北师大版高中数学必修一答案.docx
北师大版高一数学必修第一册(2019版)_函数的表示法练习(1)(解析版)
第二章函数第2.2节函数的表示方法解析版一.选择题(共12小题)1.国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是()A.这10年中有3年的GDP增速在9.00%以上B.从2010年开始GDP的增速逐年下滑C.这10年GDP仍保持6.5%以上的中高速增长D.2013年﹣2018年GDP的增速相对于2009年﹣2012年,波动性较小【答案】:B【解析】解:由图可知,这10年中有3年的GDP增速在9.00%以上,故A正确,由图可知,从2010年开始GDP的增速逐年下滑,故B错误,由图可知,这10年GDP仍保持6.5%以上的中高速增长,故C正确,由图可知2013年﹣2018年GDP的增速相对于2009年﹣2012年,波动性较小,故D正确,故选:B.2.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是()A.支出最高值与支出最低值的比是8:1B.4至6月份的平均收入为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同【答案】:D【解析】解:由图可知,支出最高值为60万元,支出最低值为10万元,其比是5:1,故A错误,由图可知,4至6月份的平均收入为(50+30+40)=40万元,故B错误,由图可知,利润最高的月份为3月份和10月份,故C错误,由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确,故选:D.3.樟村中学将于近期召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于5时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=D.y=【答案】:C【解析】解:根据规定10推选一名代表,当各班人数除以10的余数大于6时再增加一名代表,即余数分别为6,7,8,9时可以增选一名代表,也就是x要进一位,所以最小应该加4.因此利用取整函数可表示为y=[];故选:C.4.可作为函数y=f(x)的图象的是()A.B.C.D.【答案】:D【解析】解:由函数的定义可知:每当给出x的一个值,则f(x)有唯一确定的实数值与之对应,只有D符合.故正确答案为D.故选:D.5.已知函数y=,若f(a)=10,则a的值是()A.3或﹣3B.﹣3或5C.﹣3D.3或﹣3或5【答案】:B【解析】解:若a≤0,则f(a)=a2+1=10∴a=﹣3(a=3舍去)若a>0,则f(a)=2a=10∴a=5综上可得,a=5或a=﹣3故选:B.6.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8B.f(x)=3x+2C.f(x)=﹣3x﹣4D.f(x)=3x+2或f(x)=﹣3x﹣4【答案】:B【解析】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选:B.7.若f(2x+1)=6x+5,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【答案】:A【解析】解:令2x+1=t,∴;∴f(t)=3(t﹣1)+5=3t+2;∴f(x)=3x+2.故选:A.8.已知f(x+1)=x2+6x+5,则f(x)的表达式是()A.f(x)=x2+4x B.f(x)=x2+6x﹣4C.f(x)=x2+3x﹣8D.f(x)=x2+4x﹣4【答案】:A【解析】解:∵f(x+1)=x2+6x+5=(x+1)2+4(x+1);∴f(x)=x2+4x.故选:A.9.已知f(x+2)=4x+3,则f(x)=()A.4x﹣5B.4x+5C.4x+13D.4x﹣13【答案】:A【解析】解:f(x+2)=4x+3=4(x+2)﹣5;∴f(x)=4x﹣5.故选:A.10.为更好实施乡村振兴战略,加强村民对本村事务的参与和监督,根据《村委会组织法》,某乡镇准备在各村推选村民代表.规定各村每15户推选1人,当全村户数除以15所得的余数大于10时再增加1人.那么,各村可推选的人数y与该村户数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]【答案】:B【解析】解:根据规定15推选一名代表,当各班人数除以15的余数大于10时再增加一名代表,即余数分别为11,12,13,14时可以增选一名代表,也就是x要进一位,所以最小应该加4.因此利用取整函数可表示为y=[].故选:B.11.若函数f(x)对于任意实数x恒有f(x)﹣2f(﹣x)=3x﹣1,则f(x)等于()A.x+1B.x﹣1C.2x+1D.3x+3【答案】:A【解析】解:函数f(x)对于任意实数x恒有f(x)﹣2f(﹣x)=3x﹣1,令x=﹣x,则:f(﹣x)﹣2f(x)=3(﹣x)﹣1.则:,解方程组得:f(x)=x+1.故选:A.12.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1B.﹣1C.﹣D.【答案】:B【解析】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.填空题(共10小题)13.已知,则函数f(3)=11.【答案】:11【解析】解:令x﹣=t,t2=x2+﹣2,∴f(t)=t2+2,∴f(3)=32+2=11;故答案为11.14.已知,那么f(x)的解析式为(x≠﹣1,x≠0).【答案】:(x≠﹣1,x≠0).【解析】解:由可知,函数的定义域为{x|x≠0,x≠﹣1},取x=,代入上式得:f(x)==,故答案为:(x≠﹣1,x≠0).15.已知f(x+1)=2x2+1,则f(x﹣1)=.【答案】:2x2﹣8x+9.【解析】解:设x+1=t,则x=t﹣1,f(t)=2(t﹣1)2+1=2t2﹣4t+3,f(x﹣1)=2(x﹣1)2﹣4(x﹣1)+3=2x2﹣4x+2﹣4x+4+3=2x2﹣8x+9.故答案:2x2﹣8x+9.16.已知f(x+1)=x2,则f(x)=.【答案】:(x﹣1)2【解析】解:由f(x+1)=x2,得到f(x+1)=(x+1﹣1)2,故f(x)=(x﹣1)2.故答案为:f(x)=(x﹣1)2.17.设函数f(x)=,若f(x0)=8,则x0=.【答案】:4或【解析】解:由题意,得①当x0≤2时,有x02+2=8,解之得x0=±,而>2不符合,所以x0=﹣;②当x0>2时,有2x0=8,解之得x0=4.综上所述,得x0=4或.故答案为:4或.18.已知函数f(x)是一次函数,且f[f(x)]=3x+2,则一次函数f(x)的解析式为【答案】:f(x)=或f(x)=..【解析】解:∵函数f(x)是一次函数,∴设f(x)=kx+b,(k≠0).∴f(f(x))=k(kx+b)+b=k2x+kb+b=3x+2,∴,解得或,故答案为:f(x)=或f(x)=.19.已知f(x+1)=x2+2x+2,则f(x)的解析式为【答案】:f(x)=x2+1.【解析】解:f(x+1)=x2+2x+2=(x+1)2+1,则f(x)=x2+1,故答案为:f(x)=x2+1.20.若f(2x)=3x2+1,则函数f(x)的解析式是.【答案】:【解析】解:f(2x)=3x2+1=,可得.故答案为:.21.已知函数f(x)=3x+2,则f(x+1)=.【答案】:3x+5【解析】解:∵函数f(x)=3x+2,∴将上式中的“x”用“x+1”代入f(x+1)=3(x+1)+2=3x+5.故答案为:3x+5.22.已知:f(x﹣)=x2+,则f(x)=.【答案】:x2+2【解析】解:∵,∴f(x)=x2+2.故答案为:x2+2.三.解答题(共1小题)23.已知函数y=|x+1|+|1﹣x|.(1)用分段函数形式写出函数的解析式;(2)画出该函数的大致图象.【解析】解:(1)函数y=|x+1|+|1﹣x|=(2)据(1)的函数的解析式画出图象如图所示:。
北师大高一数学必修试题附标准答案
高一数学必修1质量检测试题(卷)2009.11本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至6页.考试结束后. 只将第Ⅱ卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目地答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.集合{0,1}地子集有 ( )个A. 1个B. 2个C. 3个D. 4个 2.已知集合2{|10}M x x =-=,则下列式子正确地是 A .{1}M -∈B . 1 M ⊂C . 1 M ∈-D . 1 M ∉- 3.下列各组函数中,表示同一函数地是A .1y =与0y x =B .4lg y x =与22lg y x =C .||y x =与2y =D .y x =与ln xy e =4.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A = A .{x =1,y =2}B .{(1,2)} C .{1,2} D .(1,2)5. 函数()ln 28f x x x =+-地零点一定位于区间A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)6.二次函数2()23f x x bx =++()b R ∈零点地个数是A .0B .1C .2D .以上都有可能7.设()x a f x =(a>0,a ≠1),对于任意地正实数x ,y ,都有A.()()()f xy f x f y =B. ()()()f xy f x f y =+C.()()()f x y f x f y +=D. ()()()f x y f x f y +=+8.下表显示出函数值y 随自变量x 变化地一组数据,由此判断它最有可能地函数模型是A C .指数函数模型 D .对数函数模型 9. 若60.8log log log 23,7,a b c π===,则A. a b c >>B. b a c >>C. c a b >>D. b c a >>10.在区间),3(+∞上,随着x 地增大,下列四个函数中增长速度最快地函数是A .2y x = B .2x y = C .2y x =D .2log y x =11.若01a a >≠且,则函数log (1)a y x =+地图象一定过点A .(0,0)B .(1,0)C .(-1,0) D.(1,1)12.函数f (x ) A .(]10,-B .(-1,+∞) C .(-∞,0)D .(0,+∞)二、填空题:本大题共6小题,每小题5分,共30分.把本大题答案填在第Ⅱ卷题中横线上.13.已知{}2|2,R,R A y y x x y ==+∈∈,全集U =R ,则 N ðU A =.14. 计算2103248()(lg5.6)()927--+-=.15.幂函数()y f x =地图象经过点()2,8,则()3f -值为 16.若0.20.3a =,0.42b =,2log 0.5c =,则c b a ,,三个数地大小关系是:(用符号“>”连接这三个字母)17.若一次函数()f x ax b =+有一个零点3,那么函数2()g x bx ax =+地零点是. 18.用{}min ,,a b c 表示,,a b c 三个数中地最小值,设{}()min 2,2,8x f x x x =+-,其中0x ≥,则()f x 地最大值为.高一数学必修1质量检测试题(卷)2009.11第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题6分,共30分. 把答案填在题中横线上. 13.; 14.. 15..16.17.. 18..三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分15分)设全集为R ,{}|25A x x =<≤,{}|38B x x =<<,{|12}C x a x a =-<<. (1)求A B 及()R A B ð;(2)若()A B C =∅,求实数a 地取值范围.20. (本小题满分15分)已知二次函数()f x 满足()(1)812f x f x x --=-+和(0)3f =-. (1)求()f x ;(2)分析该函数地单调性;(3)求函数在[]2,3上地最大值与最小值.21. (本小题满分15分)某商店进了一批服装,每件进价为80元,售价为100元,每天可售出20件. 为了促进销售,商店开展购一件服装赠送一个小礼品地活动,市场调研发现:礼品价格为3元时,每天销售量为26件;礼品价格为5元时,每天销售量为30件. 假设这批服装每天地销售量t(件)是礼品价格x(元)地一次函数. (1) 将t表示为x地函数;(2)如果这批服装每天地毛利润为当天卖出商品地销售价减去礼品价格与进价后地差,试为礼品确定一个恰当地价格,使这批服装每天地毛利润最大?22.(本小题满分15分) 已知函数[)(),1,,1且mf x x m x m x=++∈+∞< (1)证明()f x 在[)+∞,1上为增函数;(2)设函数3()()22g x x f x x =⋅++,若[]2,5是()g x 地一个单调区间,且在该区间上()0g x >恒成立,求m 地取值范围.高一数学必修1质量检测题参考答案及评分标准2009.11一、选择题:本答题共12小题,每小题5分,共60分. 1. D (根据曲丽萍供题改编).2. C (根据胡伟红、沈涛、李会琴、冯莉等供题改编). 3. D (根据沈涛、杨宝华供题改编).4.B (齐宗锁供题). 5. C (根据杨文兵供题改编). 6. D (根据沈涛供题改编). 7. C (根据马晶、梁春霞、张晓明供题改编). 8. A (根据李会琴、马晶、胡伟红、冯莉等供题改编). 9.B (根据齐宗锁、杨文兵、胡伟红供题改编).10.B (根据杨宝华供题改编)11.A (根据张晓明、齐宗锁、谌晓敏供题改编) 12. A (根据梁春霞供题改编).二、填空题:本大题共6小题,每小题5分,共30分. 13.{}0,1(课本第19页2(1)改编)(根据曲丽萍供题改编) 14. 1(根据杨文兵、许巧云、张晓明、马晶等供题改编) 15. -27(根据成卫维供题改编)16.b a c >>(根据杨建国、马晶、齐宗锁、许巧云、李会琴、强彩虹等供题改编)17.0和13(根据胡伟红、冯莉供题改编)18. 5(马晶供题,09海南高考改编)三、解答题:本大题共4小题,共60分. 19. 解:(1)A B ={}|35x x <≤ (3分)∵AB ={}|28x x << (6分)∴()R AB ð={}|28x x x ≤≥或 (9分)(2)若()A B C =∅,则有23a ≤或15a -≥且12a a -<(12分)得312a -<≤或6a ≥ ∴实数a 地取值范围为31,2⎛⎤- ⎥⎝⎦或[)6,+∞ (15分)(根据许巧云、马晶、梁春霞、胡伟红供题改编)20. 