人教版中考数学基础测试题

合集下载

【人教版】中考数学总复习:基础演练试卷(7份,Word版,附参考答案)

【人教版】中考数学总复习:基础演练试卷(7份,Word版,附参考答案)

《阶段检测一》基础演练(时间:100分钟 满分:100分)一、选择题(每小题2分,共24分)1.(2012·陕西)如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作( )A .-7 ℃B .+7 ℃C .+12 ℃D .-12 ℃解析 ∵“正”和“负”相对,∴零上5 ℃记作+5 ℃,则零下7 ℃可记作-7 ℃. 答案 A2.(2012·襄阳)一个数的绝对值等于3,这个数是( )A .3B .-3C .±3D.13解析 因为|3|=3,|-3|=3,所以绝对值等于3的数是±3. 答案 C3.(2012·衢州)下列四个数中,最小的数是`( )A .2B .-2C .0D .-12解析 ∵2>0,-2<0,-12<0,∴可排除A 、C ,∵|-2|=2,|-12|=12,2> 12,∴-2<-12.答案 B4.(2012·杭州)计算(2-3)+(-1)的结果是( )A .-2B .0C .1D .2解析 (2-3)+(-1)=-1+(-1)=-2. 答案 A5.(2012·义乌市)一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间解析 ∵一个正方形的面积是15,∴该正方形的边长为 15, ∵9<15<16, ∴3< 15<4. 答案 B6.(2012·宁波)(-2)0的值为 ( )A .-2B .0C .1D .2解析 由a 0=1(a ≠0)易知(-2)0=1. 答案 C7.(2012·湖州)计算2a -a ,正确的结果是 ( )A .-2a 3B .1C .2D .a解析 合并同类项字母及字母的指数不变,系数相加减. 答案 D8.(2012·义乌市)下列计算正确的是( )A .a 3·a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a )2=a 6解析 A .a 3·a 2=a3+2=a 5,故此选项错误;B .a 2和a 4不是同类项,不能合并,故此选项错误; D .(3a )2=9a 2,故此选项错误; 答案 C9. (2012·无锡)分解因式(x -1)2-2(x -1)+1的结果是 ( )A .(x -1)(x -2)B .x 2C .(x +1)2D .(x -2)2解析 (x -1)2-2(x -1)+1=(x -1-1)2=(x -2)10. 答案 D10.(2012·自贡)下列计算正确的是( )A.3+2= 5B.3×2=6C.12-3= 3D.8÷2=4解析 A.3与 2不能合并,所以A 选项不正确; B. 3×2= 6,所以B 选项不正确;C. 12- 3=2 3- 3= 3,所以C 选项正确;D.8÷2=2 2÷2=2,所以D 选项不正确. 答案 C11.(2012·云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12B.12C .1D .2解析 ∵a 2-b 2=14,a -b =12,∴a 2-b 2=(a +b )(a -b )=12(a +b )=14,∴a +b =12.答案 B12.(2012·绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m ,如图,第一棵树左边5 m 处有一个路牌,则从此路牌起向右510 m ~550 m 之间树与灯的排列顺序是( )解析 由题意得每40米就回到第一棵树的摆放位置,由于510÷40=12×40+30,所以再向右移动30米,恰好到第3棵树的位置,故此题应选B. 答案 B二、填空题(每小题2分,共16分)13.(2012·温州)化简:2(a +1)-a =________. 解析 原式=2a +2-a =a +2. 答案 a +214.(2012·宁夏)当________时,分式1a +2有意义. 解析 根据题意得,a +2≠0,解得a ≠-2. 答案 a ≠-215.(2012·遵义)计算:32- 2=________. 解析 原式=4 2- 2=3 2. 答案 3 216.(2012·遵义)猜数字游戏中,小明写出如下一组数:25,47,811,1619,3235,…小亮猜想出第六个数字是6467,根据此规律,第n 个数是________.解析 ∵分数的分子分别是:22=4,23=8,24=16,… 分数的分母分别是:22+3=7,23+3=11,24+3=19,… ∴第n 个数是2n2n +3.答案 2n2n +317.(2012·德州)5-12________12.(填“>”、“<”或“=”) 解析 ∵ 5>2, ∴ 5-1>2-1, ∴ 5-1>1 ∴5-12>12. 答案 >18.(2012·泰州)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是________. 解析 设P ′表示的数为a ,则|a +1|=3, ∵将点P 向右移动, ∴a >-1,即a +1>0, ∴a +1=3,解得a =2. 答案 219.(2012·衡阳)2012年我省各级政府将总投入594亿元教育经费用于“教育强省”战略,将594亿元用科学记数法(保留两个有效数字)表示为________.解析 根据题意先将594亿元写成594×108=5.94×1010元.再用四舍五入法保留两个有效数字即得5.9×1010元. 答案 5.9×1010元20.(2012·张家界)已知(x -y +3)2+ 2-y =0,则x +y =________. 解析 ∵(x -y +3)2+ 2-y =0,∴⎩⎪⎨⎪⎧x -y +3=0,2-y =0,解得⎩⎪⎨⎪⎧x =-1,y =2 则x +y =-1+2=1.答案 1三、解答题(共60分,解答应写出必要的文字说明、证明过程或推演步骤) 21.(5分)计算:(2012·永州)6tan 30°+ 12+(-1)2 012+⎝ ⎛⎭⎪⎫1π0.解 原式=6×33-2 3+1+1 =2.22.(5分)(2012·扬州)因式分解:m 3n -9mn . 解 原式=mn (m 2-9)=mn (m +3)(m -3)23.(5分)(2011·绍兴)(1)计算:|-2|+2sin 30°-(- 3)2+(tan 45°)-1. (2)先化简,再求值:2(a +3)(a -3)-a (a -6)+6,其中a = 2-1. 解 (1)原式=2+1-3+1=1;(2)原式=2a 2-6-a 2+6a +6=a 2+6a ,当a = 2-1时,原式=4 2-3.24.(5分)(2012·扬州)先化简:1-a -1a ÷a 2-1a 2+2a ,再选取一个合适的a 值代入计算.解 原式=1-a -1a ×a 2+2aa 2-1=1-a -1a ×a (a +2)(a +1)(a -1) =1-a +2a +1=a +1a +1-a +2a +1=-1a +1, a 取除0、-2、-1、1以外的数,如取a =10,原式=-111.25.(8分)(2012·张家界)阅读材料:对于任何实数,我们规定符号的意义是=ad -bc .例如:=1×4-2×3=-2,=(-2)×5-4×3=-22.(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2-4x+4=0时,的值.解(1)=5×8-7×6=-2;(2)由x2-4x+4=0得(x-2)2=0,∴x=2,∴=3×1-4×1=-1.26.(8分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)根据上面算式的规律,请计算:1+3+5+…+199=________;(3)请你用代数式表示出上面规律.(1)解析由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52.答案1+3+5+7=421+3+5+7+9=52(2)解析由(1)中的推理可知1+3+5+…+199共有100项即为第100个图,所以1+3+5+…+199=1002.答案1002(3)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.27.(8分)观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.解 观察等式与图形之间的关系我们可以看出等式左边式子是通过矩形面积公式求阴影部分面积的,而右边式子是通过整体面积减去空白部分面积得到阴影部分面积,利用此关系,可以得到答案为: (1)5×56=5-56(2)n ×n n +1=n -nn +1. 28.(8分)(2011·衢州)有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是______________.(2)小明想用类似方法解释多项式乘法(a +3b )(2a +b )=2a 2+7ab +3b 2,那么需用2号卡片________张,3号卡片________张. 解析 (1)a2+3ab+2b2=(a+b)(a+2b);(2)1号正方形的面积为a2,2号正方形的面积为b2,3号长方形的面积为ab,所以需用2号卡片3张,3号卡片7张.答案图见解析a2+3ab+2b2=(a+b)(a+2b)(2)3 729.(8分)(2012·益阳)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(-1)×2=-2(-3)×(-4)×(-5)=-60三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商-2÷2=-1解(1)观察图形与表格算法可得如下规律:三个角上三个数的积除以三个角上三个数的和等于三角形中的数,由此易得结论.图①图②图③三个角上三个数的积1×(-1)×2=-2(-3)×(-4)×(-5)=-60(-2)×(-5)×17=170三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12(-2)+(-5)+17=10积与和的商-2÷2=-1(-60)÷(-12)=5170÷10=175+(-8)+(-9)=-12,y =360÷(-12)= -30,图⑤:1×x ×31+x +3=-3,解得x =-2.《阶段检测二》基础演练(时间:100分钟 满分:100分)一、选择题(每小题2分,共20分)1.(2012·重庆)已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( ) A.2B.3C.4D.5解析 ∵方程2x +a -9=0的解是x =2,∴2×2+a -9=0,解得a =5. 答案 D2.(2012·永州)下面是四位同学解方程2x -1+x 1-x =1过程中去分母的一步,其中正确的是( )A.2+x =x -1B.2-x =1C.2+x =1-xD.2-x =x -1解析 方程的两边同乘(x -1),得2-x =x -1. 答案 D3.(2012·莆田)方程x (x +2)=x +2的两根分别为( )A.x 1=-1,x 2=2B.x 1=1,x 2=2C.x 1=-1,x 2=-2D.x 1=1,x 2=-2解析 原方程可化为(x +2)(x -1)=0,可化为:x -1=0或x +2=0,解得:x 1=1,x 2=-2.答案 D4.(2012·宁德)二元一次方程组⎩⎪⎨⎪⎧x +y =32x -y =6的解是( )A.⎩⎪⎨⎪⎧x =6y =-3B.⎩⎪⎨⎪⎧x =0y =3 C.⎩⎪⎨⎪⎧x =2y =1D.⎩⎪⎨⎪⎧x =3y =0 解析 ⎩⎪⎨⎪⎧x +y =3 ①2x -y =6 ②①+②得,3x =9, 解得x =3,把x =3代入①得,3+y =3, 解得y =0,所以,原方程组的解是⎩⎪⎨⎪⎧x =3y =0.答案 D5.(2012·株洲)已知关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为( )A.b =-1,c =2B.b =1,c =-2C.b =1,c =2D.b =-1,c =-2解析 ∵关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,∴x 1+x 2=b =1+(-2)=-1,x 1·x 2=c =1×(-2)=-2,∴b =-1,c =-2. 答案 D6.(2012·衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A.⎩⎪⎨⎪⎧x +y =506(x +y )=320B.⎩⎪⎨⎪⎧x +y =506x +10y =320 C.⎩⎪⎨⎪⎧x +y =506x +y =320D.