空间解析几何(空间向量和参数方程)

合集下载

高等数学中的空间解析几何

高等数学中的空间解析几何

高等数学中的空间解析几何一、引言空间解析几何是高等数学中的重要分支之一,它研究的是空间中的点、直线、平面等几何对象的性质和相互关系。

在实际应用中,空间解析几何广泛应用于物理学、工程学、计算机图形学等领域。

本教案将从基本概念入手,逐步展开论述空间解析几何的相关内容。

二、点与向量1. 点的坐标表示- 在直角坐标系中,点的坐标表示为(x, y, z),其中x、y、z分别表示点在x轴、y轴、z轴上的投影。

- 点的坐标可以用向量表示,即P = x*i + y*j + z*k,其中i、j、k分别是x轴、y轴、z轴的单位向量。

2. 向量的基本性质- 向量的模:向量AB的模表示为|AB|,定义为AB的长度。

- 向量的方向角:向量AB的方向角表示为(α, β, γ),其中α、β、γ分别表示向量AB与x轴、y轴、z轴的夹角。

- 向量的共线性:若向量AB与向量CD平行或共线,则存在实数k,使得AB = kCD。

三、直线与平面1. 直线的方程- 点向式方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的点向式方程为(x, y, z) = (x0, y0, z0) + t(a, b, c),其中t为实数。

- 参数方程:直线L上一点P的坐标为(x0, y0, z0),且向量v = (a, b, c) 与直线L平行,则直线L的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中t为参数。

- 一般方程:直线L的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

2. 平面的方程- 点法式方程:平面π上一点P的坐标为(x0, y0, z0),且法向量n = (A, B, C)垂直于平面π,则平面π的点法式方程为Ax + By + Cz + D = 0,其中D = -Ax0 -By0 - Cz0。

- 一般方程:平面π的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

空间向量与空间解析几何的联系知识点总结

空间向量与空间解析几何的联系知识点总结

空间向量与空间解析几何的联系知识点总结空间向量和空间解析几何是高中数学中的重要内容,两者之间存在紧密的联系。

本文将对空间向量和空间解析几何的联系进行总结和阐述。

一、空间向量的概念和性质空间向量是空间中带有方向和大小的物理量,通常用箭头表示。

空间向量具有以下性质:1. 平分定理:设空间向量$\overrightarrow{AB}$平分角$\angle AOC$,则有$\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OC}$。

2. 共线定理:若空间向量$\overrightarrow{AB}$和$\overrightarrow{AC}$共线,则存在实数$k$,使得$\overrightarrow{AB}=k\overrightarrow{AC}$。

3. 相反向量:对于任意空间向量$\overrightarrow{a}$,存在唯一一个向量$-\overrightarrow{a}$,使得$\overrightarrow{a}+(-\overrightarrow{a})=\overrightarrow{0}$。

二、空间解析几何的基本概念空间解析几何是利用坐标系统和代数方法研究空间中点、直线、平面等几何对象的学科。

其基本概念有:1. 空间直角坐标系:由三个相互垂直的坐标轴形成的坐标系。

通常用$(x, y, z)$表示空间中的点。

2. 空间直线的方程:空间直线可以用参数方程、对称方程或一般方程表示,如参数方程为:$$\begin{cases}x=x_0+mt\\y=y_0+nt\\z=z_0+pt\end{cases}$$其中$(x_0, y_0, z_0)$为直线上一点,$(m, n, p)$为方向向量。

3. 空间平面的方程:空间平面可以用点法式方程、一般方程或截距式方程表示,如点法式方程为:$$\overrightarrow{r}\cdot\overrightarrow{n}=d$$其中$\overrightarrow{r}=(x, y, z)$为平面上一点,$\overrightarrow{n}=(A, B, C)$为法向量,$d$为常数。

空间解析几何

空间解析几何

空间解析几何空间解析几何是解析几何的一个重要分支,它是研究空间内点、直线、平面等几何元素的相互关系和性质的数学分支。

在空间解析几何中,我们通过向量和坐标等工具来描述和分析空间内的几何问题。

本文将介绍空间解析几何的基本概念、常用方法和一些实际应用。

基本概念在空间解析几何中,我们通常使用三维笛卡尔坐标系来描述空间内的几何元素。

点在空间中用其三维坐标(x,y,z)来表示,直线可用参数方程、点向式方程或标准式方程等来表示,平面则通常用点法式方程表示。

在空间解析几何中,向量是一个非常重要的概念,它能够很好地描述空间内的方向和长度。

方法和技巧解析几何中有很多方法和技巧可以应用到空间解析几何中。

例如,我们可以通过向量的线性运算来求解点到直线的距离,通过向量的数量积和向量积来判断点和直线、平面的位置关系,通过方向比值来判断两直线的平行性或垂直性等。

此外,我们还可以利用三角函数和投影的概念来解决一些空间几何中的问题。

实际应用空间解析几何不仅仅是一种理论工具,它在实际应用中也具有广泛的意义。

在工程建筑中,空间解析几何可以帮助工程师设计和规划建筑物的结构和布局;在航天航空领域,空间解析几何可以帮助科学家研究轨道、飞行路径等问题;在计算机图形学中,空间解析几何是实现三维模型和动画的重要基础。

