用MATLAB求解微分方程及微分方程组

合集下载

matlab解常微分方程组

matlab解常微分方程组

matlab解常微分方程组摘要:一、引言1.常微分方程组简介2.Matlab 在解常微分方程组中的应用二、Matlab 解常微分方程组的基本步骤1.安装并配置Matlab2.准备常微分方程组模型3.使用Matlab 求解器求解方程组4.分析解的结果三、Matlab 解常微分方程组的常用命令1.初始化常微分方程组2.定义方程组3.使用ode45 等求解器解方程组4.输出结果四、Matlab 解常微分方程组的实际应用1.物理模型中的应用2.工程领域中的应用3.生物学和经济学模型中的应用五、结论1.Matlab 在解常微分方程组方面的优势2.需要注意的问题和技巧3.展望Matlab 在常微分方程组求解领域的发展前景正文:一、引言常微分方程组在自然科学、工程技术和社会科学等领域中有着广泛的应用。

随着科技的发展,Matlab 作为一种功能强大的数学软件,已经成为常微分方程组求解的重要工具。

本文将介绍Matlab 解常微分方程组的基本方法、常用命令以及实际应用。

二、Matlab 解常微分方程组的基本步骤1.安装并配置Matlab:首先需要在计算机上安装Matlab 软件。

安装完成后,需要对Matlab 进行配置,以便更好地使用相关功能。

2.准备常微分方程组模型:根据实际问题,建立相应的常微分方程组模型。

这包括确定变量、方程和边界条件等。

3.使用Matlab 求解器求解方程组:Matlab 提供了丰富的求解器,如ode45、ode23、ode113 等。

根据问题特点选择合适的求解器,调用相关函数求解常微分方程组。

4.分析解的结果:求解完成后,需要对结果进行分析,检查其合理性和准确性。

可以使用Matlab 内置的图形功能绘制解的图像,直观地了解解的变化规律。

三、Matlab 解常微分方程组的常用命令1.初始化常微分方程组:使用`pdsolve`函数可以求解常微分方程组。

首先需要定义微分方程和边界条件,然后调用`pdsolve`函数求解。

第六章用MATLAB求解微分方程及微分方程组

第六章用MATLAB求解微分方程及微分方程组

运行结果:u = tan(t-c)
例 2 求微分方程的特解.
d 2 y dy 2 4 29 y 0 dx dx y (0) 0, y ' (0) 15
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 运行结果为 : y =3e-2xsin(5x)
不同求解器Solver的特点
求解器 Solver ode23s
OD E类 型
刚 性
特点
说明
刚 ode23tb 性
一步法;2阶 当精度较低时, Rosebrock算法; 计算时间比 低精度 ode15s短 当精度较低时, 梯形算法;低精 计算时间比 度 ode15s短
d 2x dx 2 1000(1 x 2 ) x 0 例 4 dt dt x(0) 2; x' (0) 0 解: 令 y1=x,y2=y1’
y Me k1t 即
模型2:快速饮酒后,体液中酒精含量的变化率
dx k2 x k1Mek1t dt x(0) 0
用Matlab求解模型2:
syms x y k1 k2 M t x=dsolve('Dx+k2*x=k1*M*exp(-k1*t)','x(0)=0','t') 运行结果: M*k1/(-k1+k2)*exp(-k2*t+t*(-k1+k2))-exp(-k2*t)*M*k1/(-k1+k2) 即:
(1)
2. 由于弹头始终对准乙舰,故导弹的速度平行于乙舰与导弹头位置的差向量,

如何使用MATLAB求解微分方程(组)ppt课件

如何使用MATLAB求解微分方程(组)ppt课件

差,输出参数,事件等,可缺省。 9
使用ODE?时如何编 写微分方程 ?
方式一:带额外参数,使用时需对参数进行赋值
function odefun(t,x,flag,R,L,C) %用flag说明R、L、C为变 量
xdot=zeros(2,1);
%表明其为列向量
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
2
Where ?
工程控制
ODE
医学生理
航空航天
金融分析
3
Where ?
算法开发 数据分析
数值计算 MAT LAB
数据可视化
4
When ?
当对问题进行建模后,有常微分方程 需要求解时。
在生物建模中,经常需要求解常微分 方程。如药物动力学的房室模型的建模 仿真。
5
方法 ode23
ode45
数 ode113
当无法藉由微积分技巧求 得解析解时,这时便只能利 用数值分析的方式来求得其 数值解了。实际情况下,常 微分方程往往只能求解出其
数值解。
在数学中,刚性方程是指一 个微分方程,其数值分析的解 只有在时间间隔很小时才会稳 定,只要时间间隔略大,其解 就会不稳定。
目前很难去精确地去定义哪 些微分方程是刚性方程,但是 大体的想法是:这个方程的解
y(1)=x(2);
y1
y2
y(2)= -t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
1000
求解程序ห้องสมุดไป่ตู้键步骤
[t,y]=ode45('odefun',[3.9 4.0],[2 8])
y

matlab求解常微分方程

matlab求解常微分方程

matlab求解常微分⽅程本⽂主要介绍matlab中求解常微分⽅程(组)的dsolve和ode系列函数,并通过例⼦加深读者的理解。

⼀、符号介绍D: 微分符号;D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。

⼆、函数功能介绍及例程1、dsolve 函数dsolve函数⽤于求常微分⽅程组的精确解,也称为常微分⽅程的符号解。

如果没有初始条件或边界条件,则求出通解;如果有,则求出特解。

1)函数格式Y = dsolve(‘eq1,eq2,…’ , ’cond1,cond2,…’ , ’Name’)其中,‘eq1,eq2,…’:表⽰微分⽅程或微分⽅程组;’cond1,cond2,…’:表⽰初始条件或边界条件;‘Name’:表⽰变量。

没有指定变量时,matlab默认的变量为t;2)例程例1.1(dsolve 求解微分⽅程)求解微分⽅程:dsolve('Dy=3*x^2','x')例1.2(加上初始条件)求解微分⽅程:例2(dsolve 求解微分⽅程组)求解微分⽅程组:由于x,y均为t的导数,所以不需要在末尾添加’t’。