⎩⎪⎨⎪⎧x +y =5010x +6y =320 解析 由题意得,⎩⎪⎨⎪⎧x +y =506x +10y =320.答案 B7.(2012·绵阳)已知a >b ,c ≠0,则下列关系一定成立的是( )A.ac >bcB.a c >bcC.c -a >c -bD.c +a >c +b解析 A.当c <0时,不等式a >b 的两边同时乘以负数c ,则不等号的方向发生改变,即ac <bc .故本选项错误;B.当c <0时,不等式a >b 的两边同时除以负数c ,则不等号的方向发生改变,即a c <b c.故本选项错误;C.在不等式a >b 的两边同时乘以负数-1,则不等号的方向发生改变,即-a <-b ;然后再在不等式的两边同时加上c ,不等号的方向不变,即c -a <c -b .故本选项错误;D.在不等式a >b 的两边同时加上c ,不等式仍然成立,即a +c >b +c ;故本选项正确. 答案 D8.(2012·义乌市)在x =-4,-1,0,3中,满足不等式组⎩⎪⎨⎪⎧x <22(x +1)>-2的x 值是( )A.-4和0B.-4和-1C.0和3D.-1和0解析 ⎩⎪⎨⎪⎧x <2 ①2(x +1)>-2 ②,由②得,x >-2,故此不等式组的解集为:-2<x <2,x =-4,-1,0,3中只有-1、0满足题意.答案 D9.(2012·烟台)不等式组⎩⎪⎨⎪⎧2x -1≤3x >-1的解集在数轴上表示正确的是( )解析 ⎩⎪⎨⎪⎧2x -1≤3 ①x >-1 ②解不等式①得,x ≤2,解不等式②得,x >-1, 所以不等式组的解集为-1<x ≤2. 答案 A10.(2012·义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A.2B.3C.4D.8解析 由题意,令第三边为x ,则5-3<x <5+3,即2<x <8, ∵第三边长为偶数,∴第三边长是4或6. ∴三角形的三边长可以为3、5、4. ∴选C.答案 C二、填空题(每小题2分,共20分)11.(2012·柳州)如图,x 和5分别是天平上两边的砝码,请你用大于号“>”或小于号“<”填空:x 5.解析 根据图示知被测物体x 的质量小于砝码的质量,即x <5. 答案 <12.(2012·广安)不等式2x +9≥3(x +2)的正整数解是 W.解析 2x +9≥3(x +2),去括号得,2x +9≥3x +6,移项得,2x -3x ≥6-9,合并同类项得,-x ≥-3,系数化为1得,x ≤3,故其正整数解为1,2,3. 答案 1,2,313.(2012·菏泽)若不等式组⎩⎪⎨⎪⎧x >3x >m 的解集是x >3,则m 的取值范围是 .解析 ∵不等式组⎩⎪⎨⎪⎧x >3x >m 的解集是x >3,∴m ≤3.答案 m ≤314.(2012·陕西)小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买 瓶甲饮料.解析 设小红能买x 瓶甲饮料,则可以买(10-x )瓶乙饮料,由题意得:7x +4(10-x )≤50,解得:x ≤103,∵x 为整数,∴x 取值为0,1,2,3, 则小红最多能买3瓶甲饮料. 答案 315.(2012·杭州)某企业向银行贷款1 000万元,一年后归还银行1 065.6多万元,则年利率高于 %.解析 因为向银行贷款1 000万元,一年后归还银行1 065.6多万元,则年利率是(1 065.6-1 000)÷1 000×100%=6.56%,则年利率高于6.56%. 答案 6.5616.(2012·湛江)请写出一个二元一次方程组 ,使它的解是⎩⎪⎨⎪⎧x =2y =-1.解析 此题答案不唯一,如:⎩⎪⎨⎪⎧x +y =1 ①x -y =3 ②①+②得:2x =4, 解得:x =2,将x =2代入①得:y =-1,∴这个二元一次方程组⎩⎪⎨⎪⎧x +y =1 ①x -y =3 ②的解为:⎩⎪⎨⎪⎧x =2y =-1.答案 此题答案不唯一,如:⎩⎪⎨⎪⎧x +y =1x -y =3.17.(2012·北京)若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是 W.解析 ∵关于x 的方程x 2-2x -m =0有两个相等的实数根, ∴b 2-4ac =0,∴(-2)2-4×1×(-m )=0, 解得m =-1. 答案 -118.(2012·无锡)方程4x -3x -2=0的解为 .解析 方程的两边同乘x (x -2),得:4(x -2)-3x =0,解得:x =8.检验:把x =8代入x (x -2)=48≠0,即x =8是原分式方程的解.故原方程的解为:x =8. 答案 x =819.(2012·黑龙江)某商品按进价提高40%后标价,再打8折销售,售价为2 240元,则这种电器的进价为 元.解析 设这种商品的进价是x 元.x ×(1+40%)×0.8=2 240,解得x =2 000. 答案 2 00020.(2012·山西)图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.解析 设长方体的高为x cm ,然后表示出其宽为(15-x )cm ,根据题意得:15-x =2x ,解得:x =5,故长方体的宽为10 cm ,长为20 cm ,则长方体的体积为5×10×20=1 000 cm 3. 答案 1 000三、解答题(共60分,解答应写出必要的文字说明、证明过程或推演步骤) 21.(5分)(2012·苏州)解分式方程:3x +2+1x =4x 2+2x. 解 去分母得:3x +x +2=4,解得:x =12,经检验,x =12是原方程的解.22.(5分)(2012·珠海)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =-3时,求方程的根.解 (1)∵当m =3时,b 2-4ac =22-4×3=-8<0, ∴原方程无实数根; (2)当m =-3时, 原方程变为x 2+2x -3=0, ∵(x -1)(x +3)=0, ∴x -1=0,x +3=0, ∴x 1=1,x 2=-3.23.(5分)(2012·台州)解不等式组⎩⎪⎨⎪⎧x +3>42x <6并把解集在数轴上表示出来.解 解不等式x +3>4,得x >1, 解不等式2x <6,得x <3, ∴不等式组的解集为1<x <3. 解集在数轴上表示为24.(5分)(2012·杭州)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长; (2)设组中最多有n 个三角形,求n 的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率. 解 (1)设三角形的第三边为x , ∵每个三角形有两条边的长分别为5和7, ∴7-5<x <5+7, ∴2<x <12,∴其中一个三角形的第三边的长可以为10.(2) ∵2<x <12,它们的边长均为整数, ∴x =3,4,5,6,7,8,9,10,11, ∴组中最多有9个三角形, ∴n =9;(3)∵当x =4,6,8,10时,该三角形周长为偶数, ∴该三角形周长为偶数的概率是49.25.(8分)(2012·株洲)在学校组织的文艺晚会上,掷飞标文艺区游戏规则如下:如图掷到A 区和B 区的得分不同,A 区为小圆内部分,B 区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:(1)求掷中A 区、B 区一次各得多少分? (2)依此方法计算小明的得分为多少分?解 (1)设掷到A 区和B 区的得分分别为x 、y 分,依题意得:⎩⎪⎨⎪⎧5x +3y =77,3x +5y =75解得:⎩⎪⎨⎪⎧x =10y =9.(2)由(1)可知:4x +4y =76,答 (1)掷中A 区、B 区一次各得10,9分;(2)小明的得分为76分. 26.(8分)(2012·无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%. 方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?解 (1)设商铺标价为x 万元,则按方案一购买,则可获投资收益(120%-1)·x +x ·10%×5=0.7x ,投资收益率为0.7xx×100%=70%;按方案二购买,则可获投资收益(120%-0.85)·x +x ·10%×(1-10%)×3=0.62x ,投资收益率为0.62x0.85x×100%≈72.9%;∴投资者选择方案二所获得的投资收益率更高. (2)由题意得0.7x -0.62x =5,解得x =62.5万元 ∴甲投资了62.5万元,乙投资了53.125万元.答 (1)投资者选择方案二所获得的投资收益率更高;(2)甲投资了62.5万元,乙投资了53.125万元.27.(8分)(2012·湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙、丙三种树的价格之比为2∶2∶3,甲种树每棵200元,现计划用210 000元资金,购买这三种树共1 000棵. (1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵数是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10 120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买多少棵?解 (1)已知甲、乙、丙三种树的价格之比为2∶2∶3,甲种树每棵200元,则乙种树每棵200元,丙种树每棵32×200=300(元);(2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1 000-3x )棵.根据题意: 200×2x +200x +300(1 000-3x )=210 000, 解得x =300,∴2x =600,1000-3x =100,(3)设购买丙种树y 棵,则甲、乙两种树共(1 000-y )棵,根据题意得:200(1 000-y )+300y ≤210 000+10 120,解得:y ≤201.2,∵y 为正整数, ∴y 取201.答 (1)乙树每棵200元;丙树每棵300元; (2)买甲种树600棵,乙种树300棵,丙种树100棵; (3)丙种树最多可购买201棵.28.(8分)(2012·深圳)“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:价格种类 进价(元/台)售价(元/台)电视机 5 000 5 500 洗衣机 2 000 2 160 空调2 4002 700(1)空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1 000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?解 (1)设购进电视机x 台,则洗衣机是x 台,空调是(40-2x )台,根据题意得:⎩⎪⎨⎪⎧40-2x ≤3xx ≥040-2x ≥05 000x +2 000x +2 400(40-2x )≤118 000,解得:8≤x ≤10,根据x 是整数,则从8到10共有3个正整数,分别是8、9、10,因而有3种方案: 方案一:电视机8台、洗衣机8台、空调24台; 方案二:电视机9台、洗衣机9台、空调22台; 方案三:电视机10台、洗衣机10台、空调20台.(2)三种电器在活动期间全部售出的金额y =5 500x +2 160x +2 700(40-2x ),即y =2 260x +108 000.由一次函数性质可知:当x 最大时,y 的值最大.x 的最大值是10,则y 的最大值是:2 260×10+108 000=130 600元.由现金每购1 000元送50元家电消费券一张,可知130 600元的销售总额最多送出130张消费券.答 (2)商家估计最多送出130张.29.(8分)(2012·玉林)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65 000元,甲车每天的租金比乙车每天的租金多1 500元.试问:租甲乙两种车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.解 (1)设甲车单独完成任务需要x 天,乙车单独完成需要(x +15)天, 由题意可得:10⎝ ⎛⎭⎪⎫1x +1x +15=1,解得: x 1=15 ,x 2=-10(不合题意,应舍去), 经检验知x =15是原分式方程的解,x +15=30; 即甲车单独完成需要15天,乙车单独完成需要30天; (2)设甲车每天租金为a 元,乙车每天租金为b 元,则根据两车合运共需租金6 5000元,甲车每天的租金比乙车每天的租金多1 500元可得:⎩⎪⎨⎪⎧10a +10b =65 000,a -b =1 500 解得:⎩⎪⎨⎪⎧a =4 000b =2 500①租甲乙两车需要费用为:65 000元;②单独租甲车的费用为:15×4 000=60 000元; ③单独租乙车需要的费用为:30×2 500=75 000元; 综上可得,单独租甲车租金最少.