总的来说,空间解析几何是一门极具实用性的数学分支,它在各个领域都有着广泛的应用。

通过掌握空间解析几何的基本概念和方法,我们可以更好地理解和解决空间内的几何问题,为我们的工程设计和科学研究提供有力的支持。

以上是关于空间解析几何的简要介绍,希望对读者理解和学习空间解析几何有所帮助。

愿大家在空间解析几何的世界中能够不断探索、学习和创新,为数学事业的发展贡献自己的力量。

空间解析几何

空间解析几何

空 间

将直线 L1 化为参数方程
y z
2t t
2
5,
L1
L2
解 析 几 何
代入方程又Ls21解 得1,
t 1,故两直线相交于点(1,3,1).
2,1,
s2
3,1,1,
故所求平面的 法向量 可取
i jk
n s1 s2 1
2
1 1,2, 5 ,
311
所求平面的方程为 x 2 y 5z 0.
几 何
(4 )若b,c 不是共线向量, a 是 b,c 平面上的一个
向量当且仅当存在 , 使得 a b c
杨建新
空间解析几何
1 已知 a,b,c 都是单位向量,且 a b c 0, 求 ab bc ca
解 由于 a b c 0, 于是 (a b c) (a b c) 0,
a
xb |2 xb
| a |2 | | a |)
2
1 |a
|
lim
x0
2xa
b
x
x2
|
b
|2
a b | b | cos(a ^ b) 1 |a|
杨建新
空间解析几何
6、设向量 p、q、r 两两垂直,且 | p | 1,| q | 2,
|r |
3,求向量
s
p
q
r
的模及
s
(1)向量 (2) 向量 a
a
的模为
| a |
的方向角的余弦为
x2 a
y2 z2 的方向余弦。
cos cos
x
,
x2 zy2 z2 .
x2 y2 z2
cos
y ,
x2 y2 z2

空间向量与解析几何

空间向量与解析几何

空间向量与解析几何空间向量和解析几何是高等数学中的两个重要概念。

本文将介绍空间向量和解析几何的基本概念和相关性质,并探讨它们在几何问题中的应用。

一、空间向量的定义和性质空间向量是指具有大小和方向的有向线段,通常用箭头表示。

空间中的向量通常用字母加箭头标记,如A B⃗,其中A和B表示向量的起点和终点。

1.1 向量的表示空间向量可以用坐标表示,也可以用点和方向向量表示。

设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,则向量AB的坐标表示为A B⃗=(x2 - x1) i⃗ +(y2 - y1) j⃗ +(z2 - z1) k⃗,其中i⃗、j⃗和k⃗分别是x、y、z轴的单位向量。

1.2 向量的运算空间向量可以进行加法、减法和数乘运算。

1.2.1 向量加法若有向量A B⃗和向量C D⃗,则它们的和为A B⃗ + C D⃗ = A C⃗。

1.2.2 向量减法向量减法与向量加法类似,即A B⃗ - C D⃗ = A B⃗ + (- C D⃗)。

1.2.3 数乘运算若有向量A B⃗,实数k,则kA B⃗ = A B⃗ + A B⃗ + ... + A B⃗ (k个A B⃗)。

1.3 向量的数量积和向量积空间向量的数量积和向量积是两个重要的向量运算。

1.3.1 向量的数量积设有两个向量A B⃗和C D⃗,它们的数量积定义为A B⃗・ C D⃗ = |A B⃗| |C D⃗ | cosθ,其中θ为A B⃗和C D⃗的夹角,|A B⃗|和|C D⃗|分别为向量的模。

1.3.2 向量的向量积设有两个向量A B⃗和C D⃗,它们的向量积定义为A B⃗ × C D⃗ = |A B⃗| |C D⃗ | sinθ n⃗,其中θ为A B⃗和C D⃗的夹角,n⃗为与A B⃗和C D⃗都垂直且符合右手定则的单位向量。

