第四章 信道与噪声..
通信原理简答题答案2(个人整理)
第一章绪论1-2何谓数字信号?何谓模拟信号?两者的根本区别是什么?答:数字信号:电信号的参量值仅可能取有限个值。
模拟信号:电信号的参量取值连续。
两者的根本区别是携带信号的参量是连续取值还是离散取值。
1-3何谓数字通信?数字通信偶哪些优缺点?答:利用数字信号来传输信息的通信系统为数字通信系统。
优点:抗干扰能力强,无噪声积累传输差错可控;便于现代数字信号处理技术对数字信息进行处理、变换、储存;易于集成,使通信设备微型化,重量轻;易于加密处理,且保密性好。
缺点:一般需要较大的传输带宽;系统设备较复杂。
1-4 数字通信系统的一般模型中各组成部分的主要功能是什么?答:信源编码:提高信息传输的有效性(通过数字压缩技术降低码速率),完成A/D转换。
信道编码/译码:增强数字信号的抗干扰能力。
加密与解密:认为扰乱数字序列,加上密码。
数字调制与解调:把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
同步:使收发两端的信号在时间上保持步调一致。
1-5 按调制方式,通信系统如何分类?答:基带传输系统和带通传输系统。
1-6 按传输信号的特征,通信系统如何分类?答:模拟通信系统和数字通信系统。
1-7 按传输信号的复用方式,通信系统如何分类?答:FDM,TDM,CDM。
1-8 单工、半双工及全双工通信方式是按什么标准分类的?解释他们的工作方式。
答:按照消息传递的方向与时间关系分类。
单工通信:消息只能单向传输。
半双工:通信双方都能收发消息,但不能同时进行收和发的工作方式。
全双工通信:通信双方可以同时收发消息。
1-9 按数字信号码元的排列顺序可分为哪两种通信方式?他们的适用场合及特点?答:分为并行传输和串行传输方式。
并行传输一般用于设备之间的近距离通信,如计算机和打印机之间的数据传输。
串行传输使用与远距离数据的传输。
1-10 通信系统的主要性能指标是什么?答:有效性和可靠性。
1-11 衡量数字通信系统有效性和可靠性的性能指标有哪些?答:有效性:传输速率,频带利用率。
通信原理(第四章)
27
第4章 信 道 章
四进制编码信道模型
0 0
1 送
端
发
1
收 端
接
2
2
3
3
28ቤተ መጻሕፍቲ ባይዱ
第4章 信 道 章
4.4 信道特性对信号传输的影响 恒参信道的影响 恒参信道对信号传输的影响是确定的或者 是变化极其缓慢的。因此,其传输特性可以 等效为一个线性时不变网络。 只要知道网络 的传输特性,就可以采用信号分析方法,分 析信号及其网络特性。 线性网络的传输特性可以用幅度频率特 性和相位频率特性来表征。 现在我们首先讨论 理想情况下的恒参信道特性。
平流层 60 km 对流层 10 km 0 km 地 面
6
第4章 信 道 章
电离层对于传播的影响 反射 散射
7
第4章 信 道 章
电磁波的分类: 电磁波的分类: 地波 频率 < 2 MHz 有绕射能力 距离: 距离:数百或数千千米 天波 频率: 频率:2 ~ 30 MHz 特点: 特点:被电离层反射 一次反射距离: 一次反射距离:< 4000 km 寂静区: 寂静区:
13
第4章 信 道 章
4.2 有线信道
明线
14
第4章 信 道 章
对称电缆:由许多对双绞线组成, 对称电缆:由许多对双绞线组成,分非屏蔽 (UTP)和屏蔽(STP)两种。 )和屏蔽( )两种。
塑料外皮
双绞线( 5对)
图4-9 双绞线
15
第4章 信 道 章
同轴电缆
16
第4章 信 道 章
n2 n1 折射率
25
第4章 信 道 章
4.3.2 编码信道模型
调制信道对信号的影响是通过k(t)和 使已调信号发生波形 调制信道对信号的影响是通过 和n(t)使已调信号发生波形 失真。 失真。 编码信道对信号的影响则是一种数字序列的变换, 编码信道对信号的影响则是一种数字序列的变换,即将 一种数字序列变成另一种数字序列。 一种数字序列变成另一种数字序列。误码 输入、输出都是数字信号, 输入、输出都是数字信号,关心的是误码率而不是信号 失真情况,但误码与调制信道有关, 失真情况,但误码与调制信道有关,无调制解调器时误码由 发滤波器设计不当及n(t)引起 引起。 收、发滤波器设计不当及 引起。 编码信道模型是用数字的转移概率来描述。 编码信道模型是用数字的转移概率来描述。
通信原理第4章信道
第4章 信道
4.0 信道的定义及分类 4.1 无线信道 4.2 有线信道 4.3 信道数学模型 4.4 信道特性及其对信号传输的影响 4.5 信道中的噪声 4.6 信道容量
2
本章教学目的:了解各种实际信道、信
道的数学模型和信道容量的概念。
本章的讨论思路:通过介绍实际信道的例