答 (1)甲车单独完成需要15天,乙车单独完成需要30天;(2)单独租甲车租金最少.《阶段检测三》基础演练(时间:100分钟 满分:100分)一、选择题(每小题2分,共20分)1.(2012·温州)一次函数y =-2x +4的图象与y 轴的交点坐标是 ( )A.(0,4)B.(4,0)C.(2,0)D.(0,2)解析 令x =0,得y =-2×0+4=4, 则函数图象与y 轴的交点坐标是(0,4). 答案 A2.(2012·南充)矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系式用图象表示大致为( )解析 矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系式是:y =9x(x >0).是反比例函数,且图象只在第一象限. 答案 C3.(2012·哈尔滨)将抛物线y =3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A.y =3(x +2)2-1 B.y =3(x -2)2+1 C.y =3(x -2)2-1D.y =3(x +2)2+1解析 由“左加右减”的原则可知,将抛物线y =3x 2向左平移2个单位所得抛物线的解析式为:y =3(x +2)2;由“上加下减”的原则可知,将抛物线y =3(x +2)2向下平移1个单位所得抛物线的解析式为:y =3(x +2)2-1. 答案 A4.(2012·台州)点(-1,y 1),(2,y 2),(3,y 3)均在函数y =6x的图象上,则y 1,y 2,y 3的大小关系是 ( )A.y 3<y 2<y 1B.y 2<y 3<y 1C.y 1<y 2<y 3D.y 1<y 3<y 2解析 ∵函数y =6x中k =6>0,∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小, ∵-1<0,∴点(-1,y 1)在第三象限, ∴y 1<0,∵0<2<3,∴(2,y 2),(3,y 3)在第一象限,∴y 2>y 3>0, ∴y 2>y 3>y 1. 答案 D5.(2012·张家界)当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )解析 当a >0时,y =ax +1过一、二、三象限,y =a x过一、三象限;当a <0时,y =ax +1过一、二、四象限,y =ax过二、四象限.答案 C6.(2012·贵阳)已知二次函数y =ax 2+bx +c (a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是( )A.有最小值-5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值6 解析 由二次函数的图象可知,∵-5≤x ≤0,∴当x =-2时函数有最大值,y 最大=6; 当x =-5时函数值最小,y 最小=-3. 答案 B7.已知二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +c 和反比例函数y =a x在同一平面直角坐标系中的图象大致是( ).解析 ∵二次函数图象开口向下,∴a <0, ∵对称轴x =-b2a <0,∴b <0,∵二次函数图象经过坐标原点,∴c =0,∴一次函数y =bx +c 过第二、四象限且经过原点,反比例函数y =ax位于第二、四象限,纵观各选项,只有C 选项符合. 答案 C8.已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴为直线x =1,则下列结论正确的是( ).A.ac >0B.方程ax 2+bx +c =0的两根是x 1=-1,x 2=3 C.2a -b =0D.当y >0时,y 随x 的增大而减小解析 根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断: A.∵抛物线开口向下,与y 轴交于正半轴, ∴a <0,c >0,ac <0,故本选项错误;B.∵抛物线对称轴是x =1,与x 轴交于(3,0), ∴抛物线与x 轴另一交点为(-1,0),即方程ax 2+bx +c =0的两根是x 1=-1,x 2=3,故本选项正确; C.∵抛物线对称轴为x =-b2a=1, ∴2a +b =0,故本选项错误;D.∵抛物线对称轴为x=1,开口向下,∴当x>1时,y随x的增大而减小,故本选项错误.故选B.答案 B9.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序().①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A. ①②④③B.③④②①C.①④②③D.③②④①解析本题考查的是变量关系图象的识别,借助生活经验,弄明白一个量是如何随另一个量的变化而变化是解决问题的关键.①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系),路程是时间的正比例函数,对应第四个图象;②向锥形瓶中匀速注水(水面的高度与注水时间的关系),高度是注水时间的函数,由于锥形瓶中的直径是下大上小,故先慢后快,对应第二个函数的图象;③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系),温度计的读数随时间的增大而增大,由于温度计的温度在放入热水前有个温度,故对应第一个图象;④一杯越来越凉的水(水温与时间的关系),水温随时间的增大而减小,由于水冷却到室温后不变化,故对应第三个图象;综合以上,得到四个图象对应的情形的排序为③②④①.答案 D10.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是().解析 由y -x 2等于该圆的周长,得列方程式y -x 2=π2x ,即y =⎝ ⎛⎭⎪⎫π2+12x .∴y 与x 的函数关系是正比例函数关系,其图象为过原点的直线.故选A. 答案 A二、填空题(每小题2分,共20分)11.(2012·衢州)试写出图象位于第二、四象限的一个反比例函数的解析式y = W.解析 ∵反比例函数位于二、四象限, ∴k <0,解析式为:y =-1x.故答案为y =-1x,答案不唯一.答案 y =-1x,答案不唯一12.(2012·丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶 千米. 解析 ∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18-6)分钟行驶了12千米, ∴甲每分钟行驶12÷30=25千米,乙每分钟行驶12÷12=1千米, ∴每分钟乙比甲多行驶1-25=35千米.答案 3513.(2012·湖州)一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为 W.解析 ∵一次函数y =kx +b 过(2,3)(0,1)点,∴⎩⎪⎨⎪⎧3=2k +b , 1=b 解得: k =1,b =1, 一次函数的解析式为:y =x +1,∵一次函数y =x +1的图象与x 轴交与(-1,0)点, ∴关于x 的方程kx +b =0的解为x =-1. 答案 x =-114.(2012·济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y =ax 2+bx .小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒. 解析 设在10秒时到达A 点,在26秒时到达B , ∵10秒时和26秒时拱梁的高度相同,∴A ,B 关于对称轴对称.则从A 到B 需要16秒,则从A 到D 需要8秒.∴从O 到D 需要10+8=18秒. ∴从O 到C 需要2×18=36秒. 答案 3615.(2012·聊城)如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数y =k x(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 W.解析 ∵反比例函数的图象关于原点对称, ∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则14b 2=9,解得b =6,∵正方形的中心在原点O , ∴直线AB 的解析式为:x =3,∵点P (3a ,a )在直线AB 上, ∴3a =3,解得a =1,∴P (3,1),∵点P 在反比例函数y =k x(k >0)的图象上, ∴k =3,∴此反比例函数的解析式为:y=3x.答案 y =3x16.在函数y =1-2xx -12中,自变量x 的取值范围是 . 解析 要使函数有意义,则⎩⎪⎨⎪⎧1-2x ≥0x -12≠0,所以x <12.答案 x <1217.已知点P (2a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是 .解析 考查坐标轴对称的点的性质,点所在象限的符号特征,简单的不等式组的解法等知识.由对称性易知点P (2a +1,2a -3)在第四象限,则点P 的横坐标为正,纵坐标为负,可得⎩⎪⎨⎪⎧2a +1>02a -3<0,易求得结果为-12<a <32.答案 -12<a <3218.根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为.解析 因为2≤52≤4,把x =52代入y =1x 得,y =25.答案 2519.在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为 .解析 根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.点A (-1,0)向右跳2个单位长度,-1+2=1,向上2个单位,0+2=2,所以点A ′的坐标为(1,2). 答案 (1,2)20.在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A 9B 9C 9,则点A 的对应点A 9的坐标是 .解析 可求得点A (-2,-1-3)经过一次变换后得点A 1(0,1+3), 第二次后A 2(2,-1-3) 第三次A 3(4,1+3) 第四次A 4(6,-1-3) 第五次A 5(8,1+3) 第六次A 6(10,-1-3) 第七次A 7(12,1+3) 第八次A 8(14,-1-3) 第九次A 9(16,1+3). 答案 (16,1+3)三、解答题(共60分,解答应写出必要的文字说明、证明过程或推演步骤) 21.(10分)(2012·嘉兴)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0).(1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.解 (1)把 A (2,3)代入y 2=m x,得m =6. 把 A (2,3)、C (8,0)代入y 1=kx +b , 得k =-12,b =4,∴这两个函数的解析式为y 1=-12x +4, y 2=6x ;(2) 由题意得⎩⎪⎨⎪⎧y =-12x +4,y =6x解得⎩⎪⎨⎪⎧x 1=6,y 1=1⎩⎪⎨⎪⎧x 2=2,y 2=3.当x <0 或 2<x <6 时,y 1>y 2.22.(10分)(2012·岳阳)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水——清洗——灌水”中水量y (m 3)与时间 t (min )之间的函数关系式. (1)根据图中提供的信息,求整个换水清洗过程水量y (m 3)与时间t (min )的函数解析式;(2)问:排水、清洗、灌水各花多少时间?解 (1)排水阶段:设解析式为:y =kt +b , 图象经过(0,1 500),(25,1 000),则:⎩⎪⎨⎪⎧b =1 500, 25k +b =1 000 解得: k =-20,b =1 500,故排水阶段解析式为:y =-20t +1 500; 清洗阶段:y =0,灌水阶段:设解析式为:y =at +c , 图象经过(195,1 000),(95,0),则:⎩⎪⎨⎪⎧195a +c =1 000, 95a +c =0 解得: a =10,c =-950, 灌水阶段解析式为:y =10t -950;(2)∵排水阶段解析式为:y =-20t +1 500; ∴y =0时,0=-20t +1 500, 解得:t =75,。