二、解析几何的基本概念和性质解析几何是将几何问题转化为代数问题进行研究的数学分支,它主要运用代数方法研究空间中的几何问题。

空间解析几何

空间解析几何

空间解析几何空间解析几何是数学中的一个重要分支,它研究的是三维空间中的几何图形和其性质。

本文将介绍空间解析几何的基本概念、常见图形以及解析方法,帮助读者更好地理解和应用空间解析几何。

一、基本概念在空间解析几何中,我们使用坐标系来描述点、直线、平面等几何对象。

一般常用的坐标系有直角坐标系和柱面坐标系。

直角坐标系中,我们使用三个坐标轴x、y、z来确定一个点的位置。

柱面坐标系中,我们使用极坐标和一个垂直轴来确定一个点的位置。

通过坐标系,我们可以得到点的坐标、距离和角度等信息。

二、常见图形1. 点:空间中的一个点可以通过其坐标表示。

例如,点A(2,3,4)表示空间中的一个点,它的x坐标为2,y坐标为3,z坐标为4。

2. 直线:空间中两个不重合的点可以确定一条直线。

直线可以用参数方程、对称式、一般式等形式表示。

3. 平面:平面是由三个不共线的点所确定的。

平面可以用一般式、点法式等形式表示。

4. 球:由空间中的一个固定点和到该点距离等于定值的所有点构成的集合称为球。

5. 圆柱体:由一个闭合的曲线和平行于该曲线的直线段所围成的曲面称为圆柱体。

圆柱体可以通过其底面半径、高和母线方程等参数表示。

三、解析方法在空间解析几何中,我们可以使用向量、点法式、平面截距式等方法来求解各种几何问题。

1. 向量:向量是空间解析几何中一个重要的工具。

它可以用来表示线段、直线的方向和长度等信息。

通过向量,我们可以进行向量加法、减法、内积、外积等运算,用来求解直线的夹角、垂直平分线等问题。

2. 点法式:点法式是求解平面方程的一种方法。

它通过平面上的一点和法向量来表示平面的方程。

利用点法式,我们可以求解平面的交点、两平面的夹角等问题。

3. 平面截距式:平面截距式可以用来表示平面上与坐标轴相交的三个截距,通过截距可以确定平面的位置和方程。

我们可以利用平面截距式来求解平面的方程、直线与平面的交点等问题。

通过以上的解析方法,我们可以将空间解析几何中的各种问题转化为代数方程或方程组求解,从而得到几何图形的性质和关系。

空间解析几何的基本概念

空间解析几何的基本概念

空间解析几何的基本概念空间解析几何作为数学中的一个重要分支,是研究空间内点、直线、平面和其他几何体之间的关系和性质的学科。

它在解决实际问题中起着重要的作用。

本文将介绍空间解析几何的基本概念,包括点、直线、平面、坐标、距离和角度等内容,以帮助读者更好地理解和应用空间解析几何。

一、点的表示与性质在空间解析几何中,点是空间中最基本的概念之一。

点可以用坐标来表示,常用的表示方法是笛卡尔坐标系。

在三维笛卡尔坐标系中,点的坐标可以用三个实数x、y、z来表示,分别代表点在x轴、y轴、z轴上的投影值。

点在空间中没有大小,只有位置,所以点之间的距离为0。

二、直线的表示与性质直线是由无数个点组成的集合,它是空间中最基本的几何对象之一。

直线可以用向量、参数方程和一般方程等形式来表示。

其中,向量表示方法常用于表示直线的方向,参数方程则可以表示直线上的任意一点。

直线还有许多性质,如直线的斜率、倾斜角和与坐标轴的交点等,这些性质在解决问题中有重要应用。

三、平面的表示与性质平面是由无数个点组成的集合,它比直线更复杂一些。

平面可以用点法式方程、一般方程和参数方程等形式来表示。

在点法式方程中,平面可以由一个点和一个法向量确定。

而在一般方程和参数方程中,平面可以分别用一般式和参数式表示。

平面与直线相交、平行或重合等情况,也是空间解析几何中需要掌握的内容。

四、坐标与距离在空间解析几何中,坐标是表示点在空间中位置的一种方法。

常用的坐标系有笛卡尔坐标系和极坐标系。

在笛卡尔坐标系中,点的位置可以用三个坐标值来表示。

而在极坐标系中,点的位置可以用径向距离和极角来表示。

距离是两个点之间的直线距离,可以通过两点坐标的差值和勾股定理来计算。

五、角度与方向角度是空间解析几何中非常重要的概念之一,它涉及到直线、平面和曲线等几何对象之间的夹角关系。

角度可以用弧度制表示,也可以用度数制表示。

在求解夹角时,常用的方法有向量夹角公式和点之间的夹角公式。

方向则是指直线或矢量的朝向,可以用方向角来表示。

空间解析几何和线性代数资料

空间解析几何和线性代数资料

(4)单叶双曲面 (5)圆锥面
x2 y2 z2 a2 b2 c2 1
x2 y2 z2
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
与b
的夹角
c 的方向既垂直于a
,又垂直于b
,指向符合
右手系.
向量积的坐标表达式
a

b



(a ybz
azby )i

(a
z
bx
axbz ) j
(axby aybx )k

a

b

i ax
j ay
k az
bx by bz
a//
b
6、混合积
ax ay az bx by bz
ax
ax2 ay2 az2
ay
ax2

a
2 y

az2
cos
az
ax2 ay2 az2
( cos2 cos2 cos2 1 )
4、数量积 (点积、内积)
a

b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式
a
b

有序数组
z




o

y

x

共有一个原点,三个坐标轴,三个坐标面,八个卦限.
两点间距离公式: 设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点