子,在此基础上归纳信道的特性,阐述信道的 数学模型,最后简介了信道容量的概念。
信道模型的分类: 调制信道 编码信道
信 息 源 信 源 编 码 加 密 信 道 编 码 数 字 调 制 数 字 解 调 信 道 译 码 解 密 信 源 译 码 受 信 者
信道 噪声源
调制信道 编码信道
31
4.3.1 调制信道模型
有一对(或多对)输入端和一对(或多对)输出端; 绝大多数的信道都是线性的,即满足线性叠加原理;
41
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
|H( )|
d ( ) ( ) d
( ) td
O (b) td
K0
O (a)
O (c)
42
2、实际电话信道的群延迟特性 一种典型的音频电话信道的群延迟特性。
25
光纤呈圆柱形,由芯、封套和外套三部分组成(如 图所示)。芯是光纤最中心的部分,它由一条或多 条非常细的玻璃或塑料纤维线构成,每根纤维线都 有它自己的封套。由于这一玻璃或塑料封套涂层的 折射率比芯线低,因此可使光波保持在芯线内。环 绕一束或多束有封套纤维的外套由若干塑料或其它 材料层构成,以防止外部的潮湿气体侵入,并可防 止磨损或挤压等伤害。
通信原理第四章 (樊昌信第七版)PPT课件
则接收信号为
2 1
fo(t) = K f(t - 1 ) + K f(t - 2 ) 相对时延差
F o () = K F () e j 1 + K F () e j ( 1 )
信道传输函数
H()F F o(( ))K Keejj 11((1 1 eejj ))
常数衰减因子 确定的传输时延因子 与信号频率有关的复因子
课件
精选课件
1
第4章 信道
通信原理(第7版)
樊昌信 曹丽娜 编著
精选课件
2
本章内容:
第4章 信道
信道分类
信道模型
恒参/随参信道特性对信号传输的影响
信道噪声
信道容量
定义·分类
模型·特性
影响·措施
信道噪声 信道容量
精选课件
3
概述
信道的定义与分类
n 狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
1. 传输特性
H ()H ()ej ()
H() ~ 幅频特性
()~ 相频特性
2. 无失真传输
H()Kejtd
H() K
()td
精选课件
27
n 无失真传输(理想恒参信道)特性曲线:
恒参信道
|H()|
K
() td
td
0
H() K
幅频特性
0
0
()td
()d() d
td
相频特性
群迟延特性
精选课件
28
n 理想恒参信道的冲激响应:
恒参信道
H()Kejtd
h(t)K(ttd)
若输入信号为s(t),则理想恒参信道的输出:
通信原理第四章ppt课件
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
第四章 信道(2)
§4.3.1 调制信道模型
e0 (t ) k (t )ei (t ) n(t )
k(t)——乘性干扰 它是时间t的函数,表示信道的特性是随时间变化的。 随时间变化的信道成为时变信道 k(t)——乘性干扰——引起的失真随时间做随机变化 特性随机变化的信道称为随参信道 特性不随时间变化或者变化很小的信道称为恒参信道
§4.3.1 调制信道模型
输出量表示为:
e0 (t ) k (t )ei (t ) n(t ) ——二端口网络
e0(t)——输出端电压 ei(t)——输入信号电压 k(t)——乘性干扰 n(t)——加性干扰
n(t)——加性干扰 当没有信号输入时,信道输出端也有加性干扰 k(t)——乘性干扰 当没有信号输入时,信道输出端没有乘性干扰
( w)
dw
td (常数)
理想的相—频及群迟延—频率特性曲线:
( )
( )
k
k
恒参信道对信号传输的影响
实际信道对信号产生的两种失真: (1)幅频失真 表示信号中不同频率的分量分 H ( w ) K (频率失真): 别受到信道不同的衰减。
模拟信号:波形失真——信噪比下降
回顾窄带随机过程
(t ) a (t ) cos[ct (t )]
(t ) c (t ) cos ct s (t ) sin ct
可见,随机过程的统计特性可由
a (t )、 (t )或者c (t )、s(t )的特性确定 反之也成立
重要结论之二: 一个均值为零,方差为σ2ξ的窄带高斯过程ξ (t), 其包络a ξ(t)的一维分布是瑞利分布;
设一恒参信道的幅频特性和相频特性分别为:
H ( w) K
第4章_信道
32
4.3 信道的数学模型
内蒙古大学电子信息工程学院 《通信原理》
4.3.2 编码信道模型
由于信道噪声或其它因素的影响,将导致输出数字序列发生 错误,因此输入输出数字序列之间的关系可以用一组 转移概率 来表征。 转移概率:在二进制系统中,就是“0”转移为“1”的 概率和“1”转移为“0”的概率。