人教版九年级数学 中考数学真题试卷

人教版九年级数学   中考数学真题试卷

人教版九年级数学中考数学真题试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×1092.(3分)实数﹣,﹣,2,﹣3中,为负整数的是()A.﹣B.﹣C.2 D.﹣33.(3分)一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<04.(3分)+=()A.3 B.C.D.5.(3分)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A. B.C. D.6.(3分)某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.两直线平行,同旁内角互补C.两直线平行,同位角相等D.内错角相等,两直线平行7.(3分)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<08.(3分)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米9.(3分)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30% D.先提价25%,再降价25%10.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)已知是方程3x+2y=10的一个解,则m的值是.12.(4分)二次根式中,字母x的取值范围是.13.(4分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.14.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.15.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.16.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD 都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.18.(6分)计算:(﹣1)2021+﹣4sin45°+|﹣2|.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.20.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.21.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.22.(10分)背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.23.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与相交于点D,若点D为的中点,且PD∥OB,求的长.24.(12分)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.。

人教版九年级数学 中考数学 基础训练

人教版九年级数学 中考数学 基础训练

人教版九年级数学中考数学 基础训练(卷面分值:150分;考试时间:120分钟)一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( )2. 9的平方根是( ) A .±3 B .﹣3C .3D .±3.下列运算正确的是( )A. 22122a a-= B. ()32628a a -=- C. ()2224a a +=+ D. 2a a a ÷=4. 等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为( )A .12B .12或9C .9D .75. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A. 33603624120x y x y +=⎧⎨+=⎩B. 33602436120x y x y +=⎧⎨+=⎩C. 12036243360x y x y +=⎧⎨+=⎩D. 12024363360x y x y +=⎧⎨+=⎩6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522=--x x 时,配方后得到的方程为( ) A .9)1(2=+x B. 9)1(2=-x C. 6)1(2=+x D. 6)1(2=-x8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( )A 、x 2-25x+32=0 B 、x 2-17+16=0 C 、2x 2-25x+16=0 D 、x 2-17x-16=09.当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7-10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于E ,1:31:=∠∠DCE ,则OCE ∠=( ) A.︒30 B.︒45 C.︒60 D.︒5.67二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处.11. 若2ab =,1a b -=-,则代数式22a b ab -的值等于 .12. 关于x 的方程3kx 2+12x +2=0有实数根,则k 的取值范围是________.13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 .14.如果代数式有意义,那么字母x 的取值范围是 .15.如图,CF 是ABC ∆的外角ACM ∠的平分线,且CF ∥AB ,︒=∠100ACM ,则B ∠的度数为 .三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程.Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()0332015422---+÷-17. (1) 2(3)2(3)0x x x -+-=; (2)x 2-5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:xx x x x x x x 4)44122(22-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.19.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC ∥AB . 求证:AE CE =20.中秋、国庆假日期间,某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

2024-2025学年人教版中考数学试题及答案

2024-2025学年人教版中考数学试题及答案

2024-2025学年人教版中考数学试题一、单选题(每题3分)1.函数:已知函数(y=2x+1),当(x=2)时,函数的值为多少?A)3 B) 4 C) 5 D) 6答案:C) 52.几何:在一个直角三角形中,如果一个锐角为30°,那么这个角所对的直角边与斜边的比是多少?A)1:1 B) 1:2 C) 1:√3 D) √3:1答案:C) 1:√33.概率:一个不透明的袋子中有5个红球和3个蓝球,从中随机抽取一个球,抽到红球的概率是多少?A)3/8 B) 5/8 C) 3/5 D) 5/3答案:B) 5/84.代数:解方程(2x2−5x+2=0),其中一个根为?A)1/2 B) 1 C) 2 D) -1答案:A) 1/25.统计:在一组数据中,众数是出现次数最多的数。

若一组数据{2, 5, 5, 8, 8, 8, 9}的众数是8,则这组数据的中位数是?A)2 B) 5 C) 8 D) 9二、多选题(每题4分)1. 下列哪些数是无理数?A.(√2))B.(34C.(π)D.(e)E.(√9)【答案】 ACD2. 设函数(f(x)=x3−6x2+9x),则下列哪些陈述是正确的?A. 函数在(x=1)处取得极大值B. 函数在(x=3)处取得极小值C. 函数在(x=3)处取得极大值D. 函数在(x=1)处取得极小值E. 函数在(x=0)处有拐点【答案】 BE3. 下列哪些图形具有旋转对称性?A. 等边三角形C. 长方形(长宽比不是1)D. 圆E. 平行四边形【答案】 ABD4. 在直角坐标系中,直线(y=mx+b)经过点(1, 2),且与(y)轴交于点(0, 1),下列哪些结论是正确的?A. 斜率(m=1)B. 直线方程为(y=x+1)C. 直线与(x)轴交于点(-1, 0)D. 直线平行于(y=x)E. 直线垂直于(y=−x)【答案】 ABCD5. 若集合A={1, 2, 3},集合B={2, 3, 4},下列哪些集合表示的是(A∪B)和(A∩B)?A.(A∪B={1,2,3,4})B.(A∩B={2,3})C.(A∪B={1,2,2,3,3,4})D.(A∩B={1,2,3,4})E.(A∪B={1,3,4})【答案】 AB三、填空题(每题3分)第1题若(ab =34),且(a+b=14),则(a)的值为______。