2、ode函数在上⽂中我们介绍了dsolve函数。

但有⼤量的常微分⽅程,虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解。

ode是Matlab专门⽤于解微分⽅程的功能函数。

该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。

不同类型有着不同的求解器,具体说明如下图。

其中,ode45求解器属于变步长的⼀种,采⽤Runge-Kutta算法;其他采⽤相同算法的变步长求解器还有ode23。

ode45表⽰采⽤四阶-五阶Runge-Kutta算法,它⽤4阶⽅法提供候选解,5阶⽅法控制误差,是⼀种⾃适应步长(变步长)的常微分⽅程数值解法,其整体截断误差为(Δx)^5。

解决的是Nonstiff(⾮刚性)常微分⽅程。

matlab微分方程组求解代码

matlab微分方程组求解代码

一、概述Matlab是一款功能强大的数学软件,它可以对微分方程组进行求解并得到精确的数值解。

微分方程组是描述自然现象的数学模型,经常出现在物理、化学、生物等领域的科学研究中。

掌握如何使用Matlab 对微分方程组进行求解是非常重要的。

二、微分方程组求解基本原理微分方程组是由多个未知函数及其导数的方程组成。

通常情况下,微分方程组很难直接求解,需要借助数值方法进行近似求解。

Matlab 提供了丰富的工具和函数来解决微分方程组求解的问题,其中最常用的是ode45函数。

三、Matlab微分方程组求解代码示例以下是一个简单的二阶微分方程组的求解代码示例:```function dydt = myODE(t, y)dydt = zeros(2,1);dydt(1) = y(2);dydt(2) = -y(1) - 0.1*y(2);end[t, y] = ode45(myODE, [0 20], [1 0]);plot(t, y(:,1))```在这个示例中,我们首先定义了一个函数myODE来描述微分方程组的右端。

然后使用ode45函数对微分方程组进行求解,得到了微分方程组的数值解,并利用plot函数进行了可视化展示。

四、常见问题及解决方法在使用Matlab进行微分方程组求解时,可能会遇到一些常见问题,以下是一些常见问题及解决方法:1. 参数设置错误:在使用ode45函数时,需要正确设置求解的时间范围和初始条件,否则可能得到错误的结果。

可以通过仔细阅读ode45函数的文档来解决这个问题。

2. 数值稳定性:对于一些复杂的微分方程组,数值求解可能会遇到数值稳定性问题,导致结果不准确。

可以尝试调整ode45函数的参数或者使用其他数值解法来提高数值稳定性。

五、总结通过本文的介绍,我们了解了在Matlab中如何对微分方程组进行求解。

Matlab提供了丰富的工具和函数来解决微分方程组求解的问题,有效提高了微分方程组求解的效率和精度。

matlab解方程组的函数

matlab解方程组的函数

matlab解方程组的函数在科学和工程计算中,解方程组是一项非常常见且重要的任务。

方程组是由多个方程组成的集合,其中每个方程都包含有待求解的未知变量。

解方程组的目标是找到一组满足所有方程的未知变量的值。

Matlab是一种功能强大的数值计算软件,它提供了许多用于解方程组的函数。

本文将介绍一些常用的Matlab解方程组函数,并使用实例演示它们的用法。

一、Matlab解方程组的函数概述Matlab提供了多种解方程组的函数,包括直接法和迭代法。

这些函数可以帮助我们高效地求解线性方程组和非线性方程组。

以下是一些常用的Matlab解方程组函数:1.linsolve函数:用于求解线性方程组。

它可以使用直接法(LU分解、Cholesky分解)或迭代法(Jacobi、Gauss-Seidel)来解线性方程组。

2.fsolve函数:用于求解非线性方程组。

它使用迭代法来逐步逼近非线性方程组的解。

3.ode45函数:用于求解常微分方程组。

它使用Runge-Kutta方法来数值求解微分方程组。

4.vpasolve函数:用于求解符号方程组。

它可以求解包含符号未知变量的方程组。

接下来,我们将详细介绍每个函数的用法,并给出相关的实例。

二、linsolve函数2.1 求解线性方程组linsolve函数用于求解线性方程组,语法如下:X = linsolve(A, B)其中,A是系数矩阵,B是常数向量。

函数将返回未知变量的解向量X。

2.2 示例考虑以下线性方程组:2x + 3y = 74x - 5y = 2我们可以使用linsolve函数求解:A = [2, 3; 4, -5];B = [7; 2];X = linsolve(A, B);结果X将包含未知变量x和y的解。

三、fsolve函数3.1 求解非线性方程组fsolve函数用于求解非线性方程组,语法如下:X = fsolve(fun, X0)其中,fun是一个函数句柄,表示非线性方程组的函数,X0是初始解向量。

matlab求解二阶微分方程和一阶微分方程的平方代码

matlab求解二阶微分方程和一阶微分方程的平方代码

matlab求解二阶微分方程和一阶微分方程的平方代码一、介绍在数学和工程领域,微分方程是一种常见的数学工具,用于描述一些变化的规律和规律性。

其中,二阶微分方程和一阶微分方程是极为重要的类型,广泛应用于控制系统、信号处理、机器学习等领域。

而在实际的工程问题中,利用 MATLAB 求解二阶微分方程和一阶微分方程是一种常见且高效的方法。

本文将重点探讨如何使用 MATLAB 求解这两类微分方程,并给出相应的代码示例。

二、二阶微分方程的求解对于形如 y'' = f(x, y, y') 的二阶微分方程,可以通过 MATLAB 的ode45 函数进行求解。

ode45 是 MATLAB 中最常用的数值求解微分方程的函数,其基本用法如下:```matlabfunction dy = myODE(x, y)dy = zeros(2, 1);dy(1) = y(2);dy(2) = -0.1 * y(2) - sin(y(1));end[t, y] = ode45(@myODE, [0, 20], [0, 1]);plot(t, y(:, 1));```在该示例中,我们定义了一个名为 myODE 的函数来描述 y'' = -0.1y' - sin(y),然后使用 ode45 函数对其进行数值求解,并绘制出了解 y 关于 x 的图像。

三、一阶微分方程的求解对于形如 dy/dx = f(x, y) 的一阶微分方程,同样可以利用 ode45 函数进行求解。

其基本用法如下:```matlabfunction dy = myODE(x, y)dy = -2*x*y;end[t, y] = ode45(@myODE, [0, 1], 1);plot(t, y);```在该示例中,我们定义了一个名为 myODE 的函数来描述 dy/dx = -2xy,然后同样使用 ode45 函数对其进行数值求解,并绘制出了解 y 关于 x 的图像。