解:(1)设2()f x ax bx c =++,(2分) ∵)(x f =0 ∴3c =- (4分)又∵()(1)812f x f x x --=-+,∴2812ax a b x -+=-+ (6分)∴28a =-,12a b -+= 得4a =-,8b = ∴2()483f x x x =-+- (7分) (2)∵22()4834(1)1f x x x x =-+-=--+ ∴)(x f 在区间(),1-∞上单调递增, (9分)在区间()1,+∞上单调递减.(11分)(注:结论正确即可,其它解法只要言之有理也可得分)(3)由(2)可知,)(x f 在[]2,3上单调递减∴)(x f 在[]2,3上最大值为(2)f =-3(13分)最小值(3)f =-15 (15分)(根据鲁向阳、刘芳供题改编)21.解:(1)设t kx b =+, (2分)由题意得263305k b k b =+⎧⎨=+⎩ (6分) 解得 2k =,20b =∴*220,t x x N =+∈ (8分)(2)设礼品价格为x 元时这批服装每天地毛利润为y 元, 则 (10080)(220)y x x =--+ (12分)=222204002(5)450x x x -++=--+ ∴ 当5x =时,y 有最大值.即礼品价格为5元时这批服装每天地毛利润最大.(15分)(根据教材第122页练习、第125页练习及马晶、韩梅供题改编) 22.解:(1)由题得:()m f x x m x=++,设211x x <≤,则1212121212()()()()mmm m f x f x x m x m x x x x x x -=++-++=-+- (2分)121212()()x x x x m x x --=(4分),121x x <≤ 1,02121><-∴x x x x ,又1m <,得120x x m -> 0)()(21<-∴x f x f ,即)(x f 在[)+∞,1上为增函数. (7分)(2)23()(2)2g x x m x m =++++,(9分) 若()g x 在[]2,5上单调递增,则有:222(2)0(5)(2)m g g g +⎧-<⎪⎪>⎨⎪>⎪⎩解得 196m >-(11分)若()g x 在[]2,5上单调递减,m 须满足:252(5)0(5)(2)m g g g +⎧->⎪⎪>⎨⎪<⎪⎩其解集为φ.(13分)又∵1m <,∴m 地取值范围为1916m -<<(15分)(根据齐宗锁供题改编)命题人:吴晓英 检测人:张新会版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.jLBHr。
2024-2025年北师大版数学必修第一册指数函数的图象和性质的应用(带答案)
第2课时 指数函数的图象和性质的应用必备知识基础练知识点一 指数函数的定义域和值域 1.函数y =2x-1 的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞) D.(0,+∞) 2.求下列函数的定义域和值域: (1)y =35x -1;(2)y =(12)x2-2x -3;(3)y =4x -2x+1.知识点二 指数型不等式的解法 3.若0.72x -1≤0.7x2-4,则x 的取值范围是( )A .[-1,3]B .(-∞,-1]∪[3,+∞)C .[-3,1]D .(-∞,-3]∪[1,+∞) 4.(1)解不等式:(12 )3x -1≤2;(2)已知x x2-3x +1<a x +6(a >0,且a ≠1),求x 的取值范围.知识点三 指数型函数的单调性5.若函数f (x )=(13 )|x -2|,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞) D.(-∞,-2] 6.若函数y =2-x2+xx -1在区间(-∞,3)上单调递增,则实数a 的取值范围是________.7.已知定义域为R 的函数f (x )=a -23x +1 (a ∈R )是奇函数.(1)求a 的值;(2)判断函数f (x )在R 上的单调性,并证明你的结论; (3)求函数f (x )在R 上的值域.关键能力综合练1.函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C.(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1]2.函数f (x )=⎝ ⎛⎭⎪⎫13 -x 2+4x 的值域为( ) A .[81,+∞) B.⎣⎢⎡⎭⎪⎫181,+∞ C .⎝ ⎛⎦⎥⎤-∞,-181 D .(-∞,-81]3.函数f (x )=(15)x2+xx在区间[1,2]上是减函数,则实数a 的取值范围是( )A .a ≤-4B .a ≤-2C .a ≥-2D .a >-44.已知集合A ={}x |y =3+2x -x 2 ,B ={}y |y =e x+a (a ∈R ),若A ∩B =∅,则a 的取值范围为( )A .(-∞,-1]B .(-∞,-1)C .(3,+∞)D .[3,+∞)5.函数f (x )=(18)|x +2|的部分图象大致为( )6.(易错题)函数y =(14 )x +(12)x+1的值域为( )A .[34 ,+∞) B.(34 ,+∞)C .(1,+∞) D.[1,+∞)7.不等式(13)x -4>3-2x的解集是________.8.若函数y =|2x-1|在(-∞,m ]上单调递减,则m 的取值范围是________. 9.(探究题)已知函数f (x )=(13)xx2-4x +3(a ∈R ).(1)若a =-1,求f (x )的单调区间; (2)若f (x )的最大值为3,求a 的值; (3)若f (x )的值域为(0,+∞),求a 的值.核心素养升级练1.(多选题)已知函数f (x )=3x-(13 )x ,则f (x )( )A .是奇函数B .是偶函数C .在R 上是增函数D .在R 上是减函数2.(学科素养—逻辑推理与数学运算)已知函数f (x )=4x-a ·2x+4. (1)当a =5时,解关于x 的不等式f (x )>0; (2)当x ∈[0,1]时,求f (x )的最小值g (a ).第2课时 指数函数的图象和性质的应用必备知识基础练1.答案:C解析:由2x-1≥0,得2x≥1,∴x ≥0.选C. 2.解析:(1)由5x -1≥0,得x ≥15 ,所以所求函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≥15 . 由5x -1 ≥0,得y ≥1,所以所求函数的值域为[1,+∞). (2)定义域为R .∵x 2-2x -3=(x -1)2-4≥-4, ∴(12)x2-2x -3≤(12 )-4=16. 又∵(12)x2-2x -3>0,∴函数y =(12)x2-2x -3的值域为(0,16].(3)函数的定义域为R .y =(2x )2-2x +1=(2x -12 )2+34,∵2x >0,∴当2x=12 ,即x =-1时,y 取最小值34 ,∴函数的值域为[34 ,+∞).3.答案:A解析:∵函数y =0.7x在R 上为减函数, 且0.72x -1≤0.7x2-4,∴2x -1≥x 2-4,即x 2-2x -3≤0. 解得-1≤x ≤3,故选A.4.解析:(1)∵2=(12)-1,∴原不等式可以转化为(12 )3x -1≤(12 )-1.∵y =(12 )x在R 上是减函数,∴3x -1≥-1,∴x ≥0. 故原不等式的解集是{x |x ≥0}. (2)分情况讨论:①当0<a <1时,函数f (x )=a x(a >0,且a ≠1)在R 上是减函数,∴x 2-3x +1>x +6,∴x2-4x -5>0,解得x <-1或x >5;②当a >1时,函数f (x )=a x(a >0,且a ≠1)在R 上是增函数,∴x 2-3x +1<x +6,∴x 2-4x -5<0,解得-1<x <5.综上所述,当0<a <1时,x <-1或x >5;当a >1时,-1<x <5.5.答案:B解析:因为f (x )=(13 )|x -2|为复合函数,则f (u )=(13 )u,u (x )=|x -2|,f (u )对u 是减函数,u (x )在[2,+∞)为增函数,在(-∞,2]为减函数,由复合函数知,f (x )的单调递减区间是[2,+∞).6.答案:a ≥6 解析:y =2-x2+xx -1在(-∞,3)上单调递增,即二次函数y =-x 2+ax -1在(-∞,3)上单调递增,因此需要对称轴x =a2≥3,解得a ≥6.7.解析:(1)若存在实数a 使函数f (x )为R 上的奇函数,则f (0)=0,得a =1. 当a =1时,f (x )=1-23x +1.∵f (-x )=1-23-x +1 =1-2·3x1+3x =1-2(3x+1)-21+3x =-1+21+3x =-f (x ),∴f (x )为R 上的奇函数.∴存在实数a =1,使函数f (x )为R 上的奇函数. (2)f (x )在R 上是增函数.证明如下:设x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=23x 2+1-23x 1+1=2(3x 1−3x 2)(3x 1+1)(3x 2+1)∵y =3x在R 上是增函数,且x 1<x 2, ∴3x 1<3x 2且(3x 1+1)( 3x 2+1)>0. ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2). ∴f (x )是R 上的增函数.(3)f (x )=1-23x +1 中,3x+1∈(1,+∞),∴23x+1∈(0,2). ∴f (x )的值域为(-1,1).关键能力综合练1.答案:A解析:由题意知⎩⎪⎨⎪⎧1-2x≥0,x +3>0, 解得-3<x ≤0,所以函数f (x )的定义域为(-3,0].故选A.2.答案:B解析:二次函数y =-x 2+4x 开口向下, 当x =2时,最大值为4,函数y =⎝ ⎛⎭⎪⎫13 t是单调递减函数,所以f (x )=(13)-x 2+4x 的值域为⎣⎢⎡⎭⎪⎫181,+∞ .故选B.3.答案:C解析:记u (x )=x 2+ax =(x +a2 )2-a 24,其图象为抛物线,开口向上,对称轴为直线x=-a 2.∵函数f (x )=(15)x 2+xx 在区间[1,2]上是减函数,∴函数u (x )在区间[1,2]上是增函数. 而u (x )在[-a2 ,+∞)上单调递增,∴-a2 ≤1,解得a ≥-2,故选C.4.答案:D解析:由已知,集合A 即函数y =3+2x -x 2的定义域, 由不等式3+2x -x 2≥0,即x 2-2x -3≤0,解得-1≤x ≤3,∴A ={}x |y =3+2x -x 2 ={x |-1≤x ≤3}=[-1,3],集合B 即函数y =e x +a 的值域,因为指数函数y =e x的值域为(0,+∞),所以函数y =e x+a 的值域为(a ,+∞),∴B ={}y |y =e x+a =(a ,+∞),∵A ∩B =∅,∴a 的取值范围是[3,+∞).故选D. 5.答案:B解析:令x =-2,得f (-2)=1,排除C 、D ;令x =0,得f (0)=164 ,排除A.故选B.6.答案:C解析:令t =(12 )x ,t ∈(0,+∞),则原函数可化为y =t 2+t +1=(t +12 )2+34 .因为函数y =(t +12 )2+34 在(0,+∞)上是增函数,所以y >(0+12 )2+34=1,即原函数的值域是(1,+∞).故选C. 7.答案:(-4,+∞) 解析:∵3-2x=(13 )2x ,∴(13 )x -4>(13 )2x .又函数y =(13)x 是单调递减函数,∴x -4<2x ,∴x >-4.故不等式的解集为(-4,+∞).8.答案:(-∞,0]解析:在平面直角坐标系中作出y =2x的图象,把图象沿y 轴向下平移1个单位得到y =2x-1的图象,再把y =2x-1的图象在x 轴下方的部分关于x 轴翻折,其余部分不变,如图实线部分,得到y =|2x-1|的图象.由图可知y =|2x-1|在(-∞,0]上单调递减,∴m ∈(-∞,0].9.解析:(1)当a =-1时,f (x )=(13)-x2-4x +3,令h (x )=-x 2-4x +3,由于h (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =(13 )t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,则f (x )=(13 )g (x ),由于f (x )的最大值为3,所以g (x )的最小值为-1,当a =0时,f (x )=(13)-4x +3,无最大值;当a ≠0时,有⎩⎪⎨⎪⎧a >03a -4a=-1 ,解得a =1,所以当f (x )的最大值为3时,a 的值为1.(3)由指数函数的性质,知要使y =(13 )g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,当a =0时,g (x )=-4x +3,值域为R ,符合题意. 当a ≠0时,g (x )为二次函数,其值域不为R ,不符合题意. 故f (x )的值域是(0,+∞)时,a 的值为0.核心素养升级练1.答案:AC解析:∵f (x )=3x-(13)x ,x ∈R ,∴f (-x )=3-x -3x =-f (x ),因此函数f (x )为奇函数.又y 1=3x,y 2=-(13 )x 均为R上的增函数,∴函数f (x )=3x-(13)x 在R 上是增函数.故选AC.2.解析:(1)当a =5时,f (x )=4x -5·2x +4,令t =2x >0,h (t )=t 2-5t +4. 由t 2-5t +4>0,可得t >4或t <1,即x >2或x <0,故解集为(-∞,0)∪(2,+∞). (2)令2x=t ∈[1,2],φ(t )=t 2-at +4,对称轴:t =a2 .①当a2<1,即a <2时,g (a )=φ(1)=5-a ;②当1≤a 2≤2,即2≤a ≤4时,g (a )=φ⎝ ⎛⎭⎪⎫a 2 =-a 24+4;③当a2>2,即a >4时,g (a )=φ(2)=8-2a ;综上所述,g (a )=⎩⎪⎨⎪⎧5-a ,a <2-a24+4,2≤a ≤48-2a ,a >4.。
2024-2025年北师大版数学必修第一册4.2.2换底公式(带答案)