8
4.1 无线信道
内蒙古大学电子信息工程学院 《通信原理》
地波
频率在2MHz以下的电磁波,趋于沿弯曲的地球表面传 播,有一定的绕射能力。 地波在传播过程中要不断损失能量,而且频率越高损 失越大,因此传播距离不大,一般在数百千米到数千千米。
传播路径 传播路径
发射天线 发射天线
地面 地面
接收天线 接收天线
导体 绝缘层
图4-9 双绞线
21
4.2 有线信道
内蒙古大学电子信息工程学院 《通信原理》
传输电信号的有线信道主要有三类:
明线、对称电缆和同轴电缆。 同轴电缆
由内外两根同心圆柱导体构成,两根导体之间用绝缘体 隔离开。内导体多为实心导线,外导体是一根空心导电管或 金属编织网,在外导体外面有一层绝缘保护层。其优点是抗 干扰特性好。
增大视线传播距离的途径 卫星中继(卫星通信)
利用三颗地球同步卫星可以覆盖全球,从而实现全球通信。
利用卫星作为中继站能够增大一次 转发的距离,但是却增大了发射功 率和信号传输的延迟。 此外,发射卫星也是一项巨大的工 程。 故开始研究使用平流层通信。 图4-5 卫星中继
15
4.1 无线信道
发射天线 发射天线
地面 地面
接收天线 接收天线
图4-4
无线电中继
特点:容量大、发射功率小、稳定可靠等。
通信原理习题答案-西安邮电
第一章绪论学习要求:✧常用通信术语;✧模拟信号与数字信号的定义;✧通信系统的组成、分类、和通信方式;✧数字通信系统的优缺点;✧离散消息的信息量、平均信息量(信源熵)的计算;✧衡量模拟通信系统和数字通信系统的性能指标;✧传码率、传信率、频带利用率、平均传信率和最大传信率的计算及其关系;✧误码率和误信率的定义及计算。
一、简答题1.消息、信息、信号,通信的含义是什么?通信系统至少包含哪几部分?2.试画出模拟和数字通信系统的模型图,并指出各组成部分的主要功能,说明数字通信系统有什么特点?3.举例说明单工、半双工及全双工的工作方式及其特点。
4.举例说明如何度量信息量。
5.通信系统的性能指标是什么?这些性能指标在模拟和数字通信系统中指的是什么?二、综合题1.设有四个符号,其中前三个符号出现的概率分别为1/4,1/8,1/8,且各符号的出现是相对独立的。
试计算该符号集的平均信息量。
H x 1.75 bit/符2.一个由字母A、B、C、D组成的字,对于传输的每一个字母用二进制脉冲编码,00代替A、01代替B、10代替C,11代替D,每个二进制脉冲宽度为5ms。
(1)不同字母是等可能出现时,试计算传输的平均信息速率;(2)若每个字母出现的可能性分别为1 1 1 3P A ,P B ,P C ,P D5 4 4 10 试计算传输的平均信息速率。
R b max 200 bit/sR b 198.5 bit/s3.国际莫尔斯电码用“点”和“划”的序列发送英文字母,“划”用持续3单位的电流脉冲表示,“点”用持续1单位的电流脉冲表示;且“划”出现的概率是“点”出现概率的1/3。
(1)计算“点”和“划”的信息量;(2)计算“点”和“划”的平均信息量。
I 2 bit I. 0.415 bitH x 0.81 bit/符4.设一信息源的输出由128个不同的符号组成,其中16个出现的概率为1/32,其余112出现的概率为 1/224。
《信道及噪声模型》课件
欢迎大家来到今天的课程《信道及噪声模型》,本课件将带您深入了解信道 模型和噪声模型,更好地理解通信原理和技术应用。
信道模型
• 信道定义和分类 • 传输信道 • 交换信道 • 广播信道 • 信道参数
噪声模型
• 噪声类型 • 热噪声 • 内部噪声 • 外部噪声 • 噪声功率谱密度 • 噪声温度
各种信道及其噪声模型
传输信道的噪声模型
传输信道的噪声模型描述了在信道传输中噪声 的特点和影响。
广播信道的噪声模型
广播信道的噪声模型涉及信号传输过程中噪声 的干扰和衰减。
交换信道的噪声模型
交换信道的噪声模型考虑了交换系统中各种因 素对噪声的影响。
其他信道的噪声模型
除了传输、交换和广播信道之外,还有其他类 型信道噪声模型的研究。
总结
1 信道与噪声的关系
信道和噪声紧密相关,了
2 信道及噪声模型的应
用
3 未来的信道及噪声模
型趋势
解这种关系对通信系统的
信道及噪声模型应用于信
随着通信技术的不断发展,
设计和性能评估至关重要。
号传输领域,帮助理解信
信道及噪声模型将持续演
道特性和噪声对通信系统
化Hale Waihona Puke 优化,以适应新兴的的影响。
通信需求。
通信原理仿真作业(第4章)
1 通信原理仿真作业要求:环境:统一使用matlab2012。
代码:注释详细,用图表输出并说明结果。
文档:与代码一起附一份结果分析文档,说明参数对结果的影响并分析原因。
