应用
例 题 6

P
杆在滑倒过程中,只有重力作功。 由动能定理,有
C
T 0 W
v
A
C

1 2 2 l ml mg 6 2
3g l
17
动力学普遍定理的综合应用
例 题 6
杆刚到达地面时,受力及加速 度分析如图。 由刚体平面运动微分方程,得
mg FN maC
n 2 0) aB ' aB l ( a B
vB' 1.58 6.58 rad/s l 0.24
5
(4)由质心运动定理求支座反力。 研究整个系统。
G1 G2 mi aix ac a B ' 0 X A ; g g
mi aiy G1 l G 2 2 l 2 Y A G1 G2 g 2 g
(3)用动量矩定理求杆的角加速度 。
G1 2 G2 G1 2 G2 2 1 1 LA l vl ( l l ) 3 g g 3 g g
由于
dLA mA ( F (e) ) 0 所以 =0 。 dt
杆质心 C的加速度: 盘质心加速度:
l n aC aC 2 (aC 0) 2
3 0 F FT Bx 2 ma F 1 F 2mg C By T 2
由此解得B处的约束力
3 3 3 3 FBx mg mg 2 4 8 F 1 mg 1 3 mg 2mg 53 mg Bx 6 2 4 24
例 题 5
解: 1.确定绳子拉力 B 本例的条件与例题2相同。 在例题2中已经求得 g aC a A 6 aC R B 而 aC 故有 B R 取轮B和物块C组成的质点系为研究对象, 分析受力,对点B应用动量矩定理,有
d(J B B mC vC R) mC gR FT R dt
11
动力学普遍定理的综合应用
例 题 5
解: 2.确定B处的约束力
B
对图示系统应用质心运动定理,有
m a m a F F cos30 B Bx C Cx Bx T m a m a F F cos60 mB g mC g B By C Cy By T
W
(F )
G1 l l G1 ( sin30) G2 (l lsin30) ( G2 )(l lsin30) 2 2 2
T2 T1 W ( F )
G1 3G2 2 G1 v B 0 ( G2 )(l lsin30) 6g 2
4
代入数据,得 vB ' 1.58 m/s
C

将加速度矢量式向铅垂方向 投影,得
mg
aC aCA

l 2
联立以上诸式,可以解得
mg FN 4
19
相关文档
最新文档