2.2 换底公式必备知识基础练知识点一 利用换底公式求值1.若log a x =2,log b x =3,log c x =6,则log abc x =( )A .1B .2C .3D .52.若log 34·log 48·log 8m =log 416,则m =________.3.设3x =4y =36,求2x +1y的值.知识点二 利用换底公式计算4.(log 134)·(log 227)=( )A .23B .32C .6D .-6 5.计算:(1)log 927;(2)log 21125 ×log 3132 ×log 513; (3)(log 43+log 83)(log 32+log 92).知识点三 利用换底公式证明6.证明:log a a b m =m n log a b (a >0,且a ≠1,n ≠0).7.已知2x =3y =6z ≠1,求证:1x +1y =1z.关键能力综合练1.log 29log 23=( )A .12B .2C .32D .922.已知log 23=a ,log 37=b ,则log 27=( )A .a +bB .a -bC .abD .a b3.设2a =5b =m ,且1a +1b =2,则m =( )A .10B .10C .20D .1004.1log 1419 +1log 1513=( )A .lg 3B .-lg 3C .1lg 3D .-1lg 35.(多选题)已知2x =3y =a ,且(x -1)(y -1)=1,则a 的值可能为() A .1 B .2 C .3 D .66.(探究题)设a ,b ,c 都是正数,且4a =6b =9c ,那么( )A .ab +bc =2acB .ab +bc =acC .2c =2a +1bD .1c =2b -1a7.已知log 32=m ,则log 3218=________.(用m 表示)8.(易错题)计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).9.计算:5log 53-log 311·log 1127+log 82+log 48.核心素养升级练1.(多选题)已知正数x ,y ,z 满足等式2x =3y =6z ,下列说法正确的是( )A .x >y >zB .3x =2yC .1x +1y -1z =0D .1x -1y +1z=0 2.(学科素养—逻辑推理)已知a ,b ,c 是不等于1的正数,且a x =b y =c z ,1x +1y +1z=0,求abc 的值.2.2 换底公式必备知识基础练1.答案:A解析:∵log a x =1log x a =2,∴log x a =12. 同理log x c =16 ,log x b =13.∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.答案:9解析:由换底公式,得lg 4lg 3 ×lg 8lg 4 ×lg m lg 8 =lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.解析:∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式,得 x =log 3636log 363 =1log 363 ,y =log 3636log 364 =1log 364, ∴1x=log 363,1y =log 364, ∴2x +1y=2log 363+log 364=log 36(32×4) =log 3636=1.4.答案:D解析:(log 13 4)·(log 227)=(log 13 22)·(log 2(13 )-3)=(2log 132)·(-3log 213 )=-6·lg 2lg 13·lg 13lg 2 =-6. 5.解析:(1)log 927=log 327log 39 =log 333log 332 =3log 332log 33 =32. (2)log 21125 ×log 3132 ×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2 ×lg 2lg 3 ×lg 3lg 5=-15. (3)原式=(lg 3lg 4 +lg 3lg 8 )(lg 2lg 3 +lg 2lg 9) =(lg 32lg 2 +lg 33lg 2 )(lg 2lg 3 +lg 22lg 3) =12 +14 +13 +16 =54. 6.证明: log a a b m =lg b m lg a n =m lg b n lg a =m n log a b .7.证明:设2x =3y =6z =k (k ≠1),∴x =log 2k ,y =log 3k ,z =log 6k ,∴1x=log k 2,1y =log k 3,1z =log k 6=log k 2+log k 3, ∴1z =1x +1y. 关键能力综合练1.答案:B解析:由换底公式得log 39=log 29log 23 ,又∵log 39=2,∴log 29log 23 =2. 2.答案:C解析:log 27=log 23×log 37=ab .3.答案:A解析:∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10.又m >0,∴m =10 ,选A.4.答案:C解析:原式=log 19 14 +log 13 15 =log 13 12 +log 13 15 =log 13110 =log 310=1lg 3 .选C. 5.答案:AD解析:由(x -1)(y -1)=1,可得xy =x +y .当xy =0时,x =y =0,此时a =1满足;当xy ≠0时,由1x +1y=1. 又2x =3y =a ,所以x =log 2a ,y =log 3a ,则1x =1log 2a =log a 2,1y =1log 3a=log a 3. 所以有1x +1y=log a 2+log a 3=log a 6=1,解得a =6. 综上所述,a =1或a =6.故选AD.6.答案:AD解析:由a ,b ,c 都是正数,可设4a =6b =9c =M ,∴a =log 4M ,b =log 6M ,c =log 9M ,则1a =log M 4,1b =log M 6,1c=log M 9,∵log M 4+log M 9=2log M 6,∴1c +1a =2b ,即1c =2b -1a,去分母整理得ab +bc =2ac .故选AD. 7.答案:m +25m解析:log 23=1log 32 =1m ,log 3218=lg 18lg 32 =lg 2+2lg 35lg 2 =15 +25 log 23=15 +25m=m +25m. 8.解析:解法一:原式=(log 253+log 225log 24 +log 25log 28 )(log 52+log 54log 525 +log 58log 5125)=(3log 25+2log 252log 22 +log 253log 22 )(log 52+2log 522log 55 +3log 523log 55 )=(3+1+13)log 25·(3log 52)=13log 25·log 22log 25=13. 解法二:原式=(lg 125lg 2 +lg 25lg 4 +lg 5lg 8 )(lg 2lg 5 +lg 4lg 25 +lg 8lg 125 )=(3lg 5lg 2 +2lg 52lg 2 +lg 53lg 2 )(lg 2lg 5 +2lg 22lg 5 +3lg 23lg 5 )=(13lg 53lg 2 )·(3lg 2lg 5)=13. 解法三:原式=(log 2 53+log 2252+log 235)(log 52+log 5222+log 5323)=(3log 2 5+log 2 5+13 log 2 5)(log 5 2+log 5 2+log 5 2)=(3+1+13 )log 2 5·3log 5 2=3×133=13. 9.解析:原式=3-log 311×3log 113+13 log 22+32log 22 =3-3+13 +32 =116 . 核心素养升级练1.答案:AC解析:设2x =3y =6z=k (k >1),则x =log 2k ,y =log 3k ,z =log 6k .因为x =log 2k =1log k 2 ,y =log 3k =1log k 3 ,z =log 6k =1log k 6 ,且0<log k 2<log k 3<log k 6, 所以1log k 2 >1log k 3 >1log k 6,即x >y >z ,故A 正确; 3x =3ln k ln 2 ,2y =2ln k ln 3 ,则3x 2y =3ln 32ln 2>1,故B 错误; 1x +1y =log k 2+log k 3=log k 6=1z,故C 正确;1x -1y +1z=log k 2-log k 3+log k 6=log k 4≠0,故D 错误.故选AC. 2.解析:解法一:设a x =b y =c z =t ,则x =log a t ,y =log b t ,z =log c t , ∴1x +1y +1z =1log a t +1log b t +1log c t=log t a +log t b +log t c =log t (abc )=0, ∴abc =t 0=1,即abc =1.解法二:设a x =b y =c z =t ,∵a ,b ,c 是不等于1的正数,∴t >0且t ≠1,∴x =lg t lg a ,y =lg t lg b ,z =lg t lg c, ∴1x +1y +1z =lg a lg t +lg b lg t +lg c lg t =lg a +lg b +lg c lg t, ∵1x +1y +1z=0,且lg t ≠0, ∴lg a +lg b +lg c =lg (abc )=0,∴abc =1.。
高一数学高中数学北师大版试题答案及解析
高一数学高中数学北师大版试题答案及解析1.扇形的半径是一个圆的半径的3倍,且,则扇形的圆心角为。
【答案】【解析】设圆的半径为r,则扇形的半径为3r,根据,则.2.已知点与两个定点的距离之比为,则点的轨迹的面积为()A.2B.C.D.【答案】C【解析】由题意得,设点,则,即,整理得,所以点的轨迹表示以为圆心,半径为的圆,所以面积为,故选C.【考点】轨迹方程的求法.3.已知棱长等于2的正四面体的四个顶点在同一个球面上,则球的半径长为,球的表面积为.【答案】;6π【解析】将正四面体补成正方体,再将正方体放在一个球体中,利用它们之间的关系求解.解:如图,将正四面体补形成一个正方体,∵正四面体为2,∴正方体的棱长是,又∵球的直径是正方体的对角线,设球半径是R,∴2R=∴R=,球的表面积为6π.故填:;6π.点评:巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化.若已知正四面体V﹣ABC的棱长为a,求外接球的半径,我们可以构造出一个球的内接正方体,再应用对角线长等于球的直径可求得.4.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()A.B.C.D.【答案】B【解析】先求出P(X=0),即第0次首次测到正品,即全是次品的概率,从而可得结论.解:由题意,P(X=0)=∴P(1≤X≤2013)=1﹣P(X=0)=故选B.点评:本题考查n次独立重复实验中恰好发生k次的概率,考查学生的计算能力,属于中档题.5. 100件产品,其中有30件次品,每次取出1件检验放回,连检两次,恰一次为次品的概率为()A.0.42B.0.3C.0.7D.0.21【答案】A【解析】设恰一次为次品为事件A,根据100件产品,其中有30件次品,每次取出1件检验放回,连检两次,可求基本事件的个数,从而可求恰一次为次品的概率.解:由题意,设恰有一次取出次品为事件A,则P(A)===0.42故选A.点评:本题考查的重点是概率知识的运用,解题的关键是确定基本事件的个数,应注意每次取出1件检验放回,属于基础题.6.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x•g(x)(a>0,且a≠1),.,若数列的前n项和大于62,则n的最小值为()A.6B.7C.8D.9【答案】A【解析】由f′(x)g(x)>f(x)g′(x)可得单调递增,从而可得a>1,结合,可求a.利用等比数列的求和公式可求,从而可求解:∵f′(x)g(x)>f(x)g′(x)∴f′(x)g(x)﹣f(x)g′(x)>0,∴从而可得单调递增,从而可得a>1∵,∴a=2故=2+22+…+2n=∴2n+1>64,即n+1>6,n>5,n∈N*∴n=6故选:A点评:本题主要考查了利用导数的符合判断指数函数的单调性,等比数列的求和公式的求解,解题的关键是根据已知构造函数单调递增.7.已知曲线y=x2的一条切线的斜率为,则切点的横坐标为()A.4B.3C.2D.【答案】C【解析】根据切点处的导数即为切线的斜率建立等式关系,解出方程,问题得解.解:设切点的横坐标为t==,解得t=2,y′|x=t故选C.点评:本题考查了导数的几何意义,切点处的导数即为切线的斜率,属于基础题.8.已知y=f(x)=ln|x|,则下列各命题中,正确的命题是()A.x>0时,f′(x)=,x<0时,f′(x)=﹣B.x>0时,f′(x)=,x<0时,f′(x)无意义C.x≠0时,都有f′(x)=D.∵x=0时f(x)无意义,∴对y=ln|x|不能求导【答案】C【解析】利用绝对值的意义将函数中的绝对值去掉转换为分段函数;利用基本的初等函数的导数公式及复合函数的求导法则:外函数的导数与内函数的导数的乘积,分别对两段求导数,两段的导数合起来是f(x)的导数.解:根据题意,f(x)=,分两种情况讨论:(1)x>0时,f(x)=lnx⇒f'(x)=(lnx)'=.(2)x<0时f(x)=ln(﹣x)⇒f'(x)=[ln(﹣x)]'=(这里应用定义求导.)故选C点评:本题考查绝对值的意义、考查分段函数的导数的求法、考查基本初等函数的导数公式及简单的复合函数的求导法则.9.已知,则f′()=()A.﹣1+B.﹣1C.1D.0【答案】B【解析】本题先对已知函数进行求导,再将代入导函数解之即可.解:故选B.点评:本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.10.空间中,与向量同向共线的单位向量为()A.B.或C.D.或【答案】C【解析】利用与同向共线的单位向量向量即可得出.解:∵,∴与同向共线的单位向量向量,故选:C.点评:本题考查了与同向共线的单位向量向量,属于基础题.11.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx【答案】B【解析】利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解:∵f(x)=xsinx+cosx∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx故选B点评:本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题12.的导数是()A.B.C.D.【答案】A【解析】利用导数的四则运算法则,按规则认真求导即可解:y′===故选A点评:本题考查了导数的除法运算法则,解题时认真计算即可,属基础题13.设函数f(x)在点x可导,则=()A.f′(x0)B.f′(x)C.2f′(x)D.不存在【答案】C【解析】利用导数的定义,把增量转化为2h,问题得以解决.解:==2f′(x).故选C.点评:本题以函数为载体,考查导数的定义,关键是理解导数的定义,从而得解.14.已知点O为坐标原点,点A在x轴上,正△OAB的面积为,其斜二测画法的直观图为△O′A′B′,则点B′到边O′A′的距离为.【答案】2【解析】画出斜二测画法的直观图为△O′A′B′,求出正△OAB的边长,B′D′的长,然后求出点B′到边O′A′的距离.