第四章 信道与噪声1. 恒参信道对信号传输的影响信道响应函数为()()|()|j f H f H f e φ-=,输入信号为()()n s nx t a g t nT =-∑,其中1,01,()0,s s t T T g t else ≤<⎧==⎨⎩,用matlab 画出如下情况时的信道输出信号,()H f 可自定义。
● 无失真信道,如()j f H f e π-=● 幅度失真信道,如sin ()j f f H f e fπππ-= ● 相位失真信道,如(1)(1),0(),0j f j f e f H f e f ππ---+⎧≥=⎨<⎩2. 多径信道对单频信号的影响设一个幅度为1,频率为10Hz 的单频信号经过20条路径传输得到的波形及频谱,这20条路径的衰减相同,但时延的大小随时间变化,每径的时延变化规律为正弦型,变化的频率从0-2Hz 随机均匀抽取。
用matlab 进行时、频域的对比分析。
3. 多径信道对数字信号的影响设有一条三径传输的信道31()()i i i s t u b t τ==-∑,其参数如下:1231230.5,0.707,0.5;0,1,2u u u τττ======● 用matlab 画出信道的幅频响应和相频响应;● 设信道输入信号为1,0()(),()10,s n s s n t T b t a g t nT g t T else≤<⎧=-==⎨⎩∑其中,,画出输出信号波形。
● 同相的输入信号,改变s T 后画出波形并比较。
信道中的噪声
信道中的噪声
目录
01
02
加性噪声
常见噪声
01. 加性噪声
(1)无线电噪声 它来源于各种用途的外台无线电发射机。这类噪声的频率范 围很宽广,从甚低频到特高频都可能有无线电干扰存在,并且干 扰的强度有时很大。不过,这类干扰有个特点,就是干扰频率是
固定的,因此可以预先设法防止或避开。特别是在加强了无线电
01. 加性噪声
(3)天电噪声
它来源于闪电、大气中的磁暴、太阳黑子以及宇宙射线(天 体辐射波)等。可以说整个宇宙空间都是产生这类噪声的根源。 因此它的存在是客观的。由于这类自然现象和发生的时间、季节、 地区等很有关系,因此受天电干扰的影响也是大小不同的。例如,
夏季比冬季严重,赤道比两极严重,在太阳黑子发生变动的年份
01. 加性噪声
1)单频噪声 它主要指无线电干扰。因为电台发射的频谱集中在比较窄的频
率范围内,因此可以近似地看作是单频性质的。另外,像电源交流
电,反馈系统自激振荡等也都属于单频干扰。它的特点是一种连续 波干扰,并且其频率是可以通过实测来确定的,因此在采取适当的 措施后就有可能防止。
01. 加性噪声
天电干扰更为加剧。这类干扰所占的频谱范围很宽,并且不像无 线电干扰那样频率是固定的,因此对它所产生的干扰影响很难防 止。
01. 加性噪声
(4)内部噪声 它来源于信道本身所包含的各种电子器件、转换器以及天线
或传输线等。例如,电阻及各种导体都会在分子热运动的影响下
产生热噪声,电子管或晶体管等电子器件会由于电子发射不均匀 等产生散弹噪声。这类干扰的特点是由无数个自由电子作不规则 运动所形成的,因此它的波形也是不规则变化的,在示波器上观 察就像一堆杂乱无章的茅草一样,通常称之为起伏噪声。由于在 数学上可以用随机过程来描述这类干扰,因此又可称为随机噪声, 或者简称为噪声。
通信原理(第七版)思考题及答案
第一章绪论1.以无线广播和电视为例,说明图1-3模型中的信息源,受信者及信道包含的具体内容是什么在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。
收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波2.何谓数字信号,何谓模拟信号,两者的根本区别是什么数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。
他们的区别在于电信号参量的取值是连续的还是离散可数的3.何谓数字通信,数字通信有哪些优缺点传输数字信号的通信系统统称为数字通信系统;优缺点:1.抗干扰能力强;2.传输差错可以控制;3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理;4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化;5.设备便于集成化、微机化。
数字通信采用时分多路复用,不需要体积较大的滤波器。
设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低;6.便于构成综合数字网和综合业务数字网。