解析几何知识点总结高中

解析几何知识点总结高中

解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。

解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。

在高中数学的学习中,解析几何是一个重要的知识点。

在本文中,将详细介绍一些高中解析几何的知识点。

1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。

我们可以通过它来描述到两个物体之间的空间位置关系。

下面是二元一次方程的一般式子:ax + by + c = 0。

其中,a、b、和c是常数,x和y是未知数。

在解析几何中,二元一次方程代表一条直线。

该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。

直线的一般式子可以根据两个点或点与斜率之间的关系来确定。

如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。

其中,k为直线的斜率,b为直线的截距。

另一种方法是给定点和斜率的值。

如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。

这种表示形式称为点斜式。

2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。

标准方程如下:(x – a)^2 + (y – b)^2 = r^2。

其中,a和b是圆心的坐标,r是圆的半径。

通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。

该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。

其中,D、E和F是常数。

该表达式描述的圆方程称为一般圆方程。

3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。

在空间几何中,一个点由三个坐标表示。

直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。

空间几何中的一些重要概念包括向量,对称和距离。

向量是大小和方向的量,可以使用两点之间的差值来描述。

《高等数学》各章知识点总结——第6章

《高等数学》各章知识点总结——第6章

《高等数学》各章知识点总结——第6章第6章《向量代数与空间解析几何》是高等数学中的重点章节之一,主要讲述了向量及其运算、空间直线与平面方程、空间曲线及其切线等内容。

以下是该章节的知识点总结:一、向量及其运算1.向量的定义:具有大小和方向的量,用有向线段表示。

2.向量的运算:(1)向量的加法:满足交换律和结合律。

(2)向量的数乘:向量乘以一个实数。

(3)向量的数量积:等于两个向量的模的乘积与它们的夹角的余弦值的乘积。

(4)向量的向量积:等于两个向量模的乘积与它们夹角的正弦的乘积。

(5)向量的混合积:等于三个向量的向量积与第三个向量的数量积。

二、空间直线及其方程1.空间直线的定义:两点确定一条直线。

2.空间直线的方程:(1) 参数方程:x = x0 + at, y = y0 + bt, z = z0 + ct(2)对称方程:(x-x0)/a=(y-y0)/b=(z-z0)/c(3)一般方程:Ax+By+Cz+D=0三、空间平面及其方程1.空间平面的定义:三点共面确定一个平面。

2.空间平面的方程:(1)一般方程:Ax+By+Cz+D=0(2)点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0(3)法线方程:(x-x0)/l=(y-y0)/m=(z-z0)/n四、空间曲线及其切线1.切线的定义:曲线上特定点的切线是通过该点且与曲线相切的直线。

2.参数方程表示的曲线的切线方程:(1)曲线上一点的切线方程:x=x0+h,y=y0+k,z=z0+l(2)曲线的切线方程:(x-x0)/h=(y-y0)/k=(z-z0)/l以上是《高等数学》第6章《向量代数与空间解析几何》的主要知识点总结。

通过学习这些知识点,我们可以了解并掌握向量的定义和运算、空间直线和平面的方程、曲线的切线方程等内容,为后续的学习打下坚实的基础。

空间解析几何.pdf

空间解析几何.pdf

第一章 高等数学 第一节 空间解析几何一、向量代数(一)向量及其线性运算既有大小又有方向的量,如位移、速度、力等这类量,称为向量,向量 a 的大小称为向量 a 的模,记作| a |。

模等于1的向量叫做单位向量,向量的加减法、向量与数的乘法统称为向量的线性运算。

向量a 与向量 b 的和 a + b 是一个向量 c ,利用平行四边形法则或三角形法则可得向量c ,如图 1-1-1 ,图 1-1-2 所示。

向量的加法符合下列运算规律: ① 交换律 a + b = b + a② 结合律(a + b)+c= a +(b+c)向量 b 与向量 a 的差 b - a 定义为向量 b 与 a 的负向量-a 的和,即b - a = b + (-a)由向量加法的三角形法则可知:() |a| = |-a|向量 a 与实数λ的积记作λa ,它是一个向量,它的模它的方向当λ> 0 时,与向量 a 相同;当λ< 0 时,与向量 a 相反。

向量与数的乘积符合下列运算规律:由向量与数的乘积的定义,可得以下定理:定理 设向量 a≠0 ,那么,向量 b 与向量 a 平行的充分必要条件是:存在惟一的实数λ,使 b =λa 。

(二)向量的坐标设有空间直角坐标系 O - xyz , i、 j、 k 分别表示沿 x 、 y 、 z 轴正向的单位向量, 12a M M是以1111(,,)M x y z 为起点,2222(,,)M x y z 为终点的向量,则向量a 可表示为其中212121x x y y z z ---、、称为向量 a 的坐标。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法运算如下:非零向量 a 与三条坐标轴正向的夹角αβγ、、称为它的方向角。

向量的模、方向角与坐标之间关系:其中cos cos cos αβγ、、称为向量 a 的方向余弦。

利用向量的坐标可得向量的模与方向余弦如下:(三)数量积 向量积设向量a 和向量 b 的夹角为θθπ≤≤(0),向量 a 和向量 b 的数量积为一个数量,记作a b ⋅ ,其大小为||||cos a b θ,即a ⊥b 的充分必要条件是 a .b =0向量 a 在轴u 上的投影(记作 Prj u a )等于向量 a 的模乘以轴与向量a 的夹角φ的余弦,即利用向量在轴上的投影,可将数量积表为向量 a 和向量 b 的向量积为一个向量 c ,记作 a × b ,即c = a × b ,c 的模c 的方向垂直于 a 与 b 所决定的平面, c 的指向按右手法则确定。