解:正△OAB的面积为,边长为2,O′A′=2D′为O′A′的中点,B′D′=所以点B′到边O′A′的距离:cos45°=故答案为:点评:本题考查斜二测法画直观图,点、线、面间的距离计算,考查计算能力,记住结论平面图形和直观图形面积之比为2.15.一个平面图形的水平放置的斜二测直观图是一个等腰梯形,直观图的底角为45°,两腰和上底边长均为1,则这个平面图形的面积为.【答案】2+【解析】根据斜二测化法规则画出原平面图形,可知水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故答案为:2+.点评:本题考查水平放置的平面图形的直观图斜二测画法,由已知斜二测直观图根据斜二测化法规则,正确画出原平面图形是解题的关键.16.如图是某一问题的算法程序框图,它反映的算法功能是.【答案】计算|x|的值.【解析】从赋值框输入的变量x的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.解:框图首先输入变量x的值,判断x≥0,执行输出x;否则,输出x的相反数:﹣x.算法结束.故此算法执行的是计算|x|的值.故答案为:计算|x|的值.点评:本题考查了程序框图中的选择结构,选择结构是先判断后执行,满足条件时执行一个分支,不满足条件执行另一个分支,此题是基础题.17.执行程序框图,输出的T= .【答案】30.【解析】本题首先分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量T的值,模拟程序的运行,运行过程中各变量的值进行分析,不难得到输出结果.解:按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30.故答案为:30.点评:本题主要考查了循环结构的程序框图,一般都可以反复的进行运算直到满足条件结束,本题中涉及到三个变量,注意每个变量的运行结果和执行情况.18.变量y是变量x的函数,则()A.变量x,y之间具有依赖关系B.变量x是变量y的函数C.当x每取一个值时,变量y可以有两个值与之对应D.当y每取一个值时,变量x有唯一的值与之对应【答案】A【解析】根据函数的定义去判断.解:变量y是变量x的函数,所以变量x,y之间具有依赖关系.故A正确.故选A.点评:本题主要考查函数的定义,比较基础.19.下列等式中的变量x,y不具有函数关系的是()A.y=x﹣1B.y=C.y=3x2+D.y2=x2【答案】D【解析】一般地,给定非空数集A,B,按照某个对应法则f,使得A中任一元素x,都有B中唯一确定的y与之对应,那么从集合A到集合B的这个对应,叫做从集合A到集合B的一个函数.记做y=f(x).分别利用函数的定义去判断,其中D中x对应y的取值不唯一.解:根据函数的定义可知A,B,C满足函数的定义.在D中当x=1时,y=±1;当y=2时,x=±2,不符合函数的定义.故选D.点评:本题考查函数的定义,函数的定义要求对于A中的任何一个元素在集合B中都有唯一的元素对应.否则不能构成函数.20.用列举法表示集合{x|x2-2x+1=0}为 ()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【答案】B【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【考点】集合的表示方法点评:列举法是把集合中的所有元素一一写出的方法。
高一数学高中数学北师大版试题答案及解析
高一数学高中数学北师大版试题答案及解析1.已知点与两个定点的距离之比为,则点的轨迹的面积为()A.2B.C.D.【答案】C【解析】由题意得,设点,则,即,整理得,所以点的轨迹表示以为圆心,半径为的圆,所以面积为,故选C.【考点】轨迹方程的求法.2.设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,且PA=3,PB=4,PC=5,则球的半径为.【答案】【解析】根据PA、PB、PC两两相互垂直,所以我们可以在球内做一个内切长方体,长方体的三条长宽高分别是5、4、3.则长方体的体对角线就是球的直径.问题转化为求矩形的对角线,利用三边的长求得答案.解:因为PA、PB、PC两两相互垂直,所以我们可以在球内做一个内切长方体,长方体的三条长宽高分别是5、4、3.长方体的体对角线就是球的直径.所以r==故答案为:点评:本题主要考查了球的性质.考查了学生形象思维能力,创造性思维能力的.3.(2011•成都二模)如图,在半径为l的球O中.AB、CD是两条互相垂直的直径,半径OP⊥平面ACBD.点E、F分别为大圆上的劣弧、的中点,给出下列结论:①E、F两点的球面距离为;②向量在向量方向上的投影恰为;③若点M为大圆上的劣弧的中点,则过点M且与直线EF、PC成等角的直线有无数条;④球面上到E、F两点等距离的点的轨迹是两个点;其中你认为正确的所有结论的序号为.【答案】①③【解析】先建立如图所示的空间直角坐标系,写出坐标E(0,,),F(,﹣,0)B(0,1,0),P(0,0,1)C(1,0,0)再一一验证即可.解:建立如图所示的空间直角坐标系,则E(0,,),F(,﹣,0)B(0,1,0),P(0,0,1)C(1,0,0)①cos∠EOF=cos∠EOBcos∠COB=cos45°cos(90°+45°)=﹣=﹣∴,对;②向量在向量方向上的投影为,错;③由于等角的值不是一定值,因此将直线EF、PC都平移到点M,可知过点M且与直线EF、PC 成等角的直线有无数多条,对;④过点EF的中点及球心O的大圆上任意点到点E、F的距离都相等,错;故答案为①③点评:本题主要考查了球的性质、球面距离及相关计算,解答的关键是建立适当的空间坐标系写出点的坐标后利用空间坐标进行计算.4.(2012•杭州一模)已知函数f(x)=,要得到f′(x)的图象,只需将f(x)的图象()个单位.A.向右平移B.向左平移C.向右平移D.向左平移【答案】D【解析】由于f′(x)=2cos(2x+),于是f′(x)=cos(2x+),利用诱导公式及平移变换规律即可得到答案.解:∵f′(x)=2cos(2x+),∴f′(x)=cos(2x+),∴将f(x)=sin(2x+)向左平移个单位可得:g(x)=f(x+)=sin[2(x+)+)]=sin[(2x+)+]=cos(2x+)=f′(x),故选D.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查简单复合函数的导数,考查理解与运算能力,属于中档题.5.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f (x)=a x•g(x)(a>0,且a≠1),.,若数列的前n项和大于62,则n的最小值为()A.6B.7C.8D.9【答案】A【解析】由f′(x)g(x)>f(x)g′(x)可得单调递增,从而可得a>1,结合,可求a.利用等比数列的求和公式可求,从而可求解:∵f′(x)g(x)>f(x)g′(x)∴f′(x)g(x)﹣f(x)g′(x)>0,∴从而可得单调递增,从而可得a>1∵,∴a=2故=2+22+…+2n=∴2n+1>64,即n+1>6,n>5,n∈N*∴n=6故选:A点评:本题主要考查了利用导数的符合判断指数函数的单调性,等比数列的求和公式的求解,解题的关键是根据已知构造函数单调递增.6.已知曲线y=x2的一条切线的斜率为,则切点的横坐标为()A.4B.3C.2D.【答案】C【解析】根据切点处的导数即为切线的斜率建立等式关系,解出方程,问题得解.解:设切点的横坐标为t==,解得t=2,y′|x=t故选C.点评:本题考查了导数的几何意义,切点处的导数即为切线的斜率,属于基础题.7.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8C.y=2x+2D.【答案】A【解析】据曲线在切点处的导数值为曲线切线的斜率,求g′(1)进一步求出f′(1),由点斜式求出切线方程.解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.点评:本题考查曲线在切点处的导数值为曲线切线的斜率.8.设f(x)=cos22x,则=()A.2B.C.﹣1D.﹣2【答案】D【解析】先对函数进行化简,再对函数进行求导,再把代入进行求解即可.解:∵f(x)=cos22x=∴=﹣2sin4x∴故选D.点评:本题主要考查了复合函数的求导问题,要注意{f[g(x)]}′=f′(g(x)g′(x).9.设y=﹣2e x sinx,则y′等于()A.﹣2e x cosx B.﹣2e x sinx C.2e x sinx D.﹣2e x (sinx+cosx)【答案】D【解析】利用导数乘法法则进行计算.解:∵y=﹣2e x sinx,∴y′=(﹣2e x)′sinx+(﹣2e x)•(sinx)′=﹣2e x sinx﹣2e x cosx=﹣2e x(sinx+cosx).故选D.点评:本题考查学生对导数乘法法则的运算能力,利用直接法求解.10.空间中,与向量同向共线的单位向量为()A.B.或C.D.或【答案】C【解析】利用与同向共线的单位向量向量即可得出.解:∵,∴与同向共线的单位向量向量,故选:C.点评:本题考查了与同向共线的单位向量向量,属于基础题.11.(2014•福建模拟)已知具有线性相关的两个变量x,y之间的一组数据如下:且回归方程是=0.95x+a,则当x=6时,y的预测值为()A.8.0B.8.1C.8.2D.8.3【答案】D【解析】线性回归方程=0.95x+a,必过样本中心点,首先计算出横标和纵标的平均数,代入回归直线方程求出a即可得到回归直线的方程,代入x=6,可得y的预测值.解:由已知可得==2==4.5∴=4.5=0.95×+a=1.9+a∴a=2.6∴回归方程是=0.95x+2.6当x=6时,y的预测值=0.95×6+2.6=8.3故选D点评:题考查线性回归方程,是一个运算量较大的题目,有时题目的条件中会给出要有的平均数,本题需要自己做出,注意运算时不要出错.12.下列结论正确的是()A.若y=x+,则y′=1+B.若y=cosx,则y′=sinxC.若y=,则y′=D.若y=,则y′=【答案】C【解析】利用导数的运算法则即可得出.解:A.∵,∴,因此A不正确;B.∵y=cosx,∴y′=﹣sinx;C.∵,∴,因此正确;D.∵,∴,因此不正确.综上可知:只有C正确.故选C.点评:熟练掌握导数的运算法则是解题的关键.13.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx【答案】B【解析】利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解:∵f(x)=xsinx+cosx∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx故选B点评:本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题14.已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0,y),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x)=0.若函数f(x)=x3﹣3x2,则可求得=()A.4025B.﹣4025C.8050D.﹣8050【答案】D【解析】由题意对已知函数求两次导数可得图象关于点(1,﹣2)对称,即f(x)+f(2﹣x)=﹣4,而要求的式子可用倒序相加法求解,共有2011对﹣4和一个f (1)=﹣2,可得答案. 解:由题意f (x )=x 3﹣3x 2,则f′(x )=3x 2﹣6x ,f″(x )=6x ﹣6,由f″(x 0)=0得x 0=1,而f (1)=﹣2,故函数f (x )=x 3﹣3x 2关于点(1,﹣2)对称,即f (x )+f (2﹣x )=﹣4. 所以,…,,所以=﹣4×2012+(﹣2)=﹣8050,故选D .点评:本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.15. (2014•虹口区二模)对于数列{a n },规定{△1a n }为数列{a n }的一阶差分数列,其中△1a n =a n+1﹣a n (n ∈N *).对于正整数k ,规定{△k a n }为{a n }的k 阶差分数列,其中△k a n =△k ﹣1a n+1﹣△k ﹣1a n .若数列{a n }有a 1=1,a 2=2,且满足△2a n +△1a n ﹣2=0(n ∈N *),则a 14= . 【答案】26【解析】利用新定义,可得{a n }是从第2项起,2为公差的等差数列,即可求出a 14. 解:∵△k a n =△k ﹣1a n+1﹣△k ﹣1a n ,△2a n +△1a n ﹣2=0, ∴△1a n+1=2, ∴a n+2﹣a n+1=2, ∵a 1=1,a 2=2,∴{a n }是从第2项起,2为公差的等差数列, ∴a 14=2+2(14﹣2)=26. 故答案为:26.点评:本题考查数列的应用,考查新定义,确定{a n }是从第2项起,2为公差的等差数列是关键.16. 一个平面图形的水平放置的斜二测直观图是一个等腰梯形,直观图的底角为45°,两腰和上底边长均为1,则这个平面图形的面积为 . 【答案】2+【解析】根据斜二测化法规则画出原平面图形,可知水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2, 下底为1+, S=(1++1)×2=2+.故答案为:2+.点评:本题考查水平放置的平面图形的直观图斜二测画法,由已知斜二测直观图根据斜二测化法规则,正确画出原平面图形是解题的关键.17. 如图所示的直观图(△AOB ),其平面图形的面积为 .【答案】6【解析】根据直观图与平面图形的画法,推出平面图形的形状,根据数据关系,不难求出平面图形的面积.解:如图所示的直观图(△AOB ),其平面图形是一个直角三角形,直角边长为:3;4; 所以它的面积为:,故答案为:6.点评:本题考查直观图与平面图形的画法,注意两点:一是角度的变化;二是长度的变化;考查计算能力.18.下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c【答案】A【解析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存最大值的变量X=C故选A.点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.19.如图是某一问题的算法程序框图,它反映的算法功能是.【答案】计算|x|的值.【解析】从赋值框输入的变量x的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.解:框图首先输入变量x的值,判断x≥0,执行输出x;否则,输出x的相反数:﹣x.算法结束.故此算法执行的是计算|x|的值.故答案为:计算|x|的值.点评:本题考查了程序框图中的选择结构,选择结构是先判断后执行,满足条件时执行一个分支,不满足条件执行另一个分支,此题是基础题.20.在国家法定工作日内,每周满工作量的时间为40小时,若每周工作时间不超过40小时,则每小时工资8元;如因需要加班,超过40小时的每小时工资为10元.某公务员在一周内工作时间为x小时,但他须交纳个人住房公积金和失业保险(这两项费用为每周总收入的10%).试分析算法步骤并画出其净得工资y元的算法的程序框图(注:满工作量外的工作时间为加班).【答案】见解析【解析】本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中公交车票价的定价规则易写出分段函数的解析式y=,然后我们可根据分类标准,设置出判断框中的条件,再由函数两段上的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图.解:算法如下:第一步,输入工作时间x小时.第二步,若x≤40,则y=8x•(1﹣10%),否则y=40×8(1﹣10%)+(x﹣40)×10(1﹣10%).第三步,输出y值.程序框图:点评:编写程序解决分段函数问题,要分如下几个步骤:①对题目的所给的条件的分类进行总结,写出分段函数的解析式;②根据分类标准,设置判断框的个数及判断框中的条件;③分析函数各段的解析式,确定判断框的“是”与“否”分支对应的操作;④画出流程图,再编写满足题意的程序.。