采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。
另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。
一路模拟电话的频带为4KHZ带宽,一路数字电话约占64KHZ。
4.数字通信系统的一般模型中的各组成部分的主要功能是什么数字通行系统的模型见图1-4所示。
其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。
第四章-信道(2)
并联信道
x
信道1
y
yy '
xx '
x'
信道2
y'
当各信道相互独立时,联合条件概率为:
P ( yy | x x ) P ( y | x ) P ( y | x )
平均联合互信息量为:
P ( yy | xx)
P ( yy )
X X YY
P ( y | x ) P ( y | x)
记
I (ak ;Y ) pkj log
因为
p I (a ;Y ) I ( X ;Y )
j
k
qj
k 1,..., r
k
k
C pk I (ak ; Y ) log e
k
,所以
有:
p
ij
log
j
pij
qj
C pij log pij pij (C log q j )
=maxH(Y)-1=log26-1=log13
对称DMC信道(n个输入,m个输出)
对称信道转移概率矩阵中每行的元素相同,每列的元素也相同
1/ 3
如:
1 / 6
1/ 3
1/ 6
1/ 6
1/ 3
1 / 6
和
1 / 3
则条件熵
1 / 2
1 / 6
1 / 3
1/ 3
1/ 2
1/ 6
j 1
i 1
M
达到此信道容量的信道输入消息集合的概率分布
p xk e dk , k 1,2,..., M
c
一般离散信道容量的计算
第四章《通信原理》信道
理想无失真信道, 理想无失真信道,它的
H ( jω ) = ke
jω t d
H ( jω ) = k 幅频特性 (ω ) = ωt d 相频特性
实际的信道往往不能满足这些要求。例如电话信号 实际的信道往往不能满足这些要求。 的频带在300Hz 3400Hz范围内 300Hz范围内; 的频带在300Hz-3400Hz范围内;而电话信道的幅频特性 和相频特性示于下图。
调制信道 编码信道
1、调制信道 指从调制器输出到解调器输入端的所有变换装置 及传输媒介。因为从调制解调角度而言, 及传输媒介。因为从调制解调角度而言,调制信道仅 对已调信号进行传输,因此可视为一个整体。 对已调信号进行传输,因此可视为一个整体。
2、编码信道 、 指从编码器输出到译码器输入端的所有变换装置 及传输媒介。因为从编译码的角度而言, 及传输媒介。因为从编译码的角度而言,它们之间的 一切环节只起了传输数字信号的作用, 一切环节只起了传输数字信号的作用,因此可视为一 个整体。 个整体。
第四章 信道
在讲通信系统模型中我们知道, 在讲通信系统模型中我们知道,信道是信息传 输的媒介。它可分为两大类:有线信道和无线信道。 输的媒介。它可分为两大类:有线信道和无线信道。 传统的固定电话网用有线信道作为传输媒介。 传统的固定电话网用有线信道作为传输媒介。而无 线电广播则是用无线信道传播电台节目。 线电广播则是用无线信道传播电台节目。 信号在信道中传输,一方面受信道特性的影响; 信号在信道中传输,一方面受信道特性的影响; 另一方面还要受到信道中噪声的影响。 另一方面还要受到信道中噪声的影响。本章简单介 绍信道特性和信道中的噪声, 绍信道特性和信道中的噪声,以及信道特性对信号 传输的影响。 传输的影响。
一、加性噪声的分类
通信原理_第四章 信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
短波电离层反射信道 (1) 传播路径
地面高度为60km — 400km
反射层 入射角φo 4000km D F2 F1 E 吸收层
地球
■ □ □ □
电离层: 各个层次的高度、厚度、电子密度等都会随时间变化。 一次或多次反射的距离也会发生变化,且与入射角有关。 不同层次(F1、F2)的不同高度上都会产生反射。
通信原理
4.1 无线信道
第四章
信
道
东北大学网
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
一 地球大气层的结构:
对流层:地面上 0 ~ 10 km 平流层:约10 ~ 60 km 电离层:约60 ~ 400 km
60 km 对流层 10 km 0 km 地 面 电离层
典型的模拟信道是调制信道。 典型的数字信道是编码信道。
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
第四章
信
道
东北大学网