Matlab求解微分方程(组)及偏微分方程(组)

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组)理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解.(3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(要求是单调的).(4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.表1 Matlab中文本文件读写函数说明:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline(‘函数内容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’); g= Fofx([pi/3 pi/3.5],4,1) 系统输出为:g=-1.5483 -1.7259注意:由于使用内联对象函数inline 不需要另外建立m 文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m 文件来单独定义,这样不便于管理文件,这里可以使用inline 来定义函数. 二.实例介绍1.几个可以直接用Matlab 求微分方程精确解的实例 例1 求解微分方程2'2x y xy xe -+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’)例 2 求微分方程'0x xy y e +-=在初始条件(1)2y e =下的特解并画出解函数的图形.程序:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 求解微分方程组530tdx x y e dtdy x y dt⎧++=⎪⎪⎨⎪--=⎪⎩在初始条件00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例 4 求解微分方程初值问题2222(0)1dy y x xdx y ⎧=-++⎪⎨⎪=⎩的数值解,求解范围为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-')例 5 求解微分方程22'2(1)0,(0)1,(0)0d y dyy y y y dt dtμ--+===的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dtμ===,则 121221212,(0)17(1),(0)0dx x x dtdx x x x x dt⎧==⎪⎪⎨⎪=--=⎪⎩ 编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 命令窗口编写程序 y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)练习与思考:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的基本思想是将微分方程初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩ 化成一个代数(差分)方程,主要步骤是用差商()()y x h y x h +-替代微商dydx,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例 6 用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解范围为区间[0,2].分析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数 x=x+h; szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))说明:替换函数subs 例如:输入subs(a+b,a,4) 意思就是把a 用4替换掉,返回 4+b ,也可以替换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha 替换a 和2替换b ,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta 法求解,Euler 折线法实际上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩相应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f, {'x','y'},{x,y});替换函数 l2=subs(f, {'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f, {'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f, {'x','y'},{x+h,y+l3*h}); y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h; szj=[szj;x,y]; end>>szj>> plot(szj(:,1),szj(:,2))练习与思考:(1)ode45求解问题并比较差异. (2)利用Matlab 求微分方程(4)(3)''20y y y -+=的解.(3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解. (4)利用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解. 提醒:尽可能多的考虑解法 三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE 解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab 可接受的标准形式.当然,如果ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x x y y y y ----⎧=⎨=⎩Step 2 为每一阶微分式选择状态变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y--++++========注意:ODEs 中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m nm n x x x x x x x f t x x x x xx xg t x x x x +++++======练习与思考:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩ 提示:使用符号计算函数solve 求'''',x y ,然后利用求解微分方程的方法 四.偏微分方程解法Matlab 提供了两种方法解决PDE 问题,一是使用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE 工具箱,可以求解特殊PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它提供了GUI 界面,从复杂的编程中解脱出来,同时还可以通过File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 提供的pdepe 函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题描述函数,它必须换成标准形式:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ 这样,PDE 就可以编写入口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相关参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.@pdebc 是PDE 的边界条件描述函数,它必须化为形式:(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂==∂ 于是边值条件可以编写函数描述为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下边界,b 表示上边界.@pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故可以使用函数描述为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为sol(i,j,k),通过sol ,我们可以使用pdeval 函数直接计算某个点的函数值.(2)实例说明 求解偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中, 5.7311.46()xx F x e e -=-且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0uu t u t t x∂===∂ 解:(1)对照给出的偏微分方程和pdepe 函数求解的标准形式,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦ %目标PDE 函数function [c,f,s]=pdefun(x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp)) end(2)边界条件改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦%边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=[0;ua(2)]; qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1]; end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数 function u0=pdeic(x) u0=[1;0]; end(4)编写主调函数 clc x=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); subplot(2,1,1) surf(x,t,sol(:,:,1)) subplot(2,1,2) surf(x,t,sol(:,:,2))练习与思考: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x xπ∂∂∂=∂∂∂ This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t uu t e t xπ-∂=+=∂ 2.PDEtool 求解偏微分方程(1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 命令窗口输入pdetool ,回车,PDE 工具箱的图形用户界面(GUI)系统就启动了.从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,通过公式把Matlab 系统提供的实体模型:矩形、圆、椭圆和多边形,组合起来,生成需要的平面区域.Step 2 “Boundary 模式”定义边界,声明不同边界段的边界条件.Step 3 “PDE 模式”定义偏微分方程,确定方程类型和方程系数c,a,f,d ,根据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以控制自动生成网格的参数,对生成的网格进行多次细化,使网格分割更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并控制非线性自适应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界条件后可以求出给定时刻t 的解;对于特征值问题,可以求出给定区间上的特征值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”计算结果的可视化,可以通过设置系统提供的对话框,显示所求的解的表面图、网格图、等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行动画演示.(2)实例说明用法求解一个正方形区域上的特征值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩ 正方形区域为:11,1 1.x x -≤≤-≤≤(1)使用PDE 工具箱打开GUI 求解方程(2)进入Draw 模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并关闭对话框(3)进入Boundary 模式,边界条件采用Dirichlet 条件的默认值(4)进入PDE 模式,单击工具栏PDE 按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后关闭对话框(5)单击工具栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特征值区域为[-20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color、Height(3-D plot)和show mesh项,然后单击Done确认(8)单击工具栏的“=”按钮,开始求解。