《高等数学》第7章空间向量与空间解析几何

《高等数学》第7章空间向量与空间解析几何
它们之间的距离为d = |M1M2|. 过点 M1 、M2 各作三个平面分别垂直 z 于三个坐标轴,形成如图的长方体. z2
d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z




O
Ⅶx


Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第

高等数学-第七章空间解析几何与向量代数习题课

高等数学-第七章空间解析几何与向量代数习题课

A12

B12

C
2 1
A22

B
2 2

C
2 2
(3)直线与平面相交(夹角)
设直线 L 的方向向量为 s (m, n, p) , 平面 的法向量为
n ( A, B,C), 则它们的交角: Am Bn Cp
sin
A2 B2 C 2 m2 n2 p2
(4)线、面之间的平行与垂直
3 3

a 15 , b 5 a 25
17
3
17
于是
p ( 15 17 , 25 17, 0 )
【例8】已知向量 a (4, 3, 2),u 轴与三坐标轴正向构成 相等锐角,求 a 在 u 轴上的投影。
分析:先求出 u 轴上的单位向量,再利用向量投影公式。
解:设 u 轴的方向余弦分别为 cos,cos ,cos ,
解:M1M2 (1, 2,1)
| M1M2 | 2
方向余弦为
cos 1
2
, cos

2 2
, cos
1 2
方向角为 2 , 3 , 1
3
4
3
【例2】确定 , , 的值,使向量i 3 j ( 1)k 与向量
( 3)i ( ) j 3k 相等。并求此时向量的模与方向余弦。
分析: 向量相等的定义是向量坐标对应相等。
解: 由已知条件得
3

3




1 3
易得
1



4
1
即当 1, 4, 1 时两向量相等。 此时向量为

空间解析几何

空间解析几何

空间解析几何空间解析几何是数学中的一个重要分支,它研究的是空间中的点、直线和平面,以及它们之间的关系和性质。

通过解析几何,我们可以更好地理解和描述三维空间中的几何图形,从而解决与空间相关的问题。

一、平面方程在空间解析几何中,平面是一个基本概念。

为了方便研究和描述平面,我们需要找到一种方式来表示平面。

平面方程就是用来表示平面的一种方式。

一个平面可以由一个点和一个法向量确定。

假设平面上的一点为P,法向量为n,那么平面的方程可以表示为Ax + By + Cz +D = 0,其中A、B、C和D是常数。

这就是平面的一般方程。

二、直线方程与平面类似,直线也是空间解析几何中的一个重要概念。

为了描述直线,我们同样需要找到一种方式来表示它。

直线方程可以通过点和向量来确定。

设直线上的一点为P,方向向量为v,那么直线的方程可以表示为x = x0 + at,y = y0 + bt,z = z0 + ct,其中x0、y0、z0是直线上的一点的坐标,a、b、c是方向向量v的分量,t是参数。

三、直线与平面的位置关系在解析几何中,直线与平面的位置关系也是一个重要的问题。

直线可以与平面相交、平行或重合。

为了判断直线和平面的位置关系,我们可以通过求解方程组来解决。

假设直线的方程为L:x = x0 + at,y =y0 + bt,z = z0 + ct,平面的方程为P:Ax + By + Cz + D = 0。

将直线方程代入平面方程,将得到一个关于参数t的一元方程。

如果这个方程有解,那么直线与平面相交;如果方程无解,那么直线与平面平行;如果方程有无穷多解,那么直线与平面重合。

四、空间曲线除了点、直线和平面,空间解析几何还涉及到更为复杂的空间曲线。

空间曲线可以由参数方程、一般方程或者向量方程来表示。

不同的曲线有着不同的性质和特点,如曲率、切线等。

通过研究空间曲线,我们可以理解曲线在空间中的运动和变化规律。

总结:空间解析几何是数学中的一个重要分支,通过解析几何的方法,我们可以更好地研究和描述空间中的几何图形。

高数(空间解析几何与向量代数)

高数(空间解析几何与向量代数)

第一节 空间解析几何与向量代数一、空间直角坐标 (一)空间直角坐标系在空间取定一点O ,和以O 为原点的两辆垂直的三个数轴,依次记作x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),构成一个空间直角坐标系(图1-1-1)。

通常符合右手规则,即右手握住z 轴,当右手的四个手指从正向x 轴以2π角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

并设i、j 、k 为x轴、y 轴、z 轴上的单位向量,又称为O xyz 坐标系,或[i,j,k]坐标系。

(二)两点间的距离在空间直角坐标系中,M 1(x 1,y 1,z 1)与M 2(x 2,y 2,z 2)之间的距离为()()()221221221z z y y x x d -+-+-=(1-1-1)(三)空间有向直线方向的确定设有一条有向直线L ,它在三个坐标系正向的夹角分别为α、β、γ(πγβα≤≤,,0),称为直线L 的方向角;{γβαcos ,cos ,cos }称为直线L 的方向余弦,三个方向余弦有以下关系1cos cos cos 222=++γβα (1-1-2)二、向量代数 (一)向量的概念空间具有一定长度和方向的线段称为向量。

