人教版数学八年级下册同步练习(含答案).pdf

合集下载

(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。

人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案

人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案
(2)当x=6时,求y的值.
(3)当y=19.5时,求x的值.
参考答案:
1.D
【分析】先根据 ,且 判断出k的正负,然后根据一次函数的性质判断即可.
【详解】解:∵ ,且 ,
∴k<0,
∴一次函数图象经过一二四象限.
故先D.
【点睛】本题考查了一次函数的图象与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图象与y轴的正半轴相交,当b<0,图象与y轴的负半轴相交,当b=0,图象经过原点.
(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.
(1)
解:设y=ax.
∵图象过(4,20),
∴4a=20,
∴a=5.
∴y随x变化的函数关系式为y=5x(0≤x≤4);
(2)
解:设y=kx+b.
∵图象过(4,20)、(12,30),
∴ ,解得: ,
∴y与x的函数解析式为y= x+15(4≤x≤12);
12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.
三、解答题
13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:
试题解析:∵函数 的图象过一、二、四象限,
解得-1<m<1.
15.(1)y=14+x(4<x<14)
(2)y=20
(3)x=5.5
【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;

人教版八年级数学下册 18.2.2.1菱形的性质 同步练习(包含答案)

人教版八年级数学下册    18.2.2.1菱形的性质    同步练习(包含答案)

人教版八年级数学下册18.2.2.1 菱形的性质同步练习一、选择题(共10小题,3*10=30)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( ) A.1 cm B.2 cm C.3 cm D.4 cm3. 如图,在△ABC中,AB≠AC,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F,要使四边形AEDF是菱形,只需添加的条件是()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BD4. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 3 B.3 3 C.2 3 D. 35. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′. 当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D. 106.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为()A.4B.4.8 C.2.4D.3.27. 已知菱形的周长为4 5 ,两条对角线的和为6,则菱形的面积为( )A .2 B. 5 C .3 D .48. 如图,菱形ABCD 的对角线AC ,BD 交于点O ,AC =4,BD =16,将△ABO 沿点A 到点C 的方向平移,得到△A′B′O′.当点A′与点C 重合时,点A 与点B′之间的距离为( )A .6B .8C .10D .129. 如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .4二.填空题(共8小题,3*8=24)11. 菱形的两条对角线长分别是5和12,则此菱形的边长是_______,面积是_______.12.在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AB =7 cm ,则周长是________cm.13. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =110°,则∠BAD =________°, ∠ABD =________°,∠BCA =________°.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为_______.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为________.16.如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为_______.17. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于________.18. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为________.三.解答题(共7小题,46分)19.(6分) 如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.20.(6分) 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.21.(6分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,求∠BAO的大小.22.(6分) 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.23.(6分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.24.(8分) 如图,菱形ABCD的两条对角线相交于点O,∠DAC=30°,BD=12(1)求∠ABC的度数;(2)求菱形ABCD的面积.25.(8分) 在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.参考答案1-5DABBB 6-10 DDCAC11. 6.5,3012. 2813. 70,55,3514. 24 15. 2 316. 1217.4518.2419. 解:(1) ∵四边形ABCD 是菱形,两邻角度数之比为1∶2, ∴∠ABC=∠BAC=60°又∵菱形的周长为40 cm ,AC =AB=10 cm ,BD =2BO=2×AB 2-AO 2 =2×102-52 =10 3 cm(2)S 菱形=12BD·AC =50 3 cm 2 20. 解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°,∴四边形OCED 是矩形,∴OE =CD ,∵四边形ABCD 是菱形,∴CD =BC ,∴OE =BC21. 解:菱形ABCD 中,AB =BC ,∵BE =AB ,∴BC =BE ,∴∠BCE =∠E =50°,∴∠CBE =180°-50°×2=80°,∵AD ∥BC ,∴∠BAD =∠CBE =80°,∴∠BAO =12×80°=40°. 22. 证明:∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴△ADE ≌△CDF(SAS).23. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE , ∵AB =DA ,∴△ABF ≌△DAE(ASA)(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF24. 解:(1)∵菱形ABCD 的两条对角线相交于点O ,∠DAC =30°, ∴∠BAD =2∠DAC =60°,∵AD ∥BC ,∴∠ABC =180°-60°=120°;(2)∵菱形ABCD 的两条对角线相交于点O ,BD =12,∴AC ⊥BD ,DO =12BD =6, 又∵∠DAC =30°,∴AD =2DO =12,∴Rt △AOD 中,AO =122-62=63,∴AC =2AO =123,∴菱形ABCD 的面积=12×AC×BD =12×12×123=72 3. 25. 解:(1)连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∵点E 为BC 的中点,∴AE ⊥BC ,∴∠AEC =90°,∵∠AEF =60°,∴∠FEC =90°-60°=30°,∵∠C =180°-∠B =120°,∠C +∠EFC +∠FEC =180°, ∴∠EFC =30°,∴∠FEC =∠EFC ,∴CE =CF ,∵BC =CD ,∴BC -CE =CD -CF ,即BE =DF(2)连接AC ,由(1)得△ABC 是等边三角形,∴AB =AC , ∵∠BAE +∠EAC =60°,∠EAF =∠CAF +∠EAC =60°,∴∠BAE =∠CAF ,∵四边形ABCD 是菱形,∠B =60°,∴∠ACF =12∠BCD =∠B =60°, ∴△ABE ≌△ACF(ASA),∴AE =AF , 又∵∠EAF =60°,∴△AEF 是等边三角形。