matlab求隐式微分方程

matlab求隐式微分方程

matlab求隐式微分方程
然后,我们可以使用ode45函数来求解这个隐式微分方程组。假设我们要求解在时间范围 [tstart, tend]内的方程组,初始条件为y0(一个包含y1和y2初始值的列向量),可以这样调 用ode45函数:
tspan = [tstart, tend]; % 时间范围 y0 = [y1_initial, y2_initial]; % 初始条件 [t, y] = ode45(@myODEs, tspan, y0);
matlab求隐式微分方程
在Matlab中,可以使用ode45函数求解隐式微分方程(也称为常微分方程组)。
首先,需要定义一个函数,该函数返回一个列向量,包含隐式微分方程组的每个方程。假 设我们有一个隐式微分方程组如下:
dy1/dt = f1(y1, y2, t) dy2/dt = f2(y1, y2, t)
matlab求隐式微分方程
我们可以定义一个函数,例如"myODEs",来表示这个方程组:
function dydt = myODEs(t, y) % 定义方程组 dydt = [f1(y(1), y(2), t); f2(y(1), y(2), t)];
end
在这个函数中,返回的dydt也是一个列向 量,包含方程组的每个方程。
ode45函数会返回一个时间向量t和一个解向量y,其中y是一个矩阵,每一列对应于相应 时间点的y1和y2的值。
matlab求隐式微分方程
请注意,上述代码中的f1和f2是您需要根据具体的隐式微分方程组来定义的函数。您需要 根据实际问题来编写这些函数。

matlab解微分方程组拉式变换后的方程

matlab解微分方程组拉式变换后的方程

一、概述微分方程组是描述自然界中众多物理现象的重要数学工具,它在工程、物理学、生物学等领域有着广泛的应用。

Matlab作为一种高效的科学计算软件,能够方便地对微分方程组进行求解和分析。

在求解微分方程组时,拉普拉斯变换是一种非常重要的方法,它可以将微分方程转化为代数方程,从而简化求解的过程。

本文将重点探讨利用Matlab对微分方程组进行拉普拉斯变换后的求解过程。

二、微分方程组的拉普拉斯变换1. 拉普拉斯变换的定义拉普拉斯变换是一种用来处理微分方程的常用方法。

对于一个函数f(t),它的拉普拉斯变换定义如下:L{f(t)} = F(s) = ∫[0,∞]e^(-st)f(t)dt其中,s为复变量,t为实变量。

通过拉普拉斯变换,可以将微分方程组转化为代数方程组,从而利用代数方法进行求解。

2. 微分方程组的拉普拉斯变换考虑一个n阶线性微分方程组:a_n(t)y^n + a_(n-1)(t)y^(n-1) + ... + a_1(t)y' + a_0(t)y = f(t)通过拉普拉斯变换,将上述微分方程组转化为代数方程组:A_n(s)Y(s) + A_(n-1)(s)Y(s) + ... + A_1(s)Y(s) + A_0(s)Y(s) = F(s)其中,Y(s)和F(s)分别为y(t)和f(t)的拉普拉斯变换,A_n(s)等为对应的系数的拉普拉斯变换。

三、Matlab求解拉普拉斯变换后的微分方程组1. 预处理在利用Matlab求解微分方程组之前,需要对微分方程组进行拉普拉斯变换。

假设有一个简单的n阶线性微分方程组:a_n(t)y^n + a_(n-1)(t)y^(n-1) + ... + a_1(t)y' + a_0(t)y = f(t)通过拉普拉斯变换,可以得到:A_n(s)Y(s) + A_(n-1)(s)Y(s) + ... + A_1(s)Y(s) + A_0(s)Y(s) = F(s)将上述代数方程组输入Matlab中进行求解。

matlab求解常微分方程

matlab求解常微分方程

2*t)','x(0)=2,y(0)=0','t')
以上这些都是常微分方程的精确解法,也称为常微分方程的符号解。但是,我们知 道,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析 解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰 富的函数,我们将其统称为 solver,其一般格式为:

4:求常微分方程组
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
dx dt dx dt
+ +
2x
dy dt
− +
dy dt
2y
= 10 cos = 4e−2t ,
t,
x =2 t=0
y =0
t=0 通解的MATLAB程序为:
[X,Y]=dsolve('Dx+2*x-Dy=10*cos(t),Dx+Dy+2*y=4*exp(-
用 matlab 求解常微分方程
在 MATLAB 中,由函数 dsolve()解决常微分方程(组)的求解问题,其具体格式如 下:
r = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v') 'eq1,eq2,...'为微分方程或微分方程组,'cond1,cond2,...',是初始条件或边界条件,'v'是 独立变量,默认的独立变量是't'。 函数 dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如 果有初始条件,则求出特解。
[T,Y]=solver(odefun,tspan,y0)

matlab微分方程组的解法

matlab微分方程组的解法

一、引言1.1 MATLAB在微分方程组求解中的应用MATLAB作为一种强大的数学工具,被广泛应用于微分方程组的求解与模拟分析。

1.2 本文的研究目的和意义本文旨在探讨MATLAB在求解微分方程组方面的应用方法,帮助读者更好地理解和运用MATLAB进行微分方程组的解法,从而提高数学建模和工程仿真的效率与精度。

二、微分方程组的基本概念2.1 微分方程组的定义微分方程组是由多个未知函数及其偏导数构成的方程组。

常见的微分方程组可以分为线性微分方程组与非线性微分方程组。

2.2 微分方程组的求解方法求解微分方程组的方法包括解析解法、数值解法和符号解法。

而MATLAB在微分方程数值解法中具有独特的优势。

三、MATLAB在微分方程组求解中的基本操作3.1 MATLAB中微分方程组的表示在MATLAB中,微分方程组可以使用符号表达式或者函数形式表示,便于进行数值求解和仿真分析。

3.2 MATLAB中微分方程组的数值求解利用MATLAB中的ode45、ode23等求解微分方程组的函数,可以快速地求得微分方程组的数值解,并且可以灵活地控制求解的精度和速度。

3.3 MATLAB中微分方程组的图像绘制MATLAB提供了丰富的绘图函数,能够直观地展现微分方程组的数值解,帮助用户更直观地理解微分方程组的解法结果。

四、 MATLAB在微分方程组求解中的应用实例4.1 简单的线性微分方程组求解通过一个简单的线性微分方程组的求解实例,展示MATLAB在微分方程组求解中的基本操作和方法。

4.2 复杂的非线性微分方程组求解通过一个包含非线性项的微分方程组求解实例,展示MATLAB在处理复杂微分方程组时的应用能力。

五、MATLAB在微分方程组求解中的进阶应用5.1 高阶微分方程组的数值求解MATLAB可以利用符号运算工具箱对高阶微分方程组进行符号求解,也可以通过数值求解的方式得到高阶微分方程组的数值解。