以A 为起点,B 为终点的向量,记作AB ,或简记作a 。

向量a 的长记作a ,又称为向量a 的模,两向量a和b 若满足:①b a =,②b a //,③b a ,指向同一侧,则称b a=。

与a方向一致的=单位向量记作0a ,则0a =aa。

若0a={γβαcos ,cos ,cos },也即为a的方向余弦。

(二)向量的运算 1.两向量的和以b a,为边的平行四边形的对角线(图1-1-2)所表示的向量c ,称为向量a和b 的和,记作b a c+= (1-1-3)一般说,n 个向量1a ,2a,…,n a 的和可定义如下:先作向量1a ,再以1a 的终点为起点作向量2a,…,最后以向量1-n a 的终点为起点作向量n a,则以向量1a的起点为起点、以向量n a 的终点为终点的向量b 称为1a ,2a,…,n a 的和,即 n a a a b+++=21(1-1-4) 2.两向量的差设a 为一向量,与a 的模相同,而方向相反的向量叫做a 的负向量,记作a -,规定两个向量a和b 的差为()ba b a-+=- (1-1-5)3.向量与数的乘法设λ是一个数,向量a 和λ的乘积a λ规定为:当λ>0时,a λ表示一个向量,它的方向与a 的方向相同,它的模等于a 的λ倍,即a a λλ=;当λ=0时,aλ是零向量,即0=aλ; 当λ<0时,a λ表示一个向量,它的方向与a的方向相反,它的模等于a 的λ倍,即a a λλ=。

高中数学复习空间解析几何

高中数学复习空间解析几何

高中数学复习空间解析几何高中数学复习:空间解析几何空间解析几何是高中数学中的一个重要部分,涉及到点、直线、平面在空间中的位置关系和运动规律。

通过研究空间解析几何,我们可以更好地理解和应用代数几何中的相关知识,为高考和数学学科的深入学习奠定基础。

本文将系统地介绍空间解析几何的相关内容和重要概念,并提供题目进行巩固练习。

一、空间直角坐标系在空间解析几何中,我们通常使用三维直角坐标系来描述点和几何对象的位置。

三维直角坐标系由三条相互垂直的坐标轴构成,分别表示$x$轴、$y$轴和$z$轴。

点的位置可以用有序三元组$(x, y, z)$来表示,其中$x$、$y$、$z$分别表示点在$x$轴、$y$轴和$z$轴上的坐标。

在三维直角坐标系中,我们可以轻松确定点之间的距离及其他几何对象之间的位置关系。

二、空间向量空间向量是空间解析几何中的重要概念。

在三维直角坐标系中,我们可以用有向线段来表示空间向量。

空间向量具有模和方向两个重要的属性。

两个向量相等,当且仅当它们的模相等,且方向相同。

对于两个向量$\mathbf{a}$和$\mathbf{b}$,它们的和向量$\mathbf{a} +\mathbf{b}$等于将$\mathbf{a}$和$\mathbf{b}$的对应分量相加得到的向量,差向量$\mathbf{a} - \mathbf{b}$等于将$\mathbf{a}$和$\mathbf{b}$的对应分量相减得到的向量。

三、空间中的点和直线在空间解析几何中,我们可以用向量表示点和直线。

对于点$A$,我们可以通过向量$\overrightarrow{OA}$来表示,其中$O$是空间直角坐标系的原点。

对于直线$l$,我们可以通过一个点$P$和一个平行于$l$的向量$\mathbf{v}$来表示,即$l: \overrightarrow{r} =\overrightarrow{OP} + t\mathbf{v}$,其中$t$为参数。

空间解析几何总结

空间解析几何总结

空间解析几何总结引言空间解析几何是高中数学中的一个重要内容,主要研究平面和直线在空间中的位置关系和相互作用。

通过学习空间解析几何,我们可以对几何问题进行更深入的分析和解决。

本文将对空间解析几何的基本概念、常用方法和应用进行总结,以帮助读者更好地理解和掌握这一内容。

一、空间直角坐标系空间直角坐标系是空间解析几何的基础,它通过在空间中引入三个互相垂直的坐标轴来描述点的位置。

我们通常将这三个坐标轴分别用x、y和z表示,并将它们的交点作为原点O。

利用空间直角坐标系,我们可以用三个实数(x,y,z)表示空间中的点P。

其中,x称为点P在x轴上的坐标,y称为点P在y轴上的坐标,z称为点P在z轴上的坐标。

二、空间点的坐标表示在空间直角坐标系中,点P的坐标可以用三个实数(x,y,z)表示。

这个表示方法称为点P的坐标表示。

对于给定的坐标系,它是唯一确定的。

空间点的坐标表示具有以下性质:1.两个点相等的充分必要条件是它们的坐标相等。

2.对于空间中的任意点P,它与原点O之间的距离可以用下式表示:d= √(x² + y² + z²)。

三、空间点的向量表示在空间解析几何中,我们常常使用向量表示空间中的点和线段。

对于空间中的任意两个点A和B,我们可以定义一个有方向的线段AB,并用向量→AB表示。

空间点的向量表示具有以下性质:1.两个点相等的充分必要条件是它们的向量表示相等。

2.空间中任意两点A(x₁, y₁, z₁)和B(x₂, y₂, z₂)之间的向量→AB可以表示为→AB = (x₂ - x₁)i + (y₂ - y₁)j + (z₂ - z₁)k。