2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 上D .不能确定2.如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB ︵所对的圆周角是( )(第2题)A .∠APBB .∠ABDC .∠ACBD .∠BAC3.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A.π6 B .π C.π3 D.2π34.如图,⊙O 的直径AB =8,弦CD ⊥AB 于点P ,若BP =2,则CD 的长为( )A .2 5B .4 2C .4 3D .8 2(第4题) (第5题) (第6题)5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠ACD=65°,则∠BAD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°7.如图,以边长为2的等边三角形ABC的顶点A为圆心,一定的长为半径画弧,恰好与BC边相切,分别交边AB,AC于点D,E,则图中阴影部分的面积是()A.3-π4B.23-πC.(6-π)33 D.3-π2 (第7题)(第8题)8.如图,在⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1 C.32D.2二、填空题(每题4分,共16分)9.已知圆的半径是3,则该圆的内接正六边形的边长是________.10.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=________°.(第10题)(第11题)11.如图,P A,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=________°.12.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面展开图的面积为________.三、解答题(共32分)13.(10分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD 至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.(第13题)14. (10分)如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若sin ∠CAB=35,⊙O的半径为522,求AB的长.(第14题)15.(12分)如图,在Rt △ABC 中,∠C =90°,BC 与⊙O 相切于点D ,且⊙O 分别交AB ,AC 于点E ,F .(1)求证:AD 平分∠CAB ;(2)当AD =2,∠CAD =30°时,求AD ︵的长.(第15题)答案一、1.B 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.3 10.140 11.40 12.15π三、13.(1)证明:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°.∵∠ADC +∠ADE =180°,∴∠ADE =∠ABC . ∵AB =AC ,∴∠ABC =∠ACB .∵∠ACB =∠ADB ,∴∠ADB =∠ADE .(2)解:如图,连接CO 并延长交⊙O 于点F ,连接BF , 则∠FBC =90°.由题意得在Rt △BCF 中CF =4,BC =3,(第13题)∴sin F =BC CF =34.∵∠F =∠BAC ,∴sin ∠BAC =sin F =34.14.(1)证明:如图,连接OA .∵∠ABC =45°, ∴∠AOC =2∠ABC =90°.∵AD ∥OC ,∴∠DAO +∠AOC =180°,∴∠DAO =90°,即OA ⊥AD .又∵OA 是⊙O 的半径,∴AD 是⊙O 的切线.(2)解:如图,过点C 作CE ⊥AB 于点E .由(1)知∠AOC =90°.∵AO =OC =522,∵CE ⊥AB ,∴∠AEC =∠CEB =90°,∴sin ∠CAB =CE AC =35, ∴CE =3,∴AE =AC 2-CE 2=4.∵∠CEB =90°,∠ABC =45°,∴∠BCE =45°, ∴CE =BE =3,∴AB =AE +BE =7.(第14题)15.(1)证明:如图,连接OD .∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,即∠ODB =90°.∵∠C =90°,∴OD ∥AC ,∴∠ODA =∠CAD .∵OD =OA ,∴∠OAD =∠ODA ,∴∠CAD =∠OAD ,∴AD 平分∠CAB .(2)解:如图,连接DE .∵AE 为⊙O 的直径,∴∠ADE =90°.∵∠CAD =30°,∠OAD =∠ODA =∠CAD , ∴∠OAD =∠ODA =30°,∴∠AOD =120°. 在Rt △ADE 中,AE =AD cos ∠EAD =232=43 3,∴⊙O 的半径为23 3, ∴AD ︵的长=120π×23 3180=49 3π.。

2022年中考数学人教版基础训练:全等三角形

2022年中考数学人教版基础训练:全等三角形

2022年中考数学人教版基础训练:全等三角形一、选择题(本大题共10道小题)1. AD是△ABC的角平分线,自D点向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE =∠ADF2. 两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等3. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等4. 如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( )A.∠B=∠EB.∠BAD=∠EACC.∠BAC=∠EADD.BC=ED5. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是( )A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC6. 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27. 如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40° B.50° C.60° D.75°8. 如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是( ).A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OD9. 平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°10. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60二、填空题11. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是12. 如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.13. 如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=______14. 如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.15.如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.16. 如图所示,∠AOB=60°,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DCO=________.17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 18. 把两根钢条','如图,若测得AB=5厘米,则槽宽为厘米.三、解答题19. 如图,已知AB DC AC DB==,.求证:12∠=∠.20. 已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.21. 如图,木工师傅常用角尺来作任意一个角的平分线,请你设计一个方案,只用角尺来作∠AOB的平分线,并说明理由.22. 已知:如图所示,BF与CE相交于点D,BD=CD,BF⊥AC于点F,CE⊥AB于点E,求证:点D 在∠BAC的平分线上.23.如图,两根旗杆AC、BD间相距12m,某人从A点沿AB走向B,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1/m s,求这个人运动了多长时间?24. 在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC 的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.25.如图①,点A,E,F,C在一条直线上,AE=CF,过点E,F分别作ED⊥AC,FB⊥AC,AB=CD.(1)若BD与EF交于点G,试证明BD平分EF;(2)若将△DEC沿AC方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.26. 在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.。

中考数学试卷基础卷及答案

中考数学试卷基础卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 若a、b、c是等差数列,且a+b+c=0,则b的值是()A. 0B. 1C. -1D. 23. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = 2/xD. y = x²4. 在直角坐标系中,点A(2,3)关于原点对称的点是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)5. 下列各式中,正确的是()A. 2² = 4B. 3² = 9C. 4² = 16D. 5² = 206. 下列各式中,正确的是()A. √4 > √9B. √9 > √4C. √4 = √9D. √4 < √97. 若a、b、c是等比数列,且a+b+c=1,则b的值是()A. 1/3B. 1/2C. 2/3D. 18. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°9. 下列各式中,正确的是()A. (a+b)² = a² + b²B. (a+b)² = a² + 2ab + b²C. (a-b)² = a² - b²D. (a-b)² = a² + 2ab - b²10. 下列各式中,正确的是()A. (x+y)³ = x³ + y³B. (x+y)³ = x³ + 3xy² + y³C. (x-y)³ = x³ - y³D. (x-y)³ = x³ - 3xy² + y³二、填空题(每题5分,共30分)11. 若a+b=5,ab=6,则a²+b²的值为______。

人教版初三数学基础练习题

人教版初三数学基础练习题

人教版初三数学基础练习题一、选择题1. 下面哪个数是一个整数?A. -3.5B. √2C. -πD. 0.252. 小明乘以一个正数得到了-8,那么这个正数是多少?A. 2B. -2C. -8D. -1/83. 在数轴上,点A的坐标为-3/4,点B的坐标为5/4,则AB的坐标是多少?A. 1B. -1/2C. 1/2D. -14. 已知正整数a、b,其中a>b,若a-b=5,则下面哪个等式是正确的?A. a+b=5B. a+b=0C. a-b=0D. a+b=105. 某商品打折出售,原价是200元,现在的售价是原价的80%,那么现售价是多少?A. 160元B. 100元C. 120元D. 180元二、解答题1. 已知一个数是一个整数,他的绝对值比这个整数的相反数大2,求这个整数是多少?解:设这个整数为x,根据题意可以得到方程|x|=|-x|+2由于x的绝对值为正,所以方程可以化简为x=-x+2移项整理后得到2x=2,所以x=1所以这个整数是1。

2. 已知一个几何图形的面积为12平方厘米,如果将它的边长扩大为原来的3倍,则新图形的面积是多少?解:设原图形的边长为a,则原图形的面积为a^2=12扩大边长3倍后,新图形的边长为3a,所以新图形的面积为(3a)^2=9a^2由于a^2=12,所以9a^2=9×12=108所以新图形的面积是108平方厘米。

3. 小明和小红一起做了一份试卷,小明答对了试卷的80%,小红答对了试卷的60%。

小明和小红答对试卷的百分比之和是多少?解:设试卷共有100道题,小明答对80道题,小红答对60道题。

所以小明的答对比例是80% = 80/100 = 0.8小红的答对比例是60% = 60/100 = 0.6小明和小红答对试卷的百分比之和是0.8 + 0.6 = 1.4所以小明和小红答对试卷的百分比之和是140%。

以上是人教版初三数学基础练习题的解答,希望能对你有所帮助。

2019备战中考数学基础必练(人教版)-第一章有理数(含解析)

2019备战中考数学基础必练(人教版)-第一章有理数(含解析)

2019备战中考数学基础必练(人教版)-第一章有理数(含解析)一、单选题1.实数a,b在数轴上的位置如图所示,则下列结论正确的是()A. a+b>0B. a-b>0C. a•b>0D. >02.有理数a、b在数轴上的位置如图所示,则a+b的值( )A. 大于0B. 小于0C. 等于0D. 大于3.下列说法中,正确的是( )A.上升与下降是具有相反意义的量B.前进30 m是具有相反意义的量C.向东走10 m与向西走20 m是具有相反意义的量D.身高1.7 m和体重63 kg是具有相反意义的量4.既是分数,又是正数的是()A. +5B.C. 0D.5.a、b在数轴上的位置如图所示,则下列式子正确的是()A. a+b>0B. a+b>a﹣bC. |a|>|b|D. ab<06.在﹣2,﹣2 ,0,2四个数中,最小的数是()A. ﹣2B. ﹣2C. 0D. 27.的倒数是()A. B. C. 2 D. ﹣28.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A. a+b>0B. a﹣b<0C. |b|>|a|D. ab<09.在﹣6,0,2.5,|﹣3|这四个数中,最大的数是()A. ﹣6B. 0C. 2.5D. |﹣3|二、填空题10.-的相反数是________ ,-的倒数是________ ,+(﹣5)的绝对值是________11.某天最低气温是﹣5℃,最高气温比最低气温高18℃,则这天的最高气温是________℃.12.绝对值等于4的所有整数是________ .13.第29届(北京)奥运会有21880名火炬手,火炬接力行程约13.72万千米.将是奥运史上传递路线最长的.13.72万千米用科学记数法可表示为米________.14.﹣4的绝对值是________,﹣的相反数是________,﹣3 的倒数是________.15.四个互不相等的整数a、b、c、d,使(a﹣3)(b﹣3)(c﹣3)(d﹣3)=25,则a+b+c+d=________.16.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C、若点C表示的数为1,则点A表示的数为________17.若x,y为实数,且|x+2|+(y﹣2)2=0,则()2016的值为________.18.绝对值小于2.5的所有非负整数的积为________.三、计算题19.计算:[(﹣+1 ﹣]÷(﹣)×|﹣110﹣(﹣3)2|20.计算:9×(﹣)+ +|﹣3|四、解答题21.画出数轴,把下列各数:﹣5、3、0、﹣在数轴上表示出来,并用“<”号从小到大连接.22.某车间接受了加工两根轴的任务,车间工人看了看图纸,轴长2.60m,他用很短的时间完成了任务,可是把轴交给主任验收时,主任很不高兴,说不合格,只能报废!原来工人加工完的轴一根长2.56m,另一根长2.62m,请你利用所学的知识解释:为什么两根轴不合格呢?五、综合题23.阅读材料,对于任何数,我们规定符号的意义是: =ad﹣bc,例如: =1×4﹣2×3=﹣2.(1)按照这个规定,请你计算的值.(2)按照这个规定,当=5时,求x的值.答案解析部分一、单选题1.【答案】A【考点】数轴,有理数的加法,有理数的减法,有理数的乘法,有理数的除法【解析】【分析】由题意可知-1<a<0,b>1,故a、b异号,且|a|<|b|.根据有理数加减法得a+b的值应取b的符号“+”,故a+b>0;由b>1得-b<0,而a<0,所以a-b=a+(-b)<0;根据有理数的乘除法法则可知a•b<0,<0.【解答】依题意得:-1<a<0,b>1∴a、b异号,且|a|<|b|.∴a+b>0;a-b=-|a+b|<0;a•b<0;<0.故选:A.【点评】本题考查了数轴和有理数的四则运算.2.【答案】A【考点】数轴【解析】【分析】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【解答】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【点评】此题综合考查了数轴、绝对值的有关内容及有理数的加法法则.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.3.【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:A.上升和下降表示意义相反,但没有数量,故错误,A不符合题意;B.相反意义的量包含两个量,故错误,B不符合题意;C.满足相反意义量的两个条件,故正确,C符合题意;D.身高和体重是两个量,不具有相反意义,故错误,D不符合题意;故答案为:C.【分析】相反意义的量包含两个要素:①两者意义相反;②两者都是(表示一定的数量),而且是(属性相同的)量;由此一一分析即可得出答案.4.【答案】D【考点】正数和负数【解析】【分析】根据分数和正数的定义依次分析各项即可判断。