2024-2025年北师大版数学必修第一册4.3.3.2对数函数的综合应用(带答案)
第2课时 对数函数的综合应用必备知识基础练知识点一 利用单调性求范围问题 1.若log a 23 <1,则a 的取值范围是( )A .(0,23 )B .(23 ,+∞)C .(23 ,1)D .(0,23)∪(1,+∞)2.不等式log 2(2x +3)>log 2(5x -6)的解集为( ) A .(-∞,3) B .(-32 ,3)C .(-32 ,65 )D .(65,3)3.已知a >0且a ≠1,若函数y =log a (4-ax )在[1,2]上是减函数,则实数a 的取值范围是( )A .(0,1)B .(1,2)C .(1,2]D .(1,4) 知识点二 对数函数的实际应用4.某种动物繁殖数量y (只)与时间x (年)的关系为y =m log 2(x +1),设这种动物第一年有200只,到第7年它们发展到( )A .300只B .400只C .500只D .600只5.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13 ,则使产品达到市场要求的最少过滤次数为(参考数据:lg 2≈0.301,lg 3≈0.477)( )A .10B .9C .8D .7知识点三 对数函数的综合应用6.已知函数y =log 2(x 2-2kx +k )的值域为R ,则k 的取值范围是( ) A .0<k <1 B .0≤k <1C .k ≤0或k ≥1 D.k =0或k ≥17.若函数f (x )=log a (x +x 2+2a 2)是奇函数,则a =________. 8.已知奇函数f (x )=ln ax +1x -1. (1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并利用函数单调性的定义证明; (3)当x ∈[2,5]时,ln (1+x )>m +ln (x -1)恒成立,求实数m 的取值范围.关键能力综合练1.已知实数a =log 45,b =(12 )0,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a2.已知函数f (x )=lg 1-x1+x ,f (a )=b ,则f (-a )=( )A .bB .-bC .1bD .-1b3.函数f (x )=|log 12x |的单调递增区间是( )A .(0,12] B .(0,1] C .(0,+∞) D.[1,+∞)4.若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫34,1B .⎝ ⎛⎦⎥⎤1,32 C .(1,2) D .(1,2]5.(探究题)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(1,2] D .(0,12 )6.(易错题)函数f (x )=log 0.6(2-x ) 的定义域为________.7.已知函数f (x )=ln (x +x 2+1 )+1,若实数a 满足f (-a )=2,则f (a )=________. 8.写出一个同时满足下列两个条件的函数f (x )=________. ①对∀x 1,x 2∈(0,+∞),有f (x 1x 2)=f (x 1)+f (x 2); ②当x ∈(4,+∞)时,f (x )>1恒成立.9.已知a >0,a ≠1且log a 3>log a 2,若函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为1.(1)求a 的值;(2)解不等式log 13(x -1)>log 13(a -x );(3)求函数g (x )=|log a x -1|的单调区间.核心素养升级练1.(多选题)若定义域为[0,1]的函数f (x )同时满足以下三个条件:①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).就称f (x )为“A 函数”,下列定义在[0,1]上的函数中,是“A 函数”的有( ) A .f (x )=log 12(x +1)B .f (x )=log 2(x +1)C .f (x )=xD .f (x )=2x-12.(学科素养—逻辑推理)若函数f (x )=log a x (a >0且a ≠1)在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a -m 的值是________.第2课时 对数函数的综合应用必备知识基础练1.答案:D解析:由log a 23 <1,得log a 23<log a a ,若a >1,由函数y =log a x 为增函数,得a >23 ,所以a >1;若0<a <1,由函数y =log a x 为减函数,得0<a <23 ,所以0<a <23 .综上所述,0<a <23 或a >1.故选D.2.答案:D解析:由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x <3.3.答案:B解析:y =4-ax 在[1,2]上是减函数,y =log a (4-ax )在[1,2]上是减函数,故a >1, 考虑定义域:4-2a >0,故a <2, 综上所述:1<a <2.故选B. 4.答案:D解析:由已知第一年有200只,得m =200.将m =200,x =7代入y =m log 2(x +1),得y =600.5.答案:C解析:设经过n 次过滤,产品达到市场要求,则2100 ×(23 )n ≤11000 ,即(23 )n ≤120 ,由n lg 23 ≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2 ≈7.4,所以选C.6.答案:C解析:令t =x 2-2kx +k ,由y =log 2(x 2-2kx +k )的值域为R ,得函数t =x 2-2kx +k 的图象一定恒与x 轴有交点,所以Δ=4k 2-4k ≥0,即k ≤0或k ≥1.7.答案:22解析:∵x +x 2+2a 2>0恒成立,∴函数f (x )的定义域为R ,又∵f (x )是奇函数,∴f (0)=0,即log a 2a 2=0, ∴2a 2=1,∴a =22. 综验证,此时函数y =log a (x +x 2+1 )为奇函数,满足题意,故a =22. 8.解析:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ),即ln -ax +1-x -1 =-ln ax +1x -1,∴ax -1x +1 =x -1ax +1即(a 2-1)x 2=0,解得a =±1, 经检验,a =-1时不符合题意,∴a =1.(2)f (x )在(1,+∞)上为减函数.证明如下:由(1)知,f (x )=ln x +1x -1,任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=lnx 1+1x 1-1 -ln x 2+1x 2-1 =ln (x 1+1x 1-1 ·x 2-1x 2+1 )=ln (x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1),∵x 1<x 2,∴x 2-x 1>0,x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1>1,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(1,+∞)上为减函数.(3)由已知得m <ln (1+x )-ln (x -1),即m <ln x +1x -1. 由(2)知f (x )=lnx +1x -1在[2,5]上为减函数, ∴当x =5时,(lnx +1x -1 )min =ln 32 ,∴m <ln 32. 关键能力综合练1.答案:D解析:由题意知,a =log 45>1,b =(12 )0=1,c =log 30.4<0,故c <b <a .2.答案:B解析:由1-x1+x >0,得f (x )的定义域为(-1,1).因为f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),所以f (x )是奇函数,所以f (-a )=-f (a )=-b . 3.答案:D解析:f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.答案:B解析:若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增, 则⎩⎪⎨⎪⎧a >0a >122-2a ≥0a2≤22a -2a ≤log a(22-2a ),解得1<a ≤32 ,即实数a 的取值范围为⎝ ⎛⎦⎥⎤1,32 .故选B. 5.答案:C解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,显然不成立.当a >1时,如图所示,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,∴log a 2≥1,∴1<a ≤2.6.答案:[1,2)解析:要使函数f (x )有意义,则需满足⎩⎪⎨⎪⎧log 0.6(2-x )≥0,2-x >0, 解得1≤x <2.7.答案:0解析:设g (x )=ln (x +x 2+1 ),则g (-x )=ln (-x +(-x )2+1 )=ln 1x +x 2+1=-ln (x +x 2+1 )=-g (x ),又g (x )的定义域关于原点对称,所以g (x )为奇函数.因此f (-a )=g (-a )+1=2,所以g (-a )=1,从而g (a )=-1,所以f (a )=g (a )+1=-1+1=0.8.答案:log 2x (答案不唯一)解析:因为由f (x )满足的两个条件可以联想到对数函数,当f (x )=log 2x 时,对∀x 1,x 2∈(0,+∞),f (x 1x 2)=log 2(x 1x 2)=log 2x 1+log 2x 2=f (x 1)+f (x 2),满足条件①;当x ∈(4,+∞)时,f (x )>log 24=2>1,满足条件②. 9.解析:(1)∵log a 3>log a 2,∴a >1, ∴y =log a x 在[a ,2a ]上为增函数, ∴log a (2a )-log a a =1,∴a =2.(2)依题意可知⎩⎪⎨⎪⎧x -1<2-x ,x -1>0,2-x >0,解得1<x <32,∴所求不等式的解集为(1,32 ).(3)∵g (x )=|log 2x -1|,∴g (x )=⎩⎪⎨⎪⎧log 2x -1,x ≥2,1-log 2x ,0<x <2.∴函数g (x )在(0,2)上为减函数,在[2,+∞)上为增函数, 即g (x )的单调递减区间为(0,2),单调递增区间为[2,+∞).核心素养升级练1.答案:CD解析:选项A 中,f (1)=log 12(1+1)=-1,f (x )=log 12(x +1)不是“A 函数”.选项B 中,若x 1≥0,x 2≥0,x 1+x 2≤1,则f (x 1)+f (x 2)=log 2(x 1+1)+log 2(x 2+1)=log 2(x 1x 2+x 1+x 2+1)≥log 2(x 1+x 2+1)=f (x 1+x 2),不满足③,因此,f (x )=log 2(x +1)不是“A 函数”.选项C 中,f (x )显然满足①②,又f (x 1+x 2)=x 1+x 2=f (x 1)+f (x 2),因此,f (x )=x 是“A 函数”.选项D 中,f (x )显然满足①②.∵f (x 1+x 2)=2x 1+x 2-1,f (x 1)+f (x 2)=2x 1+2x 2-2,∴f (x 1+x 2)-[f (x 1)+f (x 2)]=2x 1+x 2-2x 1-2x 2+1=(2x 1-1)( 2x 2-1).又x 1,x 2∈[0,1],∴2x 1-1≥0,2x 2-1≥0.从而f (x 1+x 2)≥f (x 1)+f (x 2).因此,f (x )=2x-1是“A 函数”.故选CD.2.答案:3解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,因此有f (4)=log a 4=2,解得a =2,所以m =log 212 =-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a -m =2-(-1)=3;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12 =log a 12 =2,a =22 ,所以m =log 22 4=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意.综上所述,a =2,m =-1,a -m =3.。
新教材北师大版高中数学必修第一册练习-换底公式答案含解析
第四章 对数运算与对数函数§2 对数的运算2.2 换底公式知识点 对数的换底公式1.☉%8#65¥@7¥%☉(2020·银川一中月考)log 29·log 34=( )。
A.14 B.12C.2D.4 答案:D解析:原式=log 232·log 322=4log 23·log 32=4·lg3lg2·lg2lg3=4。
故选D 。
2.☉%11##*4#3%☉(2020·菏泽高一检测)log 849log 27的值是( )。
A.2B.32C.1D.23答案:D 解析:log 849log 27=log 272log 223÷log 27=23。
故选D 。
3.☉%0#90#¥0*%☉(2020·江西赣州十三县市高一期中考试)若log 2x ·log 34·log 59=8,则x 等于( )。