5.2 特定约束条件下的微分方程组求解MATLAB可以通过引入特定的约束条件,对微分方程组进行求解,满足实际应用中的各种约束条件。

matlab用四阶龙格库塔函数求解微分方程组

matlab用四阶龙格库塔函数求解微分方程组

一、介绍Matlab作为一种强大的科学计算软件,提供了众多函数和工具来解决微分方程组。

其中,四阶龙格库塔函数是一种常用的数值方法,用于求解常微分方程组。

本文将介绍如何使用Matlab中的四阶龙格库塔函数来求解微分方程组,并对该方法的原理和实现进行详细说明。

二、四阶龙格库塔方法四阶龙格库塔方法是一种常用的数值方法,用于求解常微分方程组。

它是一种显式的Runge-Kutta方法,通过逐步逼近微分方程的解,在每一步使用多个中间值来计算下一步的解。

该方法通过四个中间值来计算下一步的状态,并且具有较高的精度和稳定性。

三、在Matlab中使用四阶龙格库塔方法求解微分方程组在Matlab中,可以使用ode45函数来调用四阶龙格库塔方法来解决微分方程组的问题。

ode45函数是Matlab提供的用于求解常微分方程组的函数,可以通过指定微分方程组以及初值条件来调用四阶龙格库塔方法来进行求解。

1. 定义微分方程组我们需要定义要求解的微分方程组。

可以使用Matlab中的匿名函数来定义微分方程组,例如:```matlabf = (t, y) [y(2); -sin(y(1))];```其中,f是一个匿名函数,用于表示微分方程组。

在这个例子中,微分方程组是y' = y2, y2' = -sin(y1)。

2. 指定初值条件和求解区间接下来,我们需要指定微分方程组的初值条件和求解区间。

初值条件可以通过指定一个初始时刻的状态向量来完成,例如:```matlabtspan = [0, 10];y0 = [0, 1];```其中,tspan表示求解区间,y0表示初值条件。

3. 调用ode45函数进行求解我们可以通过调用ode45函数来求解微分方程组的数值解。

具体的调用方式如下:```matlab[t, y] = ode45(f, tspan, y0);```其中,t和y分别表示求解的时间点和对应的状态值。

四、示例下面我们通过一个具体的例子来演示如何使用Matlab中的四阶龙格库塔方法来求解微分方程组。

matlab龙格库塔法解微分方程组

matlab龙格库塔法解微分方程组

matlab龙格库塔法解微分方程组
一、引言
龙格库塔法是数值计算中常用的一种求解微分方程的方法,其具有较高的精度和稳定性。

在MATLAB中,可以使用ode45函数来实现龙格库塔法求解微分方程组。

二、龙格库塔法简介
龙格库塔法是一种常用的数值积分方法,也可用于求解微分方程。

该方法将微分方程转化为一个初值问题,并采用逐步逼近的方式计算出数值解。

三、使用ode45函数求解微分方程组
在MATLAB中,可以使用ode45函数来求解微分方程组。

该函数使用了龙格库塔法进行数值计算,并提供了较高的精度和稳定性。

四、MATLAB代码实现
以下是一个使用ode45函数求解微分方程组的示例代码:
function dydt = myfun(t,y)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = -sin(y(1));
end
[t,y] = ode45(@myfun,[0 10],[0;1]);
plot(t,y(:,1),'-o',t,y(:,2),'-o')
xlabel('Time')
ylabel('Solution')
legend('y_1','y_2')
五、总结
龙格库塔法是一种常用的数值计算方法,可以用于求解微分方程。

在MATLAB中,可以使用ode45函数来实现龙格库塔法求解微分方程组。

通过以上示例代码,我们可以看到MATLAB提供了较为简单的方式来实现龙格库塔法求解微分方程组,并且具有较高的精度和稳定性。

Matlab求解微分方程(组)及偏微分方程(组)