中考数学试卷基础版及答案

中考数学试卷基础版及答案

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √16B. √25C. √36D. √492. 已知等腰三角形底边长为8,腰长为10,则该等腰三角形的周长为()A. 24B. 26C. 28D. 303. 如果x² - 5x + 6 = 0,那么x的值为()A. 2B. 3C. 2或3D. 44. 在平面直角坐标系中,点A(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)5. 下列函数中,y是x的一次函数的是()A. y = x² + 1B. y = 2x - 3C. y = √xD. y = 3/x6. 下列图形中,属于平行四边形的是()A. 正方形B. 等腰梯形C. 长方形D. 等边三角形7. 已知a > b > 0,则下列不等式中正确的是()A. a² > b²B. a² < b²C. a > bD. a < b8. 在直角坐标系中,点P的坐标为(-1,2),点Q在x轴上,且PQ的长度为3,则点Q的坐标为()A. (2,0)B. (-4,0)C. (-1,-3)D. (1,0)9. 下列等式中,正确的是()A. a² + b² = (a + b)²B. a² - b² = (a + b)(a - b)C. a³ + b³ = (a + b)(a² - ab + b²)D. a³ - b³ = (a - b)(a² + ab + b²)10. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 所有等腰三角形都是等边三角形C. 相似三角形的对应边成比例D. 相似三角形的对应角相等二、填空题(每题3分,共30分)11. 若|a| = 5,则a的值为________。

人教版数学中考试卷及解答参考(2025年)

人教版数学中考试卷及解答参考(2025年)

2025年人教版数学中考自测试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、小华有5个苹果,小明比小华多2个苹果,小明有多少个苹果?A. 5个B. 7个C. 8个D. 10个2、一个长方形的长是10厘米,宽是5厘米,这个长方形的周长是多少厘米?A. 25厘米B. 30厘米C. 40厘米D. 50厘米3、在直角坐标系中,点A的坐标是(3,-2),点B的坐标是(-1,4)。

则线段AB 的中点坐标是:A.(1,1)B.(2,1)C.(2,-1)D.(1,-1)4、一个长方形的长是12厘米,宽是5厘米,它的面积是:A. 40平方厘米B. 60平方厘米C. 100平方厘米D. 120平方厘米5、()是一个质数。

A、10B、15C、17D、206、若一个长方形的长是6厘米,宽是4厘米,那么这个长方形的面积是多少平方厘米?A、20B、24C、36D、487、已知直线(l1:y=2x+3)和直线(l2:y=−12x+5),则这两条直线的交点坐标为:A. (2, 7)B. (-2, -1)C. (1, 5)D. (0, 3)8、若(a>b>0),则下列不等式一定成立的是:A.(1a >1b)B.(a2<b2)C.(a+1>b+1)D.(√a<√b)9、()下列数中,是质数的是:A、15B、16C、17D、18二、填空题(本大题有5小题,每小题3分,共15分)1、已知线段AB=8cm,点C是AB的中点,则AC的长度为______cm。

2、若(x2−9=0),则(x)的值为 ______ 。

1、已知线段AB=8cm,点C是AB的中点,则AC的长度为 4cm。

2、若(x2−9=0),则(x)的值为 3 或 -3。

这些都是基本的数学概念和运算,适合中学教育阶段的学生。

3、若一个数的平方等于9,则这个数是 _______ 。

4、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是 _______ 厘米。

人教版初三数学试卷基础题

人教版初三数学试卷基础题

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. 32. 已知x²=9,那么x的值为()A. ±3B. ±2C. ±1D. ±43. 若a、b是方程x²-5x+6=0的两个根,则a+b的值为()A. 5B. -5C. 6D. -64. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x+1)B. y = 1/xC. y = |x|D. y = √(x²-1)5. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)二、填空题(每题4分,共16分)6. 若x=2,那么2x²-3x+1的值为______。

7. 若a=-3,b=2,那么a²+b²的值为______。

8. 已知三角形的三边长分别为3、4、5,那么这个三角形是______三角形。

9. 分数1/3的倒数是______。

10. 圆的半径为r,那么圆的周长是______。

三、解答题(每题10分,共30分)11. 解下列方程:(1)2x-3=7(2)3(x+2)=912. 计算下列代数式的值:(1)当x=1时,2x²-5x+3(2)当a=2,b=3时,a²+2ab+b²13. 已知一个等腰三角形的底边长为6cm,腰长为8cm,求这个三角形的面积。

四、应用题(每题10分,共20分)14. 甲、乙两地相距120km,一辆汽车从甲地开往乙地,每小时行驶60km,另一辆汽车从乙地开往甲地,每小时行驶80km。

求两车何时相遇。

15. 小明从家出发去图书馆,他先以每小时5km的速度走了15分钟,然后以每小时10km的速度走了20分钟,此时他离图书馆还有1km。

求小明家到图书馆的距离。

人教中考数学试题及答案

人教中考数学试题及答案

人教中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333…B. πC. √2D. 1答案:C2. 如果一个角的补角是它的3倍,那么这个角的度数是多少?A. 45°B. 60°C. 75°D. 90°答案:A3. 一个数的平方根是它本身,这个数可能是?A. 0B. 1C. -1D. 4答案:A4. 以下哪个方程的解是x=2?A. x + 2 = 4B. x - 3 = 5C. 2x = 4D. x² = 4答案:A5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题2分,共10分)6. 一个三角形的三个内角之和等于______。

答案:180°7. 如果一个数的立方根等于它本身,那么这个数可能是______。

答案:1或-1或08. 一个正数的倒数是1/2,那么这个数是______。

答案:29. 如果一个数的绝对值是5,那么这个数可能是______。

答案:5或-510. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是______。

答案:24cm³三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + 4) × (5 - 2)答案:7 × 3 = 2112. 解下列方程:2x - 5 = 9答案:2x = 14x = 713. 化简下列分数:\(\frac{3}{4} + \frac{2}{5}\)答案:\(\frac{15}{20} + \frac{8}{20} = \frac{23}{20}\)四、解答题(每题10分,共20分)14. 一个直角三角形的两条直角边分别是6和8,求斜边的长度。

答案:根据勾股定理,斜边长度为 \(\sqrt{6^2 + 8^2} =\sqrt{36 + 64} = \sqrt{100} = 10\)15. 一个班级有50名学生,其中30名男生和20名女生。