A.8 B.25 C.16 D.4 答案:B解析:因为log 2x ·log 34·log 59=lgxlg2·lg4lg3·lg9lg5=lgx lg2·2lg2lg3·2lg3lg5=8,所以lg x =2lg 5=lg 25,所以x =25。
故选B 。
4.☉%#*#29#62%☉(2020·白城一中月考)化简:log 212+log 223+log 234+…+log 21516等于( )。
A.5 B.4 C.-5 D.-4 答案:D解析:原式=log 2(12×23×34×…×1516)=log 2116=-4。
故选D 。
5.☉%¥7@@74#3%☉(2020·闽侯八中高一月考)若log 34·log 8m =log 416,则m 等于( )。
A.3 B.9 C.18 D.27 答案:D解析:原式可化为log 8m =2log 34,所以13log 2m =2log 43,所以m 13=3,m =27。
高一数学试题及答案上册北师大版
高一数学试题及答案上册北师大版一、选择题(每题3分,共15分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = sin(x)答案:B2. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B3. 若a + b = 5,a - b = 3,求a和b的值。
A. a = 4, b = 1B. a = 1, b = 4C. a = 2, b = 3D. a = 3, b = 2答案:A4. 已知sin(θ) = 1/2,θ为锐角,求cos(θ)的值。
A. √3/2B. -√3/2C. 1/2D. -1/2答案:A5. 抛物线y = x^2 - 2x + 1的顶点坐标是什么?A. (1, 0)B. (1, 1)C. (-1, 2)D. (0, 1)答案:B二、填空题(每题2分,共10分)6. 函数y = f(x) = x^3 - 2x^2 + 3x的导数是______。
答案:f'(x) = 3x^2 - 4x + 37. 已知等差数列的首项a1 = 3,公差d = 2,求第5项a5的值。
答案:a5 = 3 + 4 × 2 = 118. 圆的半径为5,求其面积。
答案:π × 5^2 = 25π9. 点P(1, 2)到直线x + 2y - 5 = 0的距离是______。
答案:|1 + 4 - 5| / √(1^2 + 2^2) = √5 / 510. 已知向量a = (3, -1),b = (2, 4),求向量a与b的点积。
答案:3 × 2 + (-1) × 4 = 2三、解答题(共75分)11. 解不等式:2x^2 - 5x + 3 < 0。
(10分)答案:首先,将不等式分解为(2x - 1)(x - 3) < 0。
北师大版高中数学必修 必修 课后习题答案
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=. 第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到25的近似值为5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m3,应交纳水费y元,那么y与x之间的函数关系为1.2,071.9 4.9,7x xyx x≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x.第二步:判断输入的x是否不超过7. 若是,则计算 1.2y x=;若不是,则计算 1.9 4.9y x=-.第三步:输出用户应交纳的水费y.程序框图:2、算法步骤:第一步,令i=1,S=0.第二步:若i≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i2.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为5(3) 1.2=+-⨯;m x若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.INPUT “a ,b=”;a ,b sum=a+b程序框图:说明:本题在循环结构的循环体中包含了一个条件结构. 1.2基本算法语句 练习(P24) 1、程序:3练习(P29)INPUT “a ,b ,c=”;a ,b ,cINPUT “F=”;F C=(F -32)*5/94、程序:INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32)1习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩2习题1.2 B 组(P33) 1、程序:31.3算法案例 练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B组(P48)1、算法步骤:第一步,令45b=,0c=.i=,0a=,0n=,1第二步,输入()a i.第三步,判断是否0()60≤<. 若是,则1a i=+,并执行第六步.a a第四步,判断是否60()80≤<. 若是,则1a i=+,并执行第六步.b b第五步,判断是否80()100≤≤. 若是,则1a i=+,并执行第六步.c c第六步,1i≤. 若是,则返回第二步.i i=+. 判断是否45第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章复习参考题A组(P50)Array1、(1)程序框图:1、(2)程序框图:2、见习题1.2 B组第1题解答. Array34、程序框图:程序:5(1)向下的运动共经过约199.805 m(2)第10次着地后反弹约0.098 m(3)全程共经过约299.609 m1、3x 和它的位数n .INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计2.1随机抽样练习(P57)1、.抽样调查和普查的比较见下表:抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)+≤<所对应的那些天构成样本,检测样本中所有个体的空气质a k k量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程(2)你每月的零花钱平均是多少(3)你最喜欢看《新闻联播》吗(4)你每天早上几点起床(5)你每天晚上几点睡觉要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案.2.2用样本估计总体练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右.练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x≈,标准差 6.55s≈.(2)重量位于(,)x s x s-+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x≈,中位数为15.2,标准差12.50s≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,x>说明存在大的异常数据,值得关注. 这些异常数据使标准差增大.15.2习题2.2 A组(P81)1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm的方向,即多数鱼的汞含量分布在大于1.00 ppm的区域.(3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm.(4)样本平均数 1.08x≈,样本标准差0.45s≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑;(2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑;(4)对,从平均数和标准差的角度考虑;5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数.现在已知知道至少有一个人的收入为50100x=万元,那么其他员工的收入之和为4913.55010075 iix==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些.(2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .(3)将10名运动员的测试成绩标准化,得到如下的数据:从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不(1)散点图如下: 让天鹅活动,对比两组居民的出生率是否相同.练习(P92)1、当0x =时,$147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值$y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值$y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(2)回归直线如下图所示:(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:(2)回归方程为:$0.66954.933=+.y x(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:(2)回归方程为:$0.546876.425=+.y x(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:(2)回归方程为:$1.44715.843y x=-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为$42.037y≈(万元).2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章复习参考题A组(P100)1、A.2、(1)该组的数据个数,该组的频数除以全体数据总数;(2)nm N.3、(1)这个结果只能说明A城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章复习参考题B组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元时,月65%的推销员经过努力才能完成销售指标.2、(1)数据的散点图如下:(2)用y表示身高,x表示年龄,则数据的回归方程为$ 6.31771.984=+.y x (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.1、0.72、0.6153、0.44、D5、B 习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M 三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1, G1=H1,。
2020-2021学年高中新教材北师大版数学必修第一册习题:第一章 4.1 一元二次函数 Word版
第一章预备知识§4一元二次函数与一元二次不等式4.1一元二次函数课后篇巩固提升基础达标练1.将抛物线y=x2+1先向左平移2个单位长度,再向下平移3个单位长度,得到的新抛物线的表达式为() A.y=(x+2)2+4 B.y=(x-2)2-2C.y=(x-2)2+4D.y=(x+2)2-2一元二次函数解析式为y=x2+1,∴顶点坐标(0,1).将其顶点坐标向左平移2个单位长度,再向下平移3个单位长度得到新的顶点坐标为(-2,-2),可设新函数的解析式为y=(x-h)2+k,代入新的顶点坐标得y=(x+2)2-2.2.下列一元二次函数的图象通过平移能与一元二次函数y=x2-2x-1的图象重合的是()A.y=2x2-x+1B.y=x2+2x+1C.y=x2-2x-1D.y=x2+2x+1经过平移后能与一元二次函数y=x2-2x-1的图象重合,∴a=1,观察选项,只有选项B符合题意.3.已知抛物线y=x2-4x+3,当0≤x≤m时,y的最小值为-1,最大值为3,则m的取值范围为()A.[2,+∞)B.[0,2]C.[2,4]D.[-∞,4]y=x2-4x+3=(x-2)2-1,∴当x=2时,y取得最小值,最小值为-1;当y=3时,有x2-4x+3=3,解得x1=0,x2=4,∴当x=0或4时,y=3.又∵当0≤x≤m时,y的最小值为-1,最大值为3,∴2≤m≤4.4.(2020福建厦门双十中学高一月考)设abc>0,一元二次函数y=ax2+bx+c的图象可能是()abc>0,一元二次函数y=ax2+bx+c,所以可知,在A中,a<0,b<0,c<0,不合题意;B中,a<0,b>0,c>0,不合题意;C中,a>0,c<0,b>0,不合题意,故选D.5.将一元二次函数y=x2-4x+a的图象向左平移1个单位长度,再向上平移1个单位长度.若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.(3,+∞)B.(-∞,3)C.(5,+∞)D.(-∞,5)y=x2-4x+a=(x-2)2-4+a,∴将一元二次函数y=x2-4x+a的图象向左平移1个单位长度,再向上平移1个单位长度,得到的函数的图象的解析式为y=(x-2+1)2-4+a+1,即y=x2-2x+a-2,将y=2代入,得2=x2-2x+a-2,即x2-2x+a-4=0,由题意,得Δ=4-4(a-4)>0,解得a<5.6.已知一元二次函数y=-(x+1)2-1.(1)画出这个函数的图象,指出它的开口方向、对称轴及顶点;(2)抛物线y=-x2经过怎样的变换可以得到抛物线y=-(x+1)2-1?图象如图所示,抛物线y=-(x+1)2-1的开口方向向下、对称轴是x=-1,顶点是(-1,-1);(2)把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,就得到抛物线y=-(x+1)2-1.能力提升练1.(多选题)在平面直角坐标系中,对于一元二次函数y=(x-2)2+1,下列说法中正确的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到y=(x-2)2+1,a=1>0,∴该函数的图象开口向上,对称轴为直线x=2,顶点为(2,1),当x=2时,y有最小值1,当x≥2时,y的值随x值的增大而增大,当x≤2时,y的值随x值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,y=x2的图象向右平移2个单位长度得到y=(x-2)2的图象,再向上平移1个单位长度得到y=(x-2)2+1的图象,故选项D的说法正确.2.(2020江西新余一中高一月考)一元二次函数y=-x2+2tx在[1,+∞)上最大值为3,则实数t=()A.±B.C.2D.2或2+2tx的图象的对称轴x=t,开口向下,①t≤1,则当x=1时,y=-12+2t=3⇒t=2,无解,②t>1,则当x=t时,y=-t2+2t·t=3⇒t=.3.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A.-1B.2C.0或2D.-1或2y=1时,有x2-2x+1=1,解得x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=-1.4.(多选题)(2020重庆一中高一月考)若关于x的方程x2-x-m=0在[-1,1]上有解,则实数m的值可能是() A.- B.1 C. D.4解析题中的方程即x2-x=m,则原问题等价于函数y=m和函数y=x2-x的图象在区间[-1,1]上有交点,一元二次函数y=x2-x的图象开口向上,对称轴为x=,故当x=时,y min=-;当x=-1时,y max=2,则实数m的取值范围是-,2.对照选项可得AB选项满足.5.如图,一元二次函数y=-x2+x+c的图象经过点(-2,2),求c的值及函数的最大值.(-2,2)代入y=-x2+x+c中,得-+c=2,解得c=,所以这个一元二次函数为y=-x2+x+.∵y=-x2+x+=-(x-1)2+5,∴此函数的图象的开口向下,当x=1时,函数有最大值5.素养培优练对于一元二次函数y=x2+4x+6,(1)指出图象的开口方向、对称轴和顶点坐标;(2)画出它的图象,并说明其图象由y=x2的图象经过怎样平移得来;(3)求函数的最大值或最小值.配方得y=(x+4)2-2可知图象开口向上,对称轴为直线x=-4,顶点坐标为(-4,-2).(2)作图如下.一元二次函数的图象可以看作先将y=x2的图象向左平移4个单位长度,向下平移2个单位长度得到.(3)由图可知,函数在x∈R内没有最大值,当x=-4时,函数有最小值,即y min=-2.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