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组)理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解.(3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(要求是单调的).(4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.表1 Matlab中文本文件读写函数说明:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的Matlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:FunctionName=inline(‘函数内容’, ‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’); g= Fofx([pi/3 pi/3.5],4,1) 系统输出为:g=-1.5483 -1.7259注意:由于使用内联对象函数inline 不需要另外建立m 文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m 文件来单独定义,这样不便于管理文件,这里可以使用inline 来定义函数. 二.实例介绍1.几个可以直接用Matlab 求微分方程精确解的实例 例1 求解微分方程2'2x y xy xe -+=程序:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’)例 2 求微分方程'0x xy y e +-=在初始条件(1)2y e =下的特解并画出解函数的图形.程序:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 求解微分方程组530tdx x y e dtdy x y dt⎧++=⎪⎪⎨⎪--=⎪⎩在初始条件00|1,|0t t x y ====下的特解并画出解函数的图形.程序:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等求解非刚性标准形式的一阶微分方程(组)的初值问题的数值解(近似解)例 4 求解微分方程初值问题2222(0)1dy y x xdx y ⎧=-++⎪⎨⎪=⎩的数值解,求解范围为区间[0,0.5].程序:fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1); plot(x,y,'o-')例 5 求解微分方程22'2(1)0,(0)1,(0)0d y dyy y y y dt dtμ--+===的解,并画出解的图形.分析:这是一个二阶非线性方程,我们可以通过变换,将二阶方程化为一阶方程组求解.令12,,7dyx y x dtμ===,则 121221212,(0)17(1),(0)0dx x x dtdx x x x x dt⎧==⎪⎪⎨⎪=--=⎪⎩ 编写M-文件vdp.m function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)]; end在Matlab 命令窗口编写程序 y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或[t,x]=ode45('vdp',[0,40],y0); y=x(:,1);dy=x(:,2); plot(t,y,t,dy)练习与思考:M-文件vdp.m 改写成inline 函数程序? 3.用Euler 折线法求解Euler 折线法求解的基本思想是将微分方程初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩ 化成一个代数(差分)方程,主要步骤是用差商()()y x h y x h +-替代微商dydx,于是00()()(,())()k k k k y x h y x f x y x h y y x +-⎧=⎪⎨⎪=⎩记1,(),k k k k x x h y y x +=+=从而1(),k k y y x h +=+于是0011(),,0,1,2,,1(,).k k k k k k y y x x x h k n y y hf x y ++=⎧⎪=+=-⎨⎪=+⎩例 6 用Euler 折线法求解微分方程初值问题22(0)1dyx y dxy y ⎧=+⎪⎨⎪=⎩的数值解(步长h 取0.4),求解范围为区间[0,2].分析:本问题的差分方程为00110,1,0.4,0,1,2,,1(,).k k k k k k x y h x x h k n y y hf x y ++===⎧⎪=+=-⎨⎪=+⎩程序:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数 x=x+h; szj=[szj;x,y]; end >>szj>> plot(szj(:,1),szj(:,2))说明:替换函数subs 例如:输入subs(a+b,a,4) 意思就是把a 用4替换掉,返回 4+b ,也可以替换多个变量,例如:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha 替换a 和2替换b ,返回 cos(alpha)+sin(2)特别说明:本问题可进一步利用四阶Runge-Kutta 法求解,Euler 折线法实际上就是一阶Runge-Kutta 法,Runge-Kutta 法的迭代公式为001112341213243(),,(22),6(,),0,1,2,,1(,),22(,),22(,).k k k k k k k k k k k k y y x x x h h y y L L L L L f x y k n h h L f x y L h h L f x y L L f x h y hL ++=⎧⎪=+⎪⎪=++++⎪⎪=⎪=-⎨⎪=++⎪⎪⎪=++⎪⎪=++⎩相应的Matlab 程序为:>> clear >> f=sym('y+2*x/y^2'); >> a=0; >> b=2; >> h=0.4; >> n=(b-a)/h+1; >> x=0; >> y=1;>> szj=[x,y];%数值解 >> for i=1:n-1l1=subs(f, {'x','y'},{x,y});替换函数 l2=subs(f, {'x','y'},{x+h/2,y+l1*h/2}); l3=subs(f, {'x','y'},{x+h/2,y+l2*h/2}); l4=subs(f, {'x','y'},{x+h,y+l3*h}); y=y+h*(l1+2*l2+2*l3+l4)/6; x=x+h; szj=[szj;x,y]; end>>szj>> plot(szj(:,1),szj(:,2))练习与思考:(1)ode45求解问题并比较差异. (2)利用Matlab 求微分方程(4)(3)''20y y y -+=的解.(3)求解微分方程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解. (4)利用Matlab 求微分方程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解. 提醒:尽可能多的考虑解法 三.微分方程转换为一阶显式微分方程组Matlab 微分方程解算器只能求解标准形式的一阶显式微分方程(组)问题,因此在使用ODE 解算器之前,我们需要做的第一步,也是最重要的一步就是借助状态变量将微分方程(组)化成Matlab 可接受的标准形式.当然,如果ODEs 由一个或多个高阶微分方程给出,则我们应先将它变换成一阶显式常微分方程组.下面我们以两个高阶微分方程组构成的ODEs 为例介绍如何将它变换成一个一阶显式微分方程组.Step 1 将微分方程的最高阶变量移到等式左边,其它移到右边,并按阶次从低到高排列.形式为:()'''(1)'''(1)()'''(1)'''(1)(,,,,,,,,,,)(,,,,,,,,,,)m m n n m n x f t x x x x y y y y y g t x x x x y y y y ----⎧=⎨=⎩Step 2 为每一阶微分式选择状态变量,最高阶除外'''(1)123'''(1)123,,,,,,,,,m m n m m m m n x x x x x x x x x y x y x y x y--++++========注意:ODEs 中所有是因变量的最高阶次之和就是需要的状态变量的个数,最高阶的微分式不需要给它状态变量.Step 3 根据选用的状态变量,写出所有状态变量的一阶微分表达式''''122334123''12123,,,,(,,,,,),,(,,,,,)m m n m m m nm n x x x x x x x f t x x x x xx xg t x x x x +++++======练习与思考:(1)求解微分方程组**'''3312*'''3312()()22x x x y x r r y y y x y r r μμμμμμ⎧+-=+--⎪⎪⎨⎪=+--⎪⎩其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(0)0,y ='(0)0,x ='(0) 1.049355751y =-(2)求解隐式微分方程组''''''''''''2235x y x y x y x y xy y ⎧+=⎨++-=⎩ 提示:使用符号计算函数solve 求'''',x y ,然后利用求解微分方程的方法 四.偏微分方程解法Matlab 提供了两种方法解决PDE 问题,一是使用pdepe 函数,它可以求解一般的PDEs,具有较大的通用性,但只支持命令形式调用;二是使用PDE 工具箱,可以求解特殊PDE 问题,PDEtoll 有较大的局限性,比如只能求解二阶PDE 问题,并且不能解决片微分方程组,但是它提供了GUI 界面,从复杂的编程中解脱出来,同时还可以通过File —>Save As 直接生成M 代码.1.一般偏微分方程(组)的求解(1)Matlab 提供的pdepe 函数,可以直接求解一般偏微分方程(组),它的调用格式为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题描述函数,它必须换成标准形式:(,,)[(,,,)](,,,)m m u u u uc x t x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ 这样,PDE 就可以编写入口函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对应于式中相关参数,du 是u 的一阶导数,由给定的输入变量可表示出c,f,s 这三个函数.@pdebc 是PDE 的边界条件描述函数,它必须化为形式:(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂==∂ 于是边值条件可以编写函数描述为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下边界,b 表示上边界.@pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故可以使用函数描述为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话说,k u 对应x(i)和t(j)时的解为sol(i,j,k),通过sol ,我们可以使用pdeval 函数直接计算某个点的函数值.(2)实例说明 求解偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中, 5.7311.46()x x F x e e -=-且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0uu t u t t x∂===∂ 解:(1)对照给出的偏微分方程和pdepe 函数求解的标准形式,原方程改写为111221220.024()1.*()10.17u u F u u x u F u u u t x x ∂⎡⎤⎢⎥--⎡⎤⎡⎤⎡⎤∂∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥-∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦可见1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦ %目标PDE 函数function [c,f,s]=pdefun(x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp)) end(2)边界条件改写为:下边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上边界1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦%边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) pa=[0;ua(2)]; qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1]; end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数 function u0=pdeic(x) u0=[1;0]; end(4)编写主调函数 clc x=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t); subplot(2,1,1) surf(x,t,sol(:,:,1)) subplot(2,1,2) surf(x,t,sol(:,:,2))练习与思考: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.2()u u t x xπ∂∂∂=∂∂∂ This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(0,)0;(1,)0t uu t e t xπ-∂=+=∂ 2.PDEtool 求解偏微分方程(1)PDEtool (GUI )求解偏微分方程的一般步骤在Matlab 命令窗口输入pdetool ,回车,PDE 工具箱的图形用户界面(GUI)系统就启动了.从定义一个偏微分方程问题到完成解偏微分方程的定解,整个过程大致可以分为六个阶段Step 1 “Draw 模式”绘制平面有界区域Ω,通过公式把Matlab 系统提供的实体模型:矩形、圆、椭圆和多边形,组合起来,生成需要的平面区域.Step 2 “Boundary 模式”定义边界,声明不同边界段的边界条件.Step 3 “PDE 模式”定义偏微分方程,确定方程类型和方程系数c,a,f,d ,根据具体情况,还可以在不同子区域声明不同系数.Step 4 “Mesh 模式”网格化区域Ω,可以控制自动生成网格的参数,对生成的网格进行多次细化,使网格分割更细更合理.Step 5 “Solve 模式”解偏微分方程,对于椭圆型方程可以激活并控制非线性自适应解题器来处理非线性方程;对于抛物线型方程和双曲型方程,设置初始边界条件后可以求出给定时刻t 的解;对于特征值问题,可以求出给定区间上的特征值.求解完成后,可以返回到Step 4,对网格进一步细化,进行再次求解.Step 6 “View 模式”计算结果的可视化,可以通过设置系统提供的对话框,显示所求的解的表面图、网格图、等高线图和箭头梯形图.对于抛物线型和双曲线型问题的解还可以进行动画演示.(2)实例说明用法求解一个正方形区域上的特征值问题:12|0u u u u λ∂Ω⎧-∆-=⎪⎨⎪=⎩ 正方形区域为:11,1 1.x x -≤≤-≤≤(1)使用PDE 工具箱打开GUI 求解方程(2)进入Draw 模式,绘制一个矩形,然后双击矩形,在弹出的对话框中设置Left=-1,Bottom=-1,Width=2,Height=2,确认并关闭对话框(3)进入Boundary 模式,边界条件采用Dirichlet 条件的默认值(4)进入PDE 模式,单击工具栏PDE 按钮,在弹出的对话框中方程类型选择Eigenmodes,参数设置c=1,a=-1/2,d=1,确认后关闭对话框(5)单击工具栏的 按钮,对正方形区域进行初始网格剖分,然后再对网格进一步细化剖分一次(6)点开solve菜单,单击Parameters选项,在弹出的对话框中设置特征值区域为[-20,20](7)单击Plot菜单的Parameters项,在弹出的对话框中选中Color、Height(3-D plot)和show mesh项,然后单击Done确认(8)单击工具栏的“=”按钮,开始求解。