2020年人教版年中考数学基础知识回顾训练题

2020年人教版年中考数学基础知识回顾训练题

人教版2020中考数学基础知识回顾训练题一、填空与选择1、有理数的大小、绝对值、相反数、倒数、(算术)平方根、立方根.(1)31-的绝对值是( ) A. 31- B. 31 C. 3 D.3- (2)4的算术平方根是( )A. 2B. -2C. ±2D. 16(3)-8的立方根是( )(4)在实数2、0、-1、-2中,最小的实数是( )A. 2B. 0C. -1D. -22、三视图(1)图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是( )(2)左下图的几何体,(箭头所指的为主视方向)它的俯视图是( )(3)右图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为____________3、科学记数法、近似数第六次人口普查的标准时间是2010年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1339724852人.这个数用科学记数法表示为(保留三个有效数字)A. 1.331010⨯B. 1.341010⨯C. 1.33×910D. 91034.1⨯4、 整式的运算(1)下面的计算正确的是( )A. 3222124x x x =⋅B. 1553x x x =⋅C. 34x x x =÷D. ()725x x =(2)下列运算正确的是( )A. 32222x x x =-B. ()2222a a -=-C. ()222b a b a +=+D. ()1212--=--a a (3)化简=---b a b b a a 22_____________;(4)=+--31922m m m _______________.5、 一元二次方程.(1)一元二次方程()x x x -=-22的根是( )A. 1-B. 2C. 1和2D. 1-和26、 对称图形(1)下列图形中,既是轴对称图形,又是中心对称图形的是( )(2)图3是小华画的正方形风筝图案,他以图中的对角形AB 为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为7、 函数图象(1)如图4,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线D C B →→作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是( )8、 同类项(1)若253y xm +与n y x 3的和是单项式,则____________=m n . (2)若单项式32312y x y x n m -与是同类项,则2012)(m n -的值是_____________. 9、 代数计算、方程(组)(1)计算-2-6的结果是( )A. -8B. 8C. -4D. 4(2)按照下面所示的操作步骤,若输入x 的值为-2,则输出的值为______________(3)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组:__________________________.(4)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于5%,则最多可打( )A. 6折B. 7折C. 8折D. 9折(5)甲仓库共存粮450吨,现从仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓所余的粮食比甲仓库所余的粮食多30吨,若设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,则由此可列出方程组:_____________10、 直角坐标系(1)如图5,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,则小花顶点A 在丙位置中的对应点/A 的坐标为( )A. (3,1)B. (1,3)C. (3,-1)D. (1,1)(2)如果点P ()2,1m m --在第四象限,则m 的取值范围是_____________________.(3) 已知点P 关于x 轴的对称点的坐标为(2,3),那么点P 关于原点O 对称的点的坐标是_____________.(4) 如图6,等边△ABC 的顶点A 、B 的坐标分别为),3(),1,0()0,3(a P 点、-在第一象限内,且满足ABC ABP S S ∆∆=2,则a 的值为( )A.47 B.2 C. 3D. 2(5)如图7,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至///C B OA 的位置,若OB=32,∠C=120°,则点B /的坐标为( )A. )3,3(B. )3,3(-C. )6,6(D. )6,6(-11、 不等式(组)运用(1)不等式组⎩⎨⎧≥+<-01123x x 的解集在数轴上表示正确的是(2)如果0,<>c b a 那么下列不等式成立的是( )A. c b c a +>+B. b c a c ->-C. bc ac >D. cb c a >(3)如果不等式⎩⎨⎧<->-mx x x )1(312的解集是2<x ,那么m 的取值范围是( )A. 2=mB. 2>mC. 2<mD. m ≥212、 三边关系(1)在Rt △ABC 中,∠C=90°,且90°︒<∠<90A ,则下列各式成立的是( )A. A A cos sin =B. A A cos sin <C. A A tan sin >D. A A cos sin <(2)如图8,直径为10的⊙A 经过点C (0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A.21 B. 43 C. 23 D. 54 (3)如图9,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,航行半小时后到达B 处,此时观测到灯塔M 在北偏东30°方向上,那么该船继续航行_______________分钟可使渔船到达离灯塔距离最近的位置.13、 命题 下列命题中,假命题是( )A. 矩形的对角线相等B. 有两个角相等的梯形是等腰梯形C. 对角线互相垂直的矩形是正方形D. 菱形的面积等于两条对角线乘积的一半14、 探索规律(1)在计算机程序中,二叉树是一种表示数据结构方法,如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,......,照此规律,七层二叉树的结点总数为( )A. 63B. 64C. 127D. 128(2)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是_________________.15、平行线的性质(1)如图10,已知︒=∠701,如果的度数为那么B BE CD ∠,//( )A. 70︒B. 100︒C. 110︒D. 120︒(2)如图11,等于则BCE CEF ABC CD EF AB ∠=∠=∠︒︒,154,46,////( )A. 23︒B. 16︒C. 20︒D. 26︒16、二次函数(1)已知一元二次方程032=-+bx x 的一根为3-,在二次函数32-+=bx x y 的图像上有三点(1,54y -)、(2,45y -)、(3,61y ),则1y 、32y y 、的大小关系是( ) A. 321y y y << B. 312y y y << C. 213y y y << D. 231y y y <<(2)已知二次函数的图像(03≤≤x )如右图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值17、反比例函数(1)双曲线21y y 、在第一象限图象如右图,过xy 41=图象上任意一点A , 作x 轴的平行线交2y 于B ,交y 轴于C ,若,1=∆AOB S 则2y 的解析式是___________.(2)如图12,已知A 是双曲线)0(2>=x xy 上一点,过点A 作AB//x 轴, 交双曲线)0(3<-=x x y 于点B ,若OA ⊥OB ,则___________=OBOA . (3) 如图13,△AOB 的顶点O 在原点,点A 在第一象限,点B 在x 轴的正半轴上,且AB=6,∠AOB=60°,反比例函数)0(>=k xk y 的图象经过点A , 将△AOB 绕点O 顺时针旋转120°,顶点B 恰好落在x k y =的图象上,则k 的值为_____. 18、因式分解 (1)分解因式:___________422=-b a ;(2)分解因式:a a a 251023+-=________.19、特殊四边形(1)如图14,在梯形ABCD 中,AD//BC ,对角线AC ,BD 相交于点O ,若AD=1,BC=3,则CO AO 的值为( ) A. 21 B. 31 C. 41 D. 91 (2)如图15,在矩形ABCD 中,AB=4,BC=5,等于则平分CF AE EF DAE AF ,,⊥∠( ) A. 32 B. 1 C. 23 D. 2 (3)如图16(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得新正方形4444D C B A ;把正方形1111D C B A 边长按原法延长一倍得到正方形2222D C B A (如图16(2));以此下去...,则正方形4444D C B A 的面积为___________.20、几何综合(1)如图17,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设垂直于地面时的影子为AC (假定AC>AB ),影子的最大值为m ,最大值为n ,那么下列结论:① ;AC m >②;AC m =③AB n =;④影子的长度现增大后减小。

人教版九年级数学中考基础专项练习

人教版九年级数学中考基础专项练习

中考数学基础题1.21-的相反数是 ,倒数是 ,绝对值是 。

2.8的平方根是 ,算术平方根是 ,立方根是 。

3.4= ,±16= ,327= 。

4.31= ,131-= 。

5.=-12 ,=-22 ;=-2)31( ;0)1(+x = 。

6.把下列各数用科学记数法表示: (1) 380000= ;(2)0.0000023= ; (3)-0.000056= ;(4)82300要求保留两个有效数字可以表示为 。

7.分解因式:(1)(2)=(3)bc ab += (4)39a a -= (5)x 3y -2x 2y 2+xy 3= 8.当x 时,分式21-x 有意义;当x 时,分式2-x 有意义 当x 时,分式21-x 有意义。

9.图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10.一次函数21y x =-的图象大致是( )11.如图(1),二次函数y =ax 2+bx +c 图象如图所示,则下列结论成立的是( )A 、a >0,b >0,c >0B 、 a <0,b >0,c <0C 、 a >O ,b <0,c <OD 、 a <0,b <0,c >012.计算:(π-1)0+11()2-+275--23+-2210123-⎛⎫-+- ⎪⎝⎭(2009×2010-1)0+(-2)—1-|-3|+tan60º.222009394⎪⎭⎫ ⎝⎛--+---πº-13.整式化简()()2121x x ++- [(2x -y )(2x +y )+y (y -6x )]÷2x ;⎛÷ ⎝101()(20094sin 302---+2-)6()3)(3(--+-a a a a14.分式化简1)121(2-÷---x x x x x x y x xyx xy ++-22215.解不等式组63142x x +--> ⎪⎩⎪⎨⎧-≥++>-312121502x x x()⎪⎩⎪⎨⎧<-+≤+3212352xx x x16.解方程(组)16223=---x x 142312-+=-y y()()()2,x y x y x y x ⎡⎤-+-+÷⎣⎦43421263x x x x -<5⎧⎪-+⎨+⎪⎩≤,,y=x -22x+3y=4⎩⎨⎧-=-=+103943y x y x ⎪⎩⎪⎨⎧=++=+-=++72413c b a c b a c b a中考数学基础题2一、选择题 1.下列运算,正确的是( )A .a +a 3=a 4B .a 2·a 3=a 6C .(a 2)3=a 6D .a 10÷a 2=a 5 2.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=9 3.下列事件是必然事件的是( )A .打开电视机屏幕上正在播放天气预报B .到电影院任意买一张电影票,座位号是奇数C .掷一枚均匀的骰子,骰子停止转动后偶数点朝上D .在地球上,抛出去的篮球一定会下落 4.如图J3­1,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( )A .BC =2DEB .△ADE ∽△ABC C.AD AE =ABACD .S △ABC =3S △ADE图J3­1 图J3­25.一次函数y =kx +b (k ≠0)与反比例函数y =kx(k ≠0)的图象如图J3­2,则下列结论中正确的是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <06.如图J3­3,在4×6的正方形网格中,点A ,B ,C ,D ,E ,F ,G 都在格点上,则下列结论不正确的是( )图J3­3①能与线段AB 构成等腰三角形的点有3个;②四边形ABEG 是矩形; ③四边形ABDF 是菱形;④△ABD 与△ABF 的面积相等. 则说法不正确的是( )A .①B .②C .③D .④ 二、填空题7.分解因式:a 3b -ab 3=______________________.8.一个角的补角是它的余角的4倍,则这个角等于____________度.9.要在一个不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是黄色的概率是25,可以怎样放球____________(只写一种).10.一块直角边分别为6 cm 和8 cm 的三角形木板如图J3­4,绕6 cm 的边旋转一周,则斜边扫过的面积是________ cm 2(结果用含π的式子表示).图J3­4三、解答题11.解方程组:⎩⎪⎨⎪⎧x -y =8, ①3x +y =12. ②12.解不等式组:⎩⎪⎨⎪⎧x -2<0,x +5≤3x +7,并写出它的整数解.13.如图J3­5,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是________个单位长度; △AOC 与△BOD 关于直线对称,则对称轴是________;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是________度; (2)连接AD ,交OC 于点E ,求∠AEO 的度数.图J3­514.我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图J3­6.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图J3­615.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?。