高一数学试题及答案上册北师大版
高一数学试题及答案上册北师大版一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = 2x + 1在x=2处的导数为:A. 1B. 2C. 4D. 53. 已知等差数列{an}的前三项依次为1,4,7,则该数列的公差为:A. 2B. 3C. 4D. 54. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素为:A. {1, 2, 3}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3, 4}5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (0, 3)C. (3/2, 0)D. (-1, 0)6. 圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,其圆心坐标为:A. (3, -4)B. (-3, 4)C. (3, 4)D. (-3, -4)7. 函数y=x^2-4x+3的最小值为:A. -1B. 3C. 1D. -48. 已知函数f(x)=x^2-2x+2,当x=1时,f(x)的值为:A. 1B. 0C. 2D. 39. 函数y=x/(x-1)的值域为:A. (-∞, 0)∪(0, +∞)B. (-∞, 1)∪(1, +∞)C. (-∞, 0)∪(1, +∞)D. (-∞, 1)∪(0, +∞)10. 直线y=x+2与直线y=-x+4的交点坐标为:A. (1, 3)B. (2, 2)C. (3, 1)D. (4, -2)二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x^2+2的极大值为______。
2. 等比数列{bn}的首项为2,公比为3,其第五项为______。
3. 已知三角形的三边长分别为3,4,5,其面积为______。
4. 函数y=1/x在点(2, 1/2)处的切线斜率为______。
2024-2025年北师大版数学必修第一册4.3.3.1对数函数的图象和性质(带答案)
第1课时 对数函数的图象和性质必备知识基础练知识点一 对数函数的定义域和值域 1.求下列函数的定义域: (1)y =1log 2(x -1);(2)y =log 2(16-4x); (3)y =log x -1(3-x ); (4)y =1log 0.5(4x -3).2.(1)求函数y =log 13(-x 2+4x -3)的值域;(2)求函数f (x )=log 2(2x )·log 2x (12 ≤x ≤2)的最大值和最小值.知识点二 对数函数的图象及应用 3.函数y =lg (x +1)的图象大致是( )4.如图(1)(2)(3)(4)中,不属于函数y =log 15x ,y =log 17x ,y =log 5x 的一个是( )A .(1)B .(2)C .(3)D .(4)5.已知函数y =log a (x +3)+1(a >0且a ≠1),则函数恒过定点( ) A .(1,0) B .(-2,0) C .(0,1) D .(-2,1) 知识点三 对数函数的单调性及应用6.设a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a 、b 、c 的大小关系是( ) A .a <b <c B .b <c <a C .b <a <c D .c <a <b7.函数f (x )=log 13(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) 8.已知f (x )=log a 1+x 1-x (a >0,且a ≠1).(1)求f (x )的定义域;(2)求使f (x )>0的x 的取值范围.关键能力综合练1.函数y=3-x2-log2(x+1)的定义域是( )A.(-1,3) B.(-1,3]C.(-∞,3) D.(-1,+∞)2.设a=log43,b=log53,c=log45,则( )A.a>c>b B.b>c>aC.c>b>a D.c>a>b3.(易错题)函数y=log a(x-1)+log a(x+1)(a>0且a≠1)的图象必过定点( ) A.(3,0) B.(±2,0)C.(2,0) D.(-2,0)4.华罗庚是享誉世界的数学大师,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”.告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.若函数f(x)=log a(x+b)(a>0且a≠1,b∈R)的大致图象如图,则函数g(x)=a-x-b的大致图象是( )5.函数f (x )=log 2(x 2-4x +12)的值域为( )A .[3,+∞) B.(3,+∞) C .(-∞,-3) D .(-∞,-3] 6.函数f (x )=log 2x +log 2(2-x )的单调递减区间为( ) A .[1,2)B .(0,1]C .(-∞,1]D .[1,+∞) 7.函数f (x )=log 12(2 -|x |)的单调递增区间为________.8.一次函数y =mx +n (m >0,n >0)的图象经过函数f (x )=log a (x -1)+1的定点,则1m+2n的最小值为________. 9.(探究题)已知函数f (x )=log 2(1-x 2). (1)求函数的定义域;(2)请直接写出函数的单调区间,并求出函数在区间[22,1)上的值域.核心素养升级练1.(多选题)已知函数f (x )=ln (x -2)+ln (6-x ),则( ) A .f (x )在(2,6)上单调递增 B .f (x )在(2,6)上的最大值为2ln 2 C .f (x )在(4,6)上单调递减 D .y =f (x )的图象关于直线x =4对称2.(情境命题—学术探究)已知函数f (x )=log a (a x-1)(a >0,a ≠1). (1)当a =12时,求函数f (x )的定义域;(2)当a >1时,求关于x 的不等式f (x )<f (1)的解集;(3)当a =2时,若不等式f (x )-log 2(1+2x)>m 对任意实数x ∈[1,3]恒成立,求实数m 的取值范围.第1课时 对数函数的图象和性质必备知识基础练1.解析:(1)要使函数式有意义,需⎩⎪⎨⎪⎧x -1>0,log 2(x -1)≠0, 解得x >1,且x ≠2.故函数y =1log 2(x -1)的定义域是{x |x >1,且x ≠2}.(2)要使函数式有意义,需16-4x>0,解得x <2. 故函数y =log 2(16-4x)的定义域是{x |x <2}.(3)要使函数式有意义,需⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1, 解得1<x <3,且x ≠2.故函数y =log (x -1)(3-x )的定义域是{x |1<x <3,且x ≠2}.(4)由log 0.5(4x -3)>0,可得0<4x -3<1,即3<4x <4,解得34<x <1.所以原函数的定义域为(34,1). 2.解析:(1)由-x 2+4x -3>0,解得1<x <3,∴函数的定义域是(1,3). 设u =-x 2+4x -3(1<x <3),则u =-(x -2)2+1.∵1<x <3,∴0<u ≤1,则y ≥0,即函数的值域是[0,+∞). (2)f (x )=log 2(2x )·log 2x =(1+log 2x )·log 2x =(log 2x +12 )2-14 .∵12≤x ≤2,即-1≤log 2x ≤1, ∴当log 2x =-12 时,f (x )取得最小值-14 ;当log 2x =1时,f (x )取得最大值2. 3.答案:C解析:由底数大于1可排除A 、B ,y =lg (x +1)可看作是y =lg x 的图象向左平移1个单位.(或令x =0得y =0,而且函数为增函数)4.答案:B解析:∵log 17 15 <log 17 17 =log 1515 ,∴(3)是y =log 17x ,(4)是y =log 15x ,又y =log 15x =-log 5x 与y =log 5x 关于x 轴对称,∴(1)是y =log 5x .故选B. 5.答案:D解析:令x +3=1,解得x =-2,y =1, 所以函数恒过定点(-2,1).故选D. 6.答案:C解析:由y =log 0.7x 是减函数,且0.7<0.8<1得, log 0.70.7>log 0.70.8>log 0.71,即0<a <1; 由y =log 1.1x 是增函数,且0.9<1得, log 1.10.9<log 1.11=0,即b <0; 由y =1.1x是增函数,且0.9>0得, 1.10.9>1.10=1,即c >1. 因此,b <a <c .故选C. 7.答案:A解析:由x 2-2x -8>0,得x <-2或x >4.令g (x )=x 2-2x -8,易知函数g (x )在(4,+∞)上单调递增,在(-∞,-2)上单调递减,所以函数f (x )的单调递增区间为(-∞,-2).8.解析:(1)由1+x1-x >0,得-1<x <1,故所求的定义域为(-1,1).(2)①当a >1时,由log a 1+x 1-x >0=log a 1,得1+x1-x >1, 即⎩⎪⎨⎪⎧-1<x <1,1+x >1-x , 所以0<x <1;②当0<a <1时,由log a 1+x 1-x >0=log a 1,得0<1+x1-x <1,即⎩⎪⎨⎪⎧-1<x <1,1+x <1-x .所以-1<x <0,故当a >1时,所求范围为0<x <1; 当0<a <1时,所求范围为-1<x <0.关键能力综合练1.答案:A解析:依题意得⎩⎪⎨⎪⎧3-x ≥0,log 2(x +1)≠2,x +1>0, 解得-1<x <3,所以函数的定义域是(-1,3),故选A. 2.答案:D解析:a =log 43<log 44=1;c =log 45>log 44=1,∵log 53=lg 3lg 5 ,log 43=lg 3lg 4 ,lg 5>lg4,∴log 53<log 43,∴b <a <c ,故选D.3.答案:C解析:由⎩⎪⎨⎪⎧x -1>0,x +1>0 得x >1,∴y =log a (x -1)+log a (x +1)(a >0,且a ≠1)的定义域为(1,+∞),∴y =log a (x 2-1)(a >0,且a ≠1,x >1). 令x 2-1=1,得x 2=2,又x >1,∴x =2 . 当x =2 时,y =log a [(2 )2-1]=0,因此y =log a (x -1)+log a (x +1)的图象必过定点(2 ,0),故选C. 4.答案:C解析:由题意,根据函数f (x )=log a (x +b )的图象,可得0<a <1,0<b <1, 根据指数函数y =a -x(0<a <1)的图象与性质,结合图象变换向下移动b 个单位,可得函数g (x )=a -x-b 的图象只有选项C 符合.故选C.5.答案:A解析:∵x 2-4x +12=(x -2)2+8≥8,且函数y =log 2x 在(0,+∞)上为增函数,∴f (x )≥log 28=3.6.答案:A解析:对于f (x )=log 2x +log 2(2-x )有⎩⎪⎨⎪⎧x >02-x >0 ,解得函数f (x )=log 2x +log 2(2-x )的定义域为(0,2), 又f (x )=log 2x +log 2(2-x )=log 2[x (2-x )],对于y =x (2-x )=-x 2+2x ,其在(0,1)上单调递增,在[1,2)上单调递减, 又y =log 2x 在(0,+∞)上单调递增, 由复合函数单调性的规则:同增异减得函数f (x )=log 2x +log 2(2-x )的单调递减区间为[1,2).故选A. 7.答案:[0,2 )解析:由2 -|x |>0,得-2 <x <2 ,所以函数f (x )的定义域为(-2 ,2 ). ∵函数u =2 -|x |在[0,2 )上为减函数,且函数y =log 12u 为减函数,∴函数f (x )的单调递增区间为[0,2 ). 8.答案:8解析:对于函数f (x )=log a (x -1)+1,令x -1=1,∴x =2,y =1,则该函数图象过定点(2,1),将(2,1)代入y =mx +n (m >0,n >0),得2m +n =1,故1m +2n=⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+n m +4mn≥4+2n m ·4m n =8,当且仅当n m =4m n 且2m +n =1,即m =14 ,n =12时取等号.9.解析:(1)由1-x 2>0得定义域为{x |-1<x <1}.(2)令u =1-x 2,则u 在(-1,0]上单调递增,在(0,1)上单调递减.又f (u )=log 2u 单调递增,故f (x )在(-1,0]上单调递增,在(0,1)上单调递减. ∴函数f (x )在[22,1)上为减函数, ∴函数f (x )在[22,1)上的值域为(-∞,-1].核心素养升级练1.答案:BCD解析:因为f (x )=ln (x -2)+ln (6-x )=ln [(x -2)(6-x )],定义域为(2,6),令t =(x -2)(6-x ),则y =ln t ,二次函数t =(x -2)(6-x )的对称轴为直线x =4,所以f (x )在(2,4)上单调递增,在(4,6)上单调递减,A 错误,C ,D 正确;当x =4时,t 有最大值,所以f (x )max =ln (4-2)+ln (6-4)=2ln 2,故B 正确.故选BCD.2.解析:(1)当a =12 时,f (x )=log 12 (12x -1),由12x -1>0,得x <0,故函数f (x )的定义域为(-∞,0).(2)f (x )=log a (a x-1)(a >1)的定义域为(0,+∞),当x 1>x 2>0时,f (x 1)-f (x 2)=log a (a a 1-1)-log a (a a 2-1)=log a a a 1-1a a 2-1>0, 所以函数f (x )为(0,+∞)上的增函数,由f (x )<f (1),知⎩⎪⎨⎪⎧x >0x <1 ,故关于x 的不等式f (x )<f (1)的解集为{x |0<x <1}.(3)设g (x )=f (x )-log 2(1+2x)=log 22x-12x +1,x ∈[1,3],设t =2x-12x +1 =1-22x +1 ,x ∈[1,3].易知t =1-22x +1 在x ∈[1,3]上单调递增.所以t ∈[13 ,79 ],故g (x )min =log 213.因为m <g (x )对任意x ∈[1,3]恒成立,所以m <g (x )min . 故m 的取值范围是(-∞,log 213 ).。