第12章 MATLAB常微分方程(组)数值求解方程与方程组的数值解

第12章 MATLAB常微分方程(组)数值求解方程与方程组的数值解
基于修正的二阶Rosenbrock公式。由于是 单步解算器,当精度要求不高时,它效率 可能会高于ode15s。它可以解决一些
ode15s求解起来效率不太高的刚性问题。
ode23t可以用来求解微分代数方程。
ode23tb 刚性

当方程是刚性的,并且求解要求精度不高
时可以使用。
2020/6/19
© 吴鹏, MATLAB从零到进阶.
常微分方程数值解
【例12.4-1】的结果图:
方 法 1计 算 结 果 图 1
方 法 2计 算 结 果 图 1
方 法 3计 算 结 果 图 1
0.8
0.8
0.8
0.6
0.6
0.6
0.4
0.4
0.4
0.2
0.2
0.2
0
0
0
-0.2
-0.4 0
2020/6/19
y1(t)
-0.2
y2(t)
y3(t)
-0.4
在某段时间区间内的变化来看。非刚性问题变化相对缓 慢,而刚性问题在某段时间内会发生剧烈变化,即很短 的时间内,解的变化巨大。对于刚性问题不适合用 ode45来求解,如果硬要用ode45来求解的话,达到指定 精度所耗费的时间往往会非常长 。
2020/6/19
© 吴鹏, MATLAB从零到进阶.
二、 非刚性问题举例
这些函数可以求解非刚性问题,刚性问题,隐式
微分方程,微分代数方程等初值问题,也可以求解 延迟微分方程,以及边值问题等。
2020/6/19
© 吴鹏, MATLAB从零到进阶.
二、初值问题求解函数
常微分方程数值解
1. 提供的函数
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb,这些函数统一 的调用格式如下:

matlab 求解微分方程

matlab 求解微分方程

matlab 求解微分方程摘要:1.Matlab 简介2.微分方程基本概念3.Matlab 求解微分方程的方法4.常见微分方程求解实例5.总结正文:一、Matlab 简介Matlab 是一种广泛应用于科学计算、数据分析和可视化的编程语言。