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.1.2 函数的图象基础过关全练知识点1 函数的图象1.【主题教育·中华优秀传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片:用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③立夏和立秋,白昼时长大致相等;④立春是一年中白昼时长最短的节气.其中正确的结论有( )A.1个B.2个C.3个D.4个2.【新独家原创】疫情期间,为保障学校师生安全,某校每天进行全员核酸检测,小邦下课后从教室去160米的检测点做核酸检测,他用了2分钟到达检测点,扫码检测共用了2分钟,做完核酸检测后,他及时回教室,用了2.5分钟.下列图象能正确表示小邦离教室的距离与时间关系的是( )A B C D3.【主题教育·革命文化】为“传承红色基因,共筑中国梦”,八年级的师生开展了共赴井冈山红色革命根据地红色研学之旅,下图描述了汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )A.汽车在0~1小时的平均速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车行驶的平均速度为60千米/时D.汽车在0.5~1.5小时的速度是80千米/时4.【跨学科·化学】实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为镭的放射规律的函数图象,据此可计算32 mg镭缩减为1 mg所用的时间大约是 年.5.【教材变式·P83T9变式】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.如图所示的是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答问题:(1)小明家到学校的路程是多少米?小明在书店停留了多少分钟?(2)本次上学途中,小明一共骑行了多少米?(3)当骑单车的速度超过300米/分时就超过了安全限度.问:在整个上学途中,哪个时间段小明的骑车速度最快?速度在安全限度内吗? (4)小明出发多长时间离家1 200米?知识点2 函数图象的画法6.画出函数y=2x-1的图象.(1)列表:x…-2-10123…y……(2)在如图所示的坐标系中描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上;(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.知识点3 函数的三种表示方法7.【跨学科·物理】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+128.甲、乙两人分别从相距18 km的A、B两地同时相向而行,甲以4 km/h 的平均速度步行,乙以比甲快1 km/h的平均速度步行,相遇而止. (1)求甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式;(2)求出函数图象与x轴、y轴的交点坐标,画出函数的图象,并求出自变量x的取值范围.9.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…123579…y…1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整.(1)如图,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 ;②该函数的一条性质: .能力提升全练10.【主题教育·革命文化】(2022湖南永州中考,10,★☆☆)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A B C D11.(2021安徽合肥四十五中模拟,6,★★☆)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为( )A B C D12.【主题教育·生命安全与健康】(2022山西太原期末,9,★★☆)骑行是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.下图是骑行爱好者小李某日骑自行车行驶路程(km)与时间(h)的图象,观察图象得到下列信息,其中正确的是( )A.小李实际骑行时间为6 hB.点P表示出发6 h,小李共骑行80 kmC.3~6 h小李的骑行速度比0~2 h慢D.0~3 h小李的平均速度是15 km/h13.(2022山东临沂中考,12,★★☆)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示.下列说法中不正确的是( )A.甲车行驶到距A城240 km处,被乙车追上B.A城与B城的距离是300 kmC.乙车的平均速度是80 km/hD.甲车比乙车早到B城14.(2021黑龙江牡丹江中考,7,★★☆)春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是 天.素养探究全练15.【创新意识】(2022浙江舟山中考)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论;(3)数学应用:根据研究,当潮水高度超过260 cm时,货轮能够安全进出该港口,请问当天什么时间段适合货轮进出此港口?答案全解全析基础过关全练1.B 由题图可知,从立春到大寒,白昼时长先增大再减小后增大,∴结论①不正确;夏至时白昼时长最长,∴结论②正确;立夏和立秋,白昼时长大致相等,∴结论③正确;冬至是一年中白昼时长最短的节气,∴结论④不正确.