引言(调制信道与编码信道) 调制信道与编码信道分别是模拟信道与数字信道的 典型例子。
自编码器
调 制 器
发 送 转 换 器
传输媒体 调制信道 编码信道
第四章
信
道
东北大学网
通信卫星
卫星中继信道
内容简介 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
通信原理
通信原理第4章信道
人为噪声 - 例:开关火花、电台辐射 自然噪声 - 例:闪电、大气噪声、宇宙噪声、热
噪声
30
信道中的噪声
热噪声
来源:来自一切电阻性元器件中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:
V 4kTRB(V)
式中 k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。
8
有线信道
4.2 有线信道
明线
9
有线信道
对称电缆:由许多对双绞线组成
导体 绝缘层
同轴电缆
图4-9 双绞线
实心介质 导体
金属编织网
保护层
图4-10 同轴线
10
有线信道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
按折射率分类 (b) 阶跃型
梯度型 按模式分类
噪声等效带宽:
Bn
Pn(f)d
f
2Pn(f0)
0 Pn(f)df Pn(f0)
式中 Pn(f0) - 原噪声功率谱密度曲线的最大值
噪声等效带宽的物理概念:
以此带宽作一矩形
滤波特性,则通过此
接收滤波器特性
特性滤波器的噪声功率,
等于通过实际滤波器的
Pn(f)
噪声功率。
Pn (f0)
噪声等效 带宽
利用噪声等效带宽的概念,
32
信道中的噪声
窄带高斯噪声
带限白噪声:经过接收机带通滤波器过滤的热噪 声
窄带高斯噪声:由于滤波器是一种线性电路,高 斯过程通过线性电路后,仍为一高斯过程,故此 窄带噪声又称窄带高斯噪声。
第四章—信道与噪声
n(t)
e e 其中, i (t )是输入的已调信号; 0 (t )是信道总的输出; n(t ) 是加 性噪声(或称加性干扰); f ei (t )是线性失真,时变损耗等 6
图 二对端调制信道模型
2 信道的数学模型(续)
11
3 信道举例(续)
双绞线
12
3 信道举例(续)
同轴电缆
同轴电缆共有四层。它的内部共有两层导体排列在同一 轴上,所以称为“同轴”。 外导体是一个圆柱形的空管(在可弯曲的同轴电缆中, 它可以由金属丝编织而成),内导体是金属线(芯线)。 它们之间填充着介质。 几根同轴线管往往套在一个大的保护套内,另外还装入 一些二芯扭绞线对或四芯线组,作为传输控制信号之用。
举例:卫星通信用于移动通信业务
最具代表性的就是“铱”系统(Iridium System)。这是 由Motorola公司开发的全球移动卫星通信系统,“铱”系 统利用低轨道卫星群来实现全球(卫)星际移动通信。整 个系统主要由卫星、地面测控设备与关口站,以及用户终 端三部分组成。 “铱”系统的主体由66颗在低轨道上运行的卫星群构 成,卫星分别配置在11个极地轨道平面上,每个轨道平面 有11颗工作卫星和1颗备用星(轨道高度780km),可使地 球表面的每一点都处于至少一颗卫星的覆盖下,小型化的 卫星宽1m、高2m,重约700kg,它们之间通过电子通信相 连,持续提供世界范围的服务。星上每副天线覆盖37个直 径为468km的小区,工作频段为1.6GHZ(L波段),星际 间链路和汇接站则工作在23GHZ的Ka波段频率上。卫星寿 命5-8年。 24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章信道与噪声知识结构-信道的基本概念和数学模型-恒参信道及其对所传信号的影响-随参信道及其对所传信号的影响(选讲)-信道的加性噪声-信道的容量教学目的-了解信道的分类和传输模型、系统的无失真传输以及滤波器-掌握系统无失真传输的传输函数,掌握信道容量的计算。
教学重点-信道的无失真传输条件-模拟信道的信道容量(香农定理)教学难点-离散信道的信道容量和信道疑义度的概念-模拟信道容量的物理意义及应用计算教学方法及课时-多媒体授课(2学时)(1个单元)备注单元六(2学时)§4.1 信道的基本概念及其模型知识要点:信道、狭义信道、广义信道的定义调制信道、编码信道的概念及其模型恒参信道、随参信道的概念错误转移概率§4.1.1信道的定义信道,通俗地说,是指以传输媒质为基础的信号通路。
具体地说,信道是指由有线或无线电线路提供的信号通路。
信道的作用是传输信号,它提供一段频带让信号通过,同时又给信号加以限制和损害。
通常,我们将仅指信号传输媒介的信道称为狭义信道。