它具有丰富的函数库和强大的矩阵计算能力,使得用户可以方便地完成各种复杂的数学运算和分析任务。

在微分方程求解领域,Matlab 同样具有很高的应用价值。

二、微分方程基本概念微分方程是数学中的一个重要分支,它描述了自然界和社会现象中许多变化规律。

微分方程可以分为偏微分方程和常微分方程两大类。

求解微分方程是数学和工程领域中的一个重要课题,关乎许多实际问题的解决。

三、Matlab 求解微分方程的方法Matlab 求解微分方程主要依赖于其内置的符号计算函数和数值计算函数。

用户可以根据微分方程的性质选择适当的求解方法,如符号解法、数值解法等。

Matlab 提供了丰富的函数和工具箱来支持微分方程的求解,如ode45、ode23 等。

四、常见微分方程求解实例1.常微分方程:例如一阶常微分方程y" + p(x)y = q(x),Matlab 可以通过ode45 函数求解。

2.偏微分方程:例如二维热传导方程,Matlab 可以通过pdepeye 函数求解。

3.线性微分方程组:例如常系数线性微分方程组,Matlab 可以通过ode45 等函数求解。

4.非线性微分方程:例如Riccati 方程,Matlab 可以通过ode45 等函数求解。

五、总结Matlab 作为一种强大的科学计算工具,可以帮助用户方便地求解各种微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y '1 y 2 1 2 y2 ' 1 y 1 /( 1 x ) 5
解法三(建立参数方程求数值解)
设时刻t乙舰的坐标为(X(t),Y(t)),导弹的坐标为(x(t),y(t)). dx 2 dy 2 2 ( ) ( ) w 1.设导弹速度恒为 w ,则 (1) dt dt
M=64000/490 =130.6122 (毫克/百毫升)
建立函数文件: function f=curvefun1(k,t) f=k(1)*64000/490*(exp(-k(2)*t)-exp(-k(1)*t))/(k(1)-k(2)) 输入拟合数据:
t=[0 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]; c=[0 30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];
即 y Me
k 1t
模型2:快速饮酒后,体液中酒精含量的变化率
dx k 2 x k 1 Me dt x (0) 0
k 1t
用Matlab求解模型2:
syms x y k1 k2 M t x=dsolve('Dx+k2*x=k1*M*exp(-k1*t)','x(0)=0','t') 运行结果: M*k1/(-k1+k2)*exp(-k2*t+t*(-k1+k2))-exp(-k2*t)*M*k1/(-k1+k2) 即:
解: 令 y1=x,y2=y1’
则微分方程变为一阶微分方程组:
y1 ' y 2 2 y 2 ' 1000 (1 y 1 ) y 2 y 1 y (0) 2, y (0 ) 0 1 2
3、结果如图
2 1.5 1 0.5 0
1、建立m-文件vdp1000.m如下: function dy=vdp1000(t,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=1000*(1-y(1)^2)*y(2)-y(1);
注意:
1、在解n个未知函数的方程组时,x0和x均为n维向量, m-文件中的待解方程组应以x的分量形式写成. 2、使用Matlab软件求数值解时,高阶微分方程必须 等价地变换成一阶微分方程组.
例4
d 2x dx 2 1000 (1 x ) x 0 2 dt dt x (0 ) 2; x ' (0 ) 0
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 运行结果为 : y =3e-2xsin(5x)
例 3 求微分方程组的通解.
dx 2x 3 y 3z dt dy 4x 5 y 3z dt dz 4 x 4 y 2 z dt
解 输入命令 :
[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z', 't'); x=simple(x) % 将x化简 y=simple(y) z=simple(z)
运行结果为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
当x 1时 y
5 24
,即当乙舰航行到点 (1,
y v0 5 24 v 0
5 24
) 处时被导弹击中.
被击中时间为: t
. 若 v0=1, 则在 t=0.21 处被击中.
解法二(数值解) 令y1=y,y2=y1’,将方程(3)化为一阶微分方程组。
(
x Mk 1 k1 k 2 (e
k 2t
e
k 1t
)
用以下一组数据拟合上述模型中的参数k1、k2:
时间(小时) 酒精含量 时间(小时) 酒精含量 0.25 30 6 38 0.5 68 7 35 0.75 75 8 28 1 82 9 25 1.5 82 10 18 2 77 11 15 2.5 68 12 12 3 68 13 10 3.5 58 14 7 4 51 15 7 4.5 50 16 4 5 41
-0.5 -1 -1.5 -2 -2.5 0
500
1000
1500
2000
2500
3000
2、取t0=0,tf=3000,输入命令: [T,Y]=ode15s('vdp1000',[0 3000],[2 0]); plot(T,Y(:,1),'-')
例5
解微分方程组.
y1 ' y 2 y 3 y 2 ' y1 y 3 y 3 ' 0 . 51 y 1 y 2 y 1 ( 0 ) 0 , y 2 ( 0 ) 1, y 3 ( 0 ) 1
2

1.建立m-文件eq1.m function dy=eq1(x,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=1/5*sqrt(1+y(1)^2)/(1-x); 2. 取x0=0,xf=0.9999,建立主程序ff6.m如下: x0=0,xf=0.9999 [x,y]=ode15s('eq1',[x0 xf],[0 0]); plot(x,y(:,1),’b.') hold on y=0:0.01:2; plot(1,y,’b*') 结论: 导弹大致在(1,0.2)处击中乙舰
当x 1时y
5 24
,即当乙舰航行到点 (1,
5 24
) 处时被导弹击中.
被击中时间为: t
y v0

5 24 v 0
. 若 v0=1, 则在 t=0.21 处被击中.
轨迹图如下
例: 饮酒模型
模型1:快速饮酒后,胃中酒精含量的变化率
dy k1 y dt y (0 ) M
0.2573]
0
2
4
6
8
10
12
14
16
18
模型2:慢速饮酒时,体液中酒精含量的变化率
dx k2x a dt x (0) 0
其中
a
M T
M为饮酒的总量,T为饮酒的时间
则有;
x
a k2
(1 e
k 2t
)
任取k1、k2的一组初始值:k0=[2,1];
输入命令: k=lsqcurvefit('curvefun1',k0,t,c) 运行结果为: k =[ 1.3240 作图表示求解结果: t1=0:0.1:18; f=curvefun1(k,t1); plot(t,c,'ko',t1,f,'r-')
90 80 70 60 50 40 30 20 10 0
2. 由于弹头始终对准乙舰,故导弹的速度平行于乙舰与导弹头位置的差向量,
dx dt X x , 0 即: Y y dy dt w dx ( X x) dt 2 2 ( X x ) (Y y ) 消去λ 得: dy w (Y y ) 2 2 dt ( X x ) (Y y )

x
0
1 y ' dx 5 v 0 t
2
(2)
由(1),(2)消去t整理得模型:
(1 x ) y " 1 5 1 y'
2
(3)
初值条件为: y ( 0 ) 0
解即为导弹的运行轨迹:
y 5 8
4
y ' (0) 0
(1 x )
5

5 12
6
(1 x )
5

5 24
例1 求
du dt
d
2
y
2
0 应表达为:D2y=0.
2
dx
1 u
的通解.
解 输入命令:dsolve('Du=1+u^2','t')
运行结果:u = tan(t-c)
例 2 求微分方程的特解.
d 2 y dy 4 29 y 0 2 dx dx y ( 0 ) 0 , y ' ( 0 ) 15
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+') 3、结果如图 图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
导弹追踪问题 设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰 发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度 v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求 导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
(2)
(3)
3.因乙舰以速度v0沿直线x=1运动,设v0=1,则w=5,X=1,Y=t
相关文档
最新文档