故选B.2.C 去做核酸检测时用了2分钟,距离随时间的增加而增大;扫码检测共用了2分钟,离教室的距离没有发生变化;回教室用了2.5分钟,距离随时间的增加而减小.故选C.3.D 汽车在0~0.5小时的速度是30÷0.5=60千米/时,0.5~1.5小时的速度为(110-30)÷(1.5-0.5)=80千米/时,所以0~1小时的平均速度为(60+80)÷2=70千米/时,故A说法错误,不符合题意;汽车在2~3小时的速度为(150-110)÷(3-2)=40千米/时,所以汽车在2~3小时的速度比0~0.5小时的速度慢,故B说法错误,不符合题意;汽车行驶的平均速度为150÷3=50千米/时,故C说法错误,不符合题意;汽车在0.5~1.5小时的速度是80千米/时,故D说法正确,符合题意.故选D.4.答案 8 100解析 由题图可知,经过1 620年时,镭质量缩减为原来的12,经过1 620×2=3 240年时,镭质量缩减为原来的14=122,经过1 620×3=4 860年时,镭质量缩减为原来的18=123,经过1 620×4=6 480年时,镭质量缩减为原来的116=124,∴经过1 620×5=8 100年时,镭质量缩减为原来的125=132,∵32×132=1(mg),∴32 mg镭缩减为1 mg所用的时间大约是8 100年.故答案为8 100.5.解析 (1)根据题图可知,小明家到学校的路程是1 500米,小明在书店停留了12-8=4分钟.(2)1 500+(1 200-600)×2=2 700(米).故本次上学途中,小明一共骑行了2 700米.(3)根据题图可知,从12分钟至14分钟小明的骑车速度最快,这个过程中,骑车速度为(1 500-600)÷(14-12)=450(米/分钟),∵450>300,∴在12分钟至14分钟时,小明的骑车速度超过了安全限度.(4)设小明出发t分钟时,离家1 200米,①根据题图可知,当t=6时,小明离家1 200米;②根据题意,得600+450(t-12)=1 200,解得t=403.∴小明出发6分钟或403分钟时离家1 200米.6.解析 (1)列表:x…-2-10123…y…-5-3-1135…(2)描点并连线,画出函数图象如图所示.(3)把x=-3代入y=2x-1,得y=-7≠-5,把x=2代入y=2x-1,得y=3≠-3,把x=3代入y=2x-1,得y=5,所以点C在函数y=2x-1的图象上,点A和B不在函数y=2x-1的图象上.(4)∵点P(m,9)在函数y=2x-1的图象上,∴9=2m-1,解得m=5.7.A 由题表数据可得出弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为y=0.5x+12.8.解析 (1)y=18-(5x+4x)=-9x+18,故甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式为y=-9x+18.(2)当x=0时,y=18,当y=0时,-9x+18=0,解得x=2,故函数图象与x轴、y 轴的交点坐标分别为(2,0)、(0,18).列表:x/h02y/km180描点、连线,画出的函数图象如图.自变量x的取值范围为0≤x≤2.9.解析 本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)如图.(2)①1.98.②当x>2时,y随x的增大而减小.能力提升全练10.A 由题意易知,当0≤x<30时,y随x的增大而增大,当30≤x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是选项A中的图象.11.B 将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小水杯,因而这段时间h不变,当大容器中的水面的高度与小水杯的高度齐平时,开始向小水杯内流水,h随t的增大而增大,当水注满小水杯后,小水杯内水面的高度h不再变化.故选B.12.B A.小李实际骑行时间为5 h,故本选项不合题意;B.点P表示出发6 h,小李共骑行80 km,故本选项符合题意;(km/h),0~2 h小李的骑行C.3~6 h小李的骑行速度为(80-30)÷(6-3)=503=15(km/h),速度为302>15,所以3~6 h小李的骑行速度比0~2 h快,故本选项不合题意;因为503=10(km/h),故本选项不合题意.D.3 h内,小李的平均速度是303故选B.13.D 由题图可知,A城与B城的距离是300 km,故选项B说法正确;甲车的平均速度是300÷5=60(km/h),所以甲车4小时行驶60×4=240 km,即甲车行驶到距A城240 km处,被乙车追上,故选项A说法正确;乙车的平均速度是240÷(4-1)=80(km/h),故选项C说法正确;由题图可知,乙车比甲车早到B城,故选项D说法不正确.故选D.14.答案 10解析 调进化肥的速度是30÷6=5(吨/天),由题图知在第6天时,库存物资有30吨,在第8天时库存物资有20吨,=10(吨/天),所以销售化肥的速度是30―20+5×22所以剩余的20吨化肥完全售出需要20÷10=2(天),故该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是8+2=10(天).故答案为10.素养探究全练15.解析 (1)①补全图象如图:②观察函数图象,当x=4时,y=200,当y的值最大时,x=21.(2)(答案不唯一)该函数的两条性质如下:①当2≤x≤7时,y随x的增大而增大;②当x=14时,y取得最小值,为80.(3)由图象可知,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,适合货轮进出此港口.。