目前采用的传输媒介有架空明线、电缆、光导纤维(光缆)、中长波地表波传播、超短波及微波视距传播(含卫星中继)、短波电离层反射、超短波流星余迹散射、对流层散射、电离层散射、超短波超视距绕射、波导传播、光波视距传播等。
可以看出,狭义信道是指接在发端设备和收端设备中间的传输媒介(以上所列)。
狭义信道的定义直观,易理解。
在通信原理的分析中,从研究消息传输的观点看,我们所关心的只是通信系统中的基本问题,因而,信道的范围还可以扩大。
它除包括传输媒介外,还可能包括有关的转换器,如馈线、天线、调制器、解调器等等。
通常将这种扩大了范围的信道称为广义信道。
在讨论通信的一般原理时,通常采用的是广义信道。
为了进一步理解信道的概念,下面对信道进行分类。
§4.1.2信道的分类由信道的定义可看出,信道可大体分成两类:狭义信道和广义信道。
1. 狭义信道狭义信道通常按具体媒介的不同类型可分为有线信道和无线信道。
(1)有线信道所谓有线信道是指传输媒介为明线、对称电缆、同轴电缆、光缆及波导等一类能够看得见的媒介。
有线信道是现代通信网中最常用的信道之一。
如对称电缆(又称电话电缆)广泛应用于(市内)近程传输。
(2)无线信道无线信道的传输媒质比较多,它包括短波电离层反射、对流层散射等。
可以这样认为,凡不属有线信道的媒质均为无线信道的媒质。
无线信道的传输特性没有有线信道的传输特性稳定和可靠,但无线信道具有方便、灵活、通信者可移动等优点。
2. 广义信道广义信道通常也可分成两种:调制信道和编码信道。
(1)调制信道调制信道是从研究调制与解调的基本问题出发而构成的,它的范围是从调制器输出端到解调器输入端,如图4-1所示。
因为,从调制和解调的角度来看,我们只关心解调器输出的信号形式和解调器输入信号与噪声的最终特性,并不关心信号的中间变化过程。
因此,定义调制信道对于研究调制与解调问题是方便和恰当的。
(2)编码信道在数字通信系统中,如果仅着眼于编码和译码问题,则可得到另一种广义信道--编码信道。
这是因为,从编码和译码的角度看,编码器的输出仍是某一数字序列,而译码器输入同样也是一数字序列,它们在一般情况下是相同的数字序列。
因此,从编码器输出端到译码器输入端的所有转换器及传输媒质可用一个完成数字序列变换的方框加以概括,此方框称为编码信道。
编码信道示意图也示于图4-1。
根据研究对象和关心问题的不同,还可以定义其它形式的广义信道。
§4.1.3信道的数学模型为了分析信道的一般特性及其对信号传输的影响,我们在信道定义的基础上,引入调制信道和编码信道的数学模型。
1. 调制信道模型在频带传输系统中,调制器输出的已调信号即被送入调制信道。
对于研究调制与解调性能而言,可以不管调制信道究竟包括了什么样的变换器,也不管选用了什么样的传输媒质,以及发生了怎样的传输过程,我们只需关心已调信号通过调制信道后的最终结果,即只需关心调制信道输入信号与输出信号之间的关系。
通过对调制信道进行大量的分析研究,发现它们有如下共性:(1)有一对(或多对)输入端和一对(或多对)输出端;(2)绝大部分信道都是线性的,即满足叠加原理;(3)信号通过信道具有一定的迟延时间;(4)信道对信号有损耗(固定损耗或时变损耗);(5)即使没有信号输入,在信道的输出端仍可能有一定的功率输出(噪声)。
根据上述共性,我们可用一个二对端(或多对端)的时变线性网络来表示调制信道。
这个网络就称作调制信道模型,如图4-2所示。
对于二对端的信道模型来说,其输出与输入之间的关系式可表示成(式4-1)式中--输入的已调信号;--调制信道总输出波形;--信道噪声(或称信道干扰),与无依赖关系,或者说独立于。
常称为加性干扰(噪声);--表示已调信号通过网络所发生的时变线性变换。
为了进一步理解信道对信号的影响,无妨假定可简写成。
其中,依赖于网络的特性,乘反映网络特性对的“时变线性”作用。
的存在,对来说是一种干扰,常称为乘性干扰。
于是,式(4-1)可写成(式4-2)由以上分析可见,信道对信号的影响可归纳为两点:一是乘性干扰;二是加性干扰。
如果了解了和的特性,则信道对信号的具体影响就能确定。
不同特性的信道,仅反映信道模型有不同的及。
我们期望的信道(理想信道)应是=常数,=0,即(式4-3)实际中,乘性干扰一般是一个复杂函数,它可能包括各种线性畸变、非线性畸变。
同时由于信道的迟延特性和损耗特性随时间作随机变化,故往往只能用随机过程加以表述。
不过,经大量观察表明,有些信道的基本不随时间变化,也就是说,信道对信号的影响是固定的或变化极为缓慢的;而有的信道却不然,它们的是随机快变化的。
因此,在分析研究乘性干扰时,可以把调制信道粗略地分为两大类:一类称为恒参信道(恒定参数信道),即它们的可看成不随时间变化或变化极为缓慢;另一类则称为随参信道(随机参数信道,或称变参信道),它是非恒参信道的统称,其是随时间随机快变的。