其中i、j、k分别是x、y、z轴的单位向量。

四、空间直线的方向向量和参数方程空间直线是空间解析几何中的一个重要概念,它是满足一定条件的空间中的点的集合。

在理解空间直线之前,我们需要先了解空间直线的方向向量。

对于空间直线l,设A(x₁, y₁, z₁)和B(x₂, y₂, z₂)是l上的两个不同点,则向量→AB称为直线l的方向向量。

空间解析几何与向量代数》知识点、公式总结

空间解析几何与向量代数》知识点、公式总结

空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。

以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。

2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。

二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。

2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。

三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。

2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。

四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。

2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。

空间解析几何

空间解析几何

空间解析几何一、空间向量空间向量满足运算规则:向量的加法满足交换律、结合律和分配律。

即对于两个向量a和b,有a+b=b+a,(a+b)+c=a+(b+c)和k(a+b)=ka+kb。

用向量表示空间直线和平面也是空间解析几何的重要应用之一、例如,通过两个非零向量a和b,可以确定一个直线l,该直线上的所有点都可以表示为向量与一些常数k的线性组合。

即l={k1a+k2b,k1,k2为任意常数}。

二、参数方程参数方程是空间解析几何中用参数来表示点的位置的一种方法。

它是将点的位置与参数之间的函数关系进行描述的方式。

对于任意空间中的点P(x,y,z),可以用参数t来表示P在坐标轴上的投影。

设P点在x、y、z轴上的投影点分别为A、B、C,则有:x = a + td1y = b + td2z = c + td3其中,(a,b,c)为直线上的一个点,d1、d2、d3为直线的方向向量,t为参数。

参数方程的等式表示了点P在直线上的位置关系。

通过选择不同的参数t的取值范围,可以确定直线上的不同点。

类似地,对于平面上的点,可以使用两个参数来表示点的坐标。

参数方程的应用十分广泛。

在计算机图形学、物理学、工程学等领域,参数方程被广泛用于描述和计算空间中各种图形、物体的运动轨迹等。

总结起来,空间解析几何中的空间向量和参数方程是两个重要的概念。

空间向量是表示空间中点、直线和平面的一种方式,通过向量的加法和数乘运算,可以进行相应的运算。

参数方程是用参数来表示点的位置关系的方式,通过选择合适的参数取值范围,可以描述点在直线或平面上的位置关系。

这些概念不仅在理论推导中起到重要作用,也在实际应用中发挥着巨大的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设 是一个数,向量 a 与 的乘积 a 规定为 (1) 0, a 与 a 同向, | a | | a | a 0 ( 2) 0, ( 3) 0, a 与 a 反向, | a || | | a |
s ( m , n , p ) 为直线的方向向量.
中华工程资格考试网
例6.用对称式及参数式表示直线
解:先在直线上找一点. y z 2 ,得 y 0 , z 2 令 x = 1, 解方程组 y 3z 6
是直线上一点 . 再求直线的方向向量 s . 交已知直线的两平面的法向量为
4. 空间直线与平面的方程 空间平面
一般式
点法式
截距式
x y z 1 a b c
x x1 x2 x1 x3 x1 y y1 y2 y1 y3 y1
点 : ( x0 , y0 , z0 ) 法向量 : n ( A , B , C )
z z1 z 2 z1 0 z3 z1
空间直线
A1 x B1 y C1 z D1 0 一般式 A2 x B2 y C2 z D2 0
对称式
x x0 m t 参数式 y y0 n t z z0 p t ( x0 , y0 , z0 ) 为直线上一点;
a b ax bx
i
j ay by
k az bz
中华工程资格考试网
, 例 1 已知 a {11,4}, b {1,2,2},求(1) a b ;(2) a 与 b 的夹角;(3) a 在 b 上的投影. 解 (1) a b 1 1 1 ( 2) ( 4) 2 9.
2 2
2
a b 0
a x bx a y b y a z bz 0
中华工程资格考试网
运算律 (1) 交换律 (2) 结合律
a ( b) ( a ) ( b ) a ( b ) (a b)
(3) 分配律
(3) 结合律 ( a ) b a ( b ) ( a b )
中华工程资格考试网
向量积的坐标表达式
a b (a y bz a z by )i (a z bx a x bz ) j (a x by a y bx )k
其中a x ,a y , az 分别为向量在x, y, z 轴上的投影 .
中华工程资格考试网
4.向量的线性运算 (1)加法: a b c (2)减法: a b d (3)向量与数的乘法:
b
ab c
a
ab d
a prja b b prjb a
数量积的坐标表达式
a aa
2
a b a x bx a y b y a z bz
两向量夹角余弦的坐标表示式
cos
a b
a x bx a y b y a z bz a x a y az
2 2 2
bx b y bz
角形 ABC 的面积 解: 如图所示,
B
S A B C 1 AB AC
2
i 2 1 j 2 2 k 2 4