2020—2021人教版八年级数学下册19.1--19.3同步练 习含答案

2020—2021人教版八年级数学下册19.1--19.3同步练 习含答案

19.1 函数一、选择题1. 某影院每张电影票的售价为元,某日共售出张票,票房收入为元,下列说法正确的是( )A.、是常量,是变量B.是常量,、是变量C.、、都是变量D.、、都是常量2. 当时,函数的函数值为()A. B. C. D.3. 已知变量与之间的关系满足如图,那么能反映与之间函数关系的解析式是A. B.C. D.4. 如图,在下列的四个图象中,不能表示是的函数图象的是()A. B.C. D.5. 长方形的周长为,其中一边长为面积为,则与的关系式为A. B.C. D.6. 在函数中,自变量的取值范围是()A. B.C. D.7. 函数的自变量的取值范围是()A. B.C. D.且8. 实践证明分钟跳绳测验的最佳状态是前秒速度匀速增加,后秒冲刺,中间速度保持不变,则跳绳速度(个/秒)与时间(秒)之间的函数图象大致为( )A. B.C. D.二、填空题9. 如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第秒时的速度为米/秒;③乙车前秒行驶的总路程为米.其中正确的是________.(填序号)10. 某水果店五一期间开展促销活动,卖出苹果数量(千克)与售价(千克/元)的关系如下表:…数量(千克)…售价(千克/元)则售价(千克/元)与数量(千克)之间的关系式是________.11. 如图,圆柱的高是厘米,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量为________,因变量为________;(2)如果圆柱底面半径为(厘米),那么圆柱的体积(厘米)与的关系式为________.12. 根据如图所示的程序计算函数的值,若输入的值是或时,输出的值相等,则等于________.三、解答题13. 已知函数,当时,,求的值.14. 为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:汽车行驶时间(小时)…油箱剩余油量(升)…(2)根据上表可知,该车油箱的大小为______升,每小时耗油____升;(3)请求出两个变量之间的关系式(用来表示)15. 成外“龟兔赛跑”的故事同学们都非常熟悉,图中的线段和折线表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题:(1)折线表示赛跑过程中________的路程与时间的关系,线段表示赛跑过程中________的路程与时间的关系.赛跑的全程是________米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以千米时的速度跑向终点,结果还是比乌龟晚到了分钟,请你算一算,兔子中间停下睡觉用了多少分钟?参考答案19.1 函数同步习题1一、选择题1.【答案】B2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】C二、填空题9.【答案】②③10.【答案】=11.【答案】(1)底面半径,,体积;(2)12.【答案】三、解答题13.【答案】解:把,代入得,整理得,解得,.14.【答案】(1);(2),;(3)15.【答案】 (1)兔子,乌龟,(2)兔子在起初每分钟跑米;(3)乌龟每分钟爬米.(4)分钟、分钟19.2一次函数一、单选题1.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( ) A .-1B .3C .1D .-1 或 32.如果实数,k b 满足0kb <且不等式kx b <的解集是bx k>,那么函数y kx b =+的图象只可能是( )A .B .C .D .3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k <B .2k >C .0k >D .k 0<4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<326.