2019届中考数学基础题训练七新人教版.docx

2019届中考数学基础题训练七新人教版.docx

2019 届中考数学 基础题训练七 新人教版一、 (共8 小 ,每小 3 分,共 24 分)1、在 5 , 0, 3,8四个数中,最小的数是 ( )A . 5B .0C . 3D. 82、函数 y2 x 1 中自 量 x 的取 范 是 ( )1B . 1C . x 1D . x 2A . xx 22 23、不等式2 x3 1,的解集 ()x ≥ 4A. x > 4B. x ≤ 2 C. 2< x ≤ 4 D. x ≥4 4、下列事件中是必然事件的是( )A .平移后的 形与原来 形 段相等B .在一个等式两 同 除以同一个数, 果仍是等 式C .一个不透明的袋子中有 6 个 球 1 个黑球,每次摸出1 个球后放回 匀,重复 7次 一定会摸出一个黑球D .任意一个五 形外角和等于 540°5、若 x 1 , x 2 是一元二次方程x 2 x 2 0 的两个根, x 1 x 2 的 是()A . 2B . 1C . 2D . 1 6 如 , 四 形 ABCD 平行四 形 , EB ⊥ BC 于 B, ED ⊥ CD 于 D,若∠ E =55° , ∠ A 的度数是 ( )A. 100 °B. 110 °C. 125 °D. 135°7. 几个大小相同的小正方体 成的立体 形的俯 .. 如左 所示,个立体 形 是下 中的()A.B. C. D.8. 察下列 形 ,它 是按照一定 律排列的 , 按此 律 , 第 n 个 形中有 () 个小圈 .⋯⋯第 1 个图形 第 2 个图形 第 3 个图形第 4 个图形A. 2n +2B. 3n + 1C. 4nD. 5n -1二、填空 (共 3 小 ,每小3 分,共 9 分)11、 cos45° =.12、在今年武 市体育中考中某班几名学生的成 如下: 29,30,30, 27,29,24, 数据的平均数是13. 今年我市 有71300 名 届初中 生参加中考,其中71300 用科学 数法表示.三、解答 (共 5 小 ,共 32 分)17、(本题 6 分)解分式方程:x221. 3x x318、(本题 6 分)已知函数y kx 2 的图象经过点(1,3) ,求不等式kx2 1 的解集 .19、 ( 本题 6 分 )如图是一个平分角的仪器,其中AB = AD、 BC= DC,将点 A 放在角的顶点,AB和 AD沿着角的两边放下,沿AC画一条射线AE, AE就是角平分线,说明理由.20、(本题 7 分)小明和小亮玩一种摸球游戏:不透明的布袋中放有颜色、质地完全相同的四个球,分别标有数字1、2、 3、 4.规定:两人分别摸一个球,球上标有的数字大的获胜.设计如下两种方案:甲方案:两人同时各摸出一个球;乙方案:小明先摸一个球,放回后小亮再摸一个球.请分别用画树状图和列表法的方法求出甲、乙两个方案中小明获胜的概率,并判断哪种方案对小明更有利.21、(本题 7 分)如图,已知△ABC的三个顶点的坐标分别为A( 2,3)、B( 6,0)、C ( 1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转180°.画出图形,直接写出点 A 的对应点的坐标;(3)请直接写出:以A、 B、 C 为顶点的平行四边形的第四个顶点 D 的坐标.yAB C O x。

人教版数学中考试题及答案

人教版数学中考试题及答案

人教版数学中考试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B3. 一个数的立方根是2,那么这个数是:A. 8B. 4C. 6D. 2答案:A4. 以下哪个是二次方程的解?A. x = 3B. x = -3C. x = 2D. x = -2题目:2x^2 + 5x + 3 = 0答案:A5. 一个直角三角形的两条直角边分别是3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是_________。

答案:167. 一个数的绝对值是5,这个数可能是_________或_________。

答案:5 或 -58. 根据勾股定理,如果一个直角三角形的斜边长是13,一条直角边长是5,那么另一条直角边长是_________。

答案:129. 一个数的倒数是1/4,这个数是_________。

答案:410. 如果一个数的立方是64,那么这个数是_________。

答案:4三、解答题(每题5分,共30分)11. 解方程:3x - 5 = 20。

答案:将方程两边同时加5,得到3x = 25,再将两边同时除以3,得到x = 25/3。

12. 已知一个长方体的长是10cm,宽是8cm,高是5cm,求它的体积。

答案:长方体的体积为长×宽×高,即10×8×5 = 400立方厘米。

13. 一个圆的直径是14cm,求它的周长和面积。

答案:圆的周长为πd,即π×14 = 14π厘米。

圆的面积为πr²,其中r是半径,即7cm,所以面积为π×7² = 49π平方厘米。

14. 一个直角三角形的两条直角边分别是6cm和8cm,求斜边的长度。

初三基础题试卷数学人教版

初三基础题试卷数学人教版

1. 已知等腰三角形底边长为8,腰长为10,则该等腰三角形的面积是()A. 40B. 48C. 64D. 802. 下列函数中,反比例函数是()A. y=2x+1B. y=2/xC. y=x²+1D. y=√x3. 已知一元二次方程x²-5x+6=0的两个根分别为x₁和x₂,则x₁+x₂的值为()A. 5B. 6C. 7D. 84. 在平面直角坐标系中,点A(2,3)关于x轴的对称点为B,则点B的坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 已知正方形的边长为a,则该正方形的周长是()A. 4aB. 2aC. a²D. 2a²6. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°7. 下列数中,既是质数又是合数的是()A. 2B. 3C. 4D. 58. 已知a、b、c是等差数列,且a+b+c=12,则b的值为()A. 3B. 4C. 5D. 69. 在平面直角坐标系中,点P(-3,2)关于原点的对称点为Q,则点Q的坐标是()A.(3,-2)B.(-3,2)C.(3,2)D.(-3,-2)10. 已知一元二次方程x²-4x+3=0的两个根分别为x₁和x₂,则x₁×x₂的值为()A. 3B. 4C. 5D. 6二、填空题(每题5分,共50分)1. 若一个数既是3的倍数又是5的倍数,则这个数一定是()的倍数。

2. 若一个数既是4的倍数又是9的倍数,则这个数一定是()的倍数。

3. 已知x²-2x+1=0,则x的值为()。

4. 在△ABC中,若∠A=90°,∠B=30°,则∠C的度数是()。

5. 已知正方形的对角线长为a,则该正方形的面积是()。

6. 在平面直角坐标系中,点A(2,3)关于y轴的对称点为B,则点B的坐标是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版中考数学
基础测试题
一、选择题:本题共10小题,每小题4分,共40分.
1.有一个正多边形,它的内角和等于外角和,那么这个正多边形的边数是( ) A .8 B .6 C .4 D .3
2.李克强总理日前在政府工作报告中披露,2019年“粮食产量保持在1.3万亿斤以上”,可以说给全国人民吃了一颗“定心丸”。

有一种粮仓(圆锥和圆柱组成)如下左图所示的几何体,它的主视图是( )
3.2020年1月27日,财政部、国家卫生健康委下达2020年基本公共卫生服务和基层疫情防控补助资金99.5亿元,加上已经提前下达的503.8亿元,今年中央财政安排基本公共卫生服务和基层疫情防控补助资金603.3亿元.其中603.3亿用科学记数法表示为( )
A .106.03310⨯
B .8603.310⨯
C .96.03310⨯
D .7603.310⨯ 4.下列各数中,为负数的是( )
A .(3)--
B .|3|-
C .1
3
D .3- 6.下列事件中,是不可能事件的是( )
A .任意画一个三角形,其内角和为180°
B .买一张彩票,中奖
C .打开电视机,正在播放新闻
D .从一副没有大小王的扑克牌中抽出两张,数字之和为27 7.下列计算正确的是( )
A .623a a a ÷=
B .532a a a -=
C .248a a a ⨯=
D .23
6
()a a = 二、填空题:本题共6小题,每小题4分,共24分.
11.不等式组30
219x x ->⎧⎨+<⎩
的解集是 .
12.计算:2
3(2020)--= .
13.返校复学前,小张进行了14天体温测量,结果统计如下:
则小张这14天体温的中位数是 .
14.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响.某品牌电脑专营店设有甲店,销售
A 、
B 、
C 、
D 四种款式的电脑,四种款式电脑的利润
电脑款式 A B C D 利润(元/台)
160
200
240
320
240元的概率为 ;
三、解答题.:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 1.计算
(
)
1
13132-⎛⎫++-- ⎪⎝⎭
2. 解方程组:3
31x y x y -=⎧⎨
-=⎩

3. 解方程:
. 4、不等式组34222
x x x x -⎧⎪
⎨+⎪⎩<≤
5..先化简,后求值:22
121
(1)11
x x x x x --+-÷+-,其中31x =+.
6.如图,在菱形ABCD 中,点E 、F 分别为AB 、BC 边上的点,
ADE CDF ∠=∠, 求证:AE CF =.。

相关文档
最新文档