新教材北师大版高中数学必修第一册练习-集合的概念答案含解析
第一章预备知识§1 集合1.1 集合的概念与表示课时1 集合的概念知识点1元素与集合的概念1.☉%1#0#6##8%☉(2020·九江中学月考)下列各组对象能组成集合的是()。
①某社区截止2020年3月5日确诊的新冠肺炎病人;②√2的近似值;③2018年平昌冬奥会比赛项目;④宁都中学2019春季高一尖子生。
A.①④B.②③C.①③D.②④答案:C解析:①③中元素是确定的。
2.☉%4¥*38@4@%☉(2020·西安中学月考)由实数x,-x,|x|,√x2,-√x2所组成的集合中,其含有元素的个数最多为()。
A.2B.3C.4D.5答案:A解析:当x>0时,|x|=x,√x2=|x|=x,-√x2=-|x|=-x,集合中有2个元素;当x<0时,|x|=-x,√x2=-x,-√x2=x,集合中有2个元素;当x=0时,集合中只有1个元素。
故集合中最多有2个元素。
3.☉%¥006#*#8%☉(2020·蚌埠二中周练)设集合A={1,2,3},B={1,3,9},x∈A且x∉B,则x等于()。
A.1B.2C.3D.9答案:B解析:属于A而不属于B的元素只有2。
4.☉%@¥9*55*6%☉(多选)(2020·桂林中学月考)下列所给关系正确的是()。
A.π∈RB.√3∉QC.0∈N*D.|-4|∉N*答案:AB解析:N *是正整数集,故0∉N *,|-4|=4∈N *。
5.☉%4*867@@@%☉(2020·瑞昌一中检测)若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )。
A.3.14 B.-5 C.37D.√7 答案:D解析:是实数而不是有理数的数a 只可能是√7。
知识点2 元素与集合的关系6.☉%86*#91@@%☉(2020·黄冈中学月考)已知集合A 中的元素x 满足x -1<√3,则下列各式正确的是( )。
2024-2025年北师大版数学必修第一册1.1.3.1交集与并集(带答案)
第1课时交集与并集必备知识基础练知识点一交集的运算1.设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B=( )A.{x|0≤x≤2} B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}2.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}3.设A={(x,y)|x+y=0},B={(x,y)|x-y=4},则A∩B=________.知识点二并集的运算4.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=( )A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}5.已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q=( )A.{x|-1≤x<3} B.{x|-1≤x≤4} C.{x|x≤4} D.{x|x≥-1}6.已知集合A={-1,1,3},B={x|-3<x≤2,x∈N},则集合A∪B中元素的个数为( )A.3 B.4 C.5 D.6知识点三交集与并集运算的应用7.已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},M∩N={2,3},则a的值是( )A.1或2 B.2或4 C.2 D.18.已知集合A={x|-3<x≤4},B={x|2-k≤x≤2k-1},且A∪B=A,试求k的取值范围.9.为完成一项实地测量任务,夏令营的同学们成立了一支测绘队,需要24人参加测量,20人参加计算,16人参加绘图.测绘队的成员中有许多同学是多面手,有8人既参加了测量又参加了计算,有6人既参加了测量又参加了绘图,有4人既参加了计算又参加了绘图,另有一些人3项工作都参加了,请问这个测绘队至少有多少人?关键能力综合练1.(多选题)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B可能为( ) A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}2.已知集合A={x∈R|x≤5},B={x∈R|x>1},那么A∩B=( )A.{1,2,3,4,5}B.{2,3,4,5}C.{2,3,4}D.{x∈R|1<x≤5}3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}4.(多选题)集合M={x|-1≤x≤3}和N={x|x=2k-1,k∈N+}关系的Venn图如图所示,则阴影部分表示的集合中的元素为( )A .-1B .0C .1D .35.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或3 B .0或3 C .1或3 D .1或36.(易错题)设S ={x |x <-1或x >5},T ={x |a <x <a +8},若S ∪T =R ,则实数a 应满足( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a >-1D .a <-3或a >-1 7.若集合A ={x |-1<x <5},B ={x |x ≤-1,或x ≥4},则A ∪B =________,A ∩B =________.8.已知集合P ={-1,a +b ,ab },集合Q ={0,b a,a -b },若P ∪Q =P ∩Q ,则a -b =________.9.(探究题)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a -1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围; (3)若A ∩B =A ,求实数a 的取值范围.核心素养升级练1.(多选题)中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”现有如下表示:已知A ={x |x =3n +2,n ∈N +},B ={x |x =5n +3,n ∈N +},C ={x |x =7n +2,n ∈N +},若x ∈A ∩B ∩C ,则下列选项中符合题意的整数x 为( )A .8B .128C .37D .232.(情境命题—生活情境)向50名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体人数的35,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外对A ,B 都不赞成的学生人数比对A ,B 都赞成的学生人数的13 多1人,问:对A ,B 都赞成的学生和都不赞成的学生各有多少人?第1课时 交集与并集 必备知识基础练1.答案:A解析:在数轴上表示出集合A 与B ,如图.则由交集的定义可得A ∩B ={x |0≤x ≤2}.选A. 2.答案:A解析:易知A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},图中阴影部分表示的集合为A ∩B ={2},故选A.3.答案:{(2,-2)}解析:A ∩B ={(x ,y )|x +y =0且x -y =4}={(x ,y )|⎩⎪⎨⎪⎧x +y =0x -y =4 },解方程组⎩⎪⎨⎪⎧x +y =0,x -y =4, 得⎩⎪⎨⎪⎧x =2,y =-2.∴A ∩B ={(2,-2)}. 4.答案:A解析:A ∪B ={0,1,2,3,4},选A. 5.答案:C解析:在数轴上表示两个集合,如图.∴P ∪Q ={x |x ≤4}.选C. 6.答案:C解析:∵集合B ={x |-3<x ≤2,x ∈N },∴集合B ={0,1,2}.∵集合A ={-1,1,3},∴A ∪B ={-1,0,1,2,3},∴A ∪B 中元素的个数为5.7.答案:C解析:∵M ∩N ={2,3},∴a 2-3a +5=3,∴a =1或2.当a =1时,N ={1,5,3},M ={2,3,5},不合题意;当a =2时,N ={1,2,3},M ={2,3,5},符合题意.8.解析:∵A ∪B =A ,∴B ⊆A . 若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则⎩⎪⎨⎪⎧2-k ≤2k -1,2-k >-3,2k -1≤4, 解得1≤k ≤52.综上所述,k 的取值范围是{k |k ≤52}.9.解析:如图,不妨设参加计算的人数为集合A ,参加测量的为集合B ,参加绘图的为集合C .设3项工作都参加的人数为x ,则各个集合之间的关系得到清晰表达.测绘队总人数为(10-x )+(8-x )+(6-x )+4+6+8+x =42-2x ,因为0<x ≤6,所以30≤42-2x <42,即测绘队人数最少为30人,此时x =6.关键能力综合练1.答案:AD解析:因为A ={2,3,4},A ∪B ={1,2,3,4,5},所以集合B 可能为A 选项{1,2,5},D 选项{1,2,3,4,5},而对于B 选项{2,3,5},此时A ∪B ={2,3,4,5},不满足题意,对于C 选项{0,1,5},此时A ∪B ={0,1,2,3,4,5},不满足题意,故选AD.2.答案:D解析:∵A ={x ∈R |x ≤5},B ={x ∈R |x >1},∴A ∩B ={x ∈R |1<x ≤5},故选D. 3.答案:A解析:在数轴上表示集合M ,N ,如图所示,则M ∪N ={x |x <-5或x >-3}.4.答案:CD解析:∵M ={x |-1≤x ≤3},N ={x |x =2k -1,k ∈N +},∴M ∩N ={1,3},故选CD. 5.答案:A解析:因为A ∪B =A ,所以m =3或m =m ,即m =3或m =1(舍去)或m =0. 6.答案:A解析:在数轴上表示集合S ,T 如图所示.因为S ∪T =R ,由数轴可得⎩⎪⎨⎪⎧a <-1,a +8>5, 解得-3<a <-1.故选A.7.答案:R {x |4≤x <5}解析:借助数轴可知:A ∪B =R ,A ∩B ={x |4≤x <5}.8.答案:-4解析:由P ∪Q =P ∩Q 易知P =Q ,由集合Q 可知a 和b 均不为0,因此ab ≠0,于是必须a +b =0,所以易得ba=-1,因此又必得ab =a -b ,代入b =-a 解得a =-2.所以b =2,因此得到a -b =-4.9.解析:(1)由题意可知A ={x |x 2-3x +2=0}={1,2}, ∵A ∩B ={2},∴2∈B ,将2代入得4+4(a -1)+(a 2-5)=0, 解得a =-5或a =1.当a =-5时,集合B ={2,10},符合题意; 当a =1时,集合B ={2,-2},符合题意. 综上所述,a =-5或a =1. (2)若A ∪B =A ,则B ⊆A , ∵A ={1,2},∴B =∅或B ={1}或{2}或{1,2}.若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3;若B ={1},则⎩⎪⎨⎪⎧Δ=24-8a =0,x =-2(a -1)2=1-a =1, 即⎩⎪⎨⎪⎧a =3,a =0,不成立;若B ={2},则⎩⎪⎨⎪⎧Δ=24-8a =0,x =-2(a -1)2=1-a =2, 即⎩⎪⎨⎪⎧a =3,a =-1, 不成立; 若B ={1,2},则⎩⎪⎨⎪⎧Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,即⎩⎪⎨⎪⎧a <3,a =-12,a =±7,此时不成立,综上a >3. 即实数a 的取值范围为{a |a >3}. (3)由题意A ={1,2}.由A ∩B =A , ∴A ⊆B ,∴B ={1,2},则⎩⎪⎨⎪⎧Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5, 即⎩⎪⎨⎪⎧a <3,a =-12,a =±7,此时不成立,∴实数a 不存在.核心素养升级练1.答案:BD解析:对于A ,因为8=7×1+1,则8∉C ,选项A 错误;对于B ,128=3×42+2,即128∈A ;又128=5×25+3,即128∈B ;而128=7×18+2,即128∈C ,因此,128∈A ∩B ∩C ,选项B 正确;对于C ,因为37=3×12+1,则37∉A ,选项C 错误;对于D ,23=3×7+2,即23∈A ;又23=5×4+3,即23∈B ;而23=7×3+2,即23∈C ,因此,23∈A ∩B ∩C ,选项D 正确.故选BD.2.解析:如图,50名学生为全体人数,所以赞成A 的人数为50×35 =30,赞成B 的人数为30+3=33.设对A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为x3 +1,赞成A而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x ,所以由题意得(30-x )+(33-x )+x +x 3 +1=50,即64-2x3=50,x =21.所以对A ,B 都赞成的学生有21人,对A ,B都不赞成的学生有8人.。