通常,把我们前面所列的架空明线、电缆、波导、中长波地波传播、超短波及微波视距传播、卫星中继、光导纤维以及光波视距传播等传输媒质构成的信道称为恒参信道,其它媒质构成的信道称为随参信道。
2. 编码信道模型编码信道是包括调制信道及调制器、解调器在内的信道。
它与调制信道模型有明显的不同:即调制信道对信号的影响是通过k(t)和n(t)使调制信号发生“模拟”变化,而编码信道对信号的影响则是一种数字序列的变换,即把一种数字序列变成另一种数字序列。
故有时把调制信道看成是一种模拟信道,而把编码信道看成是一种数字信道。
由于编码信道包含调制信道,因而它同样要受到调制信道的影响。
但是,从编/译码的角度看,这个影响已反映在解调器的输出数字序列中,即输出数字序列以某种概率发生差错。
显然,调制信道越差,即特性越不理想和加性噪声越严重,则发生错误的概率就会越大。
因此,编码信道的模型可用数字信号的转移概率来描述。
例如,最常见的二进制数字传输系统的一种简单的编码信道模型如图4-3所示。
之所以说这个模型是“简单的”,是因为在这里假设解调器每个输出码元的差错发生是相互独立的。
用编码的术语来说,这种信道是无记忆的(当前码元的差错与其前后码元的差错没有依赖关系)。
在这个模型里,把P(0/0)、P(1/0)、P(0/1)、P(1/1)称为信道转移概率。
以P(1/0)为例,其含义是“经信道传输,把0转移为1”。
具体地,我们把P(0/0)和P(1/1)称为正确转移概率,而把P(1/0)和P(0/1)称为错误转移概率。
根据概率性质可知P(0/0)+P(1/0)=1 (式4-4)P(0/1)+P(1/1)=1 (式4-5)转移概率完全由编码信道的特性决定,一个特定的编码信道就会有相应确定的转移概率。
应该指出,编码信道的转移概率一般需要对实际编码信道作大量的统计分析才能得到。
由无记忆二进制编码信道模型容易推出无记忆多进制的模型。
四进制时无记忆编码信道模型如图4-4所示。
编码信道可细分为无记忆编码信道和有记忆编码信道。
有记忆编码信道是指信道中码元发生差错的事件不是独立的,即当前码元的差错与其前后码元的差错是有联系的。
在此情况下,编码信道的模型要比图4-3或图4-4的模型复杂的多,在此不予讨论。
由于编码信道包含调制信道,且其特性也紧密地依赖于调制信道,故在建立了编码信道和调制信道的一般概念之后,有必要对调制信道作进一步的讨论。
如前所述,调制信道分为恒参信道和随参信道,我们分别加以讨论。
§4.2 恒参信道及其对所传信号的影响知识要点:信号不失真传输的条件幅度—频率畸变相位—频率畸变频率偏移相位抖动由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。
从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法,就可求得已调信号通过恒参信道后的变化规律。
§4.2.1 信号无失真传输的条件对于信号传输而言,我们追求的是信号通过信道时不产生失真或者失真小到不易察觉的程度。
由《信号与系统》课程可知,网络的传输特性通常可用幅度-频率特性和相位-频率特性来表征(式4-6)要使任意一个信号通过线性网络不产生波形失真,网络的传输特性应该具备以下两个理想条件:(1)网络的幅度-频率特性是一个不随频率变化的常数,如图4-5(a)所示;(2)网络的相位-频率特性应与频率成直线关系,如图4-5(b)所示。
其中为传输时延常数。
网络的相位-频率特性还经常采用群迟延-频率特性来衡量。
所谓群迟延-频率特性就是相位-频率特性对频率的导数,即(式4-7)可以看出,上述相位-频率理想条件,等同于要求群迟延-频率特性应是一条水平直线,如图4-5(c)所示。
一般情况下,恒参信道并不是理想网络,其参数随时间不变化或变化特别缓慢。
它对信号的主要影响可用幅度-频率畸变和相位-频率畸变(群迟延-频率特性)来衡量。
下面我们以典型的恒参信道――有线电话的音频信道和载波信道为例,来分析恒参信道等效网络的幅度-频率特性和相位-频率特性,以及它们对信号传输的影响。
§4.2.2 幅度-频率畸变所谓幅度-频率畸变,是指信道的幅度-频率特性偏离图4-5(a)所示关系所引起的畸变。
这种畸变又称为频率失真。
在通常的有线电话信道中可能存在各种滤波器,尤其是带通滤波器,还可能存在混合线圈、串联电容器和分路电感等,因此电话信道的幅度-频率特性总是不理想的。
图4-6示出了典型音频电话信道的总衰耗-频率特性。
十分明显,有线电话信道的此种不均匀衰耗必然使传输信号的幅度-频率发生畸变,引起信号波形的失真。
此时若要传输数字信号,还会引起相邻数字信号波形之间在时间上的相互重叠,即造成码间串扰(码元之间相互串扰)。