A
C
1 2
1 ( 4, 6, 2 ) 2
1 2 4 (6) 2 2 2 14 2
中华工程资格考试网
1.1.2 空间解析几何
( a x )i ( a y ) j ( a z )k
中华工程资格考试网
2 2 2 向量模长的坐标表示式 | a | a x a y a z
向量方向余弦的坐标表示式
cos
ax a x a y az ay
2 2 2
n (0, B, C ) i, 平面平行于 x 轴;
• A x+C z+D = 0 表示 平行于 y 轴的平面;
• A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示 平行于 xoy 面 的平面; • A x + D =0 表示 平行于 yoz 面 的平面; • B y + D =0 表示 平行于 zox 面 的平面.
(1)旋转曲面
定义:以一条平面曲线绕 其平面上的一条直线旋转 一周所成的曲面. 这条定直线叫旋转曲面的轴.
中华工程资格考试网
方程特点:
f ( x, y ) 0 设有平面曲线L : z0 (1) 曲线 L 绕 x 轴旋转所成的旋转曲面 方程为 f ( x , y 2 z 2 ) 0 (2) 曲线 L 绕 y 轴旋转所成的旋转曲面 方程为 f ( x 2 z 2 , y ) 0
2 2
2
点到平面的距离公式:
点M 0 ( x0 , y0 , z0 )到平面Ax By Cz D 0的距离为
d
Ax0 By 0 Cz0 D A B C
2 2 2
中华工程资格考试网
2、曲面
空间曲面S与三元方程 ( x, y, z) 0对应 F .
cos
a x a y az
2 2
2
cos
az a x a y az
2 2 2
( cos 2 cos 2 cos 2 1 )
中华工程资格考试网
5.数量积
a b | a || b | cos
其中 为 a 与 b 的夹角
中华工程资格考试网
线性运算的坐标表达式
a {a x , a y , a z } b {bx , b y , bz } a b {a x bx , a y b y , a z bz } (a x bx )i (a y b y ) j (a z bz )k a b {a x bx , a y b y , a z bz } (a x bx )i (a y b y ) j (a z bz )k a { a x , a y , a z }
中华工程资格考试网
b 例 2 求与 a 3i 2 j 4k , i j 2k 都垂
直的单位向量.

c a b ax bx
i
j ay by
k
i
j
k
az 3 2 bz 1 1 2
S=
b
中华工程资格考试网
性质
(1) a a 0 (2) a , b为非零向量, 则 a b 0 a∥ b
ax a y az bx by bz
运算律
(1) a b b a
(2) 分配律 ( a b ) c a c b c
3.向量的表示法 (1)有向线段 (模和方向余弦) (2)向量的分解式: a a x i a y j a z k
在三个坐标轴上的分向量: a x i , a y j , a z k
(3)向量的坐标表示式: 向量的坐标: a x , a y , a z
a {a x , a y , a z }
( a b )( a b )
aa
2
bb
2
a 2 a b cos b 3 2 2 ( 2 ) 2 2 3 cos 3 4 17

a b 17
中华工程资格考试网
例4. 已知三点 A(1, 2 , 3 ) , B( 3 , 4 , 5 ), C ( 2 , 4 , 7 ) , 求三
中华工程资格考试网
6. 向量积 定义:
设 a , b 的夹角为 ,
方向 : c a , c b 且符合右手规则 模 : c a b sin
向量 c
称 c 为向量 a 与 b 的向量积 , 记作
b
c ab
(叉积)
a c ab a

几何意义:右图三角形面积
1.1空间解析几何
1.1.1 向量代数
1.1.2 空间解析几何
中华工程资格考试网
1.1.1 向量代数
1.向量的概念
定义:既有大小又有方向的量称为向量.
向量的模 2.几种特殊向量 单位向量、 零向量、 相等向量、 向径. 负向量、
中华工程资格考试网
三点式
中华工程资格考试网Fra bibliotekAx By Cz D 0 ( A B C 0 )
2 2 2
特殊情形 • 当 D = 0 时, A x + B y + C z = 0 表示 通过原点的平面; • 当 A = 0 时, B y + C z + D = 0 的法向量
中华工程资格考试网
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程. 解: 因平面通过 x 轴 , 故 A D 0
设所求平面方程为
By Cz 0
代入已知点 (4 , 3 , 1) 得
化简,得所求平面方程
中华工程资格考试网
( 2) cos a x bx a y b y a z bz a x a y az
2 2 2
bx b y bz
2 2
2
1 , 2 ( 3) a b | b | Pr jb a
ab Pr jb a 3. |b |
3 . 4
4 10 j 5k ,
| c | 102 52 5 5 c 2 1 0 j k . c 5 5 |c |
相关文档
最新文档