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个A .1B .2C .3D .47.函数y=2x ﹣5的图象经过( ) A .第一、三、四象限 B .第一、二、四象限 C .第二、三、四象限D .第一、二、三象限8.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A .向左平移3个单位 B .向右平移3个单位 C .向下平移3个单位 D .向上平移3个单位二、填空题9.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).10.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图象信息,下列说法:①两人相遇前,甲速度一直小于乙速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的说法是_________(填序号).11.直线32y x =-与y 轴交点的坐标是_________ .12.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.13.如图,在平面直角坐标系中,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n C n 均为等腰直角三角形,且∠C 1=∠C 2=∠C 3=…=∠C n =90°,点A 1,A 2,A 3,…,A n 和点B 1,B 2,B 3,…,B n分别在正比例函数y =12x 和y =﹣x 的图象上,且点A 1,A 2,A 3,…,A n 的横坐标分别为1,2,3…n ,线段A 1B 1,A 2B 2,A 3B 3,…,A n B n 均与y 轴平行.按照图中所反映的规律,则△A n B n C n 的顶点C n 的坐标是____.(其中n 为正整数)14.(A 2+B 2≠0)在平画直角坐标系xy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By c A B+++例如,P (1,3)到直线4x +3y ﹣3=0的距离为:d =2243+=2.若点M (1,0)到直线x +y +C =0的距离为2,则实数C 的值为_____.三、解答题15.已知:一次函数y=kx +b 的图象经过M (0,2),(1,3)两点. ⑴求k ,b 的值;⑵若一次函数y=kx +b 的图象与x 轴交点为A (a ,0),求a 的值.16.如图,直线l 是一次函数y kx b =+的图象,若点()3,A m 在直线l 上,求m 的值.17.(1)已知函数y x =+m+1.是正比例函数,求m 的值; (2)已知函数24y (5)m m x -=+m+1是一次函数,求m 的值.18.若y -2与x+1成正比例.当x=2时,y=11. (1)求y 与x 的函数关系式; (2)求当x=0时,y 的值; (3)求当y=0时,x 的值.19.在平面直角坐标系中,直线AB 经过()1,1、()3,5-两点. (1)求直线AB 所对应的函数解析式: (2)若点(),2P a -在直线AB 上,求a 的值.20.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x 的取值范围; (3)求MOP △的面积.21.全民健身的今天,散步运动是大众喜欢的活动项目。

2020届人教版八年级数学下册 18.2.3 正方形(2)同步练习(含解析)

2020届人教版八年级数学下册 18.2.3 正方形(2)同步练习(含解析)

18.2.3正方形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线互相垂直的矩形是正方形;(4)对角线相等的菱形是正方形.2.判定一个四边形是正方形,一般有两种思路:一种是先证四边形是菱形,再证明它有一个角是直角或对角线相等;另一种是先证明四边形是矩形,再证它有一组邻边相等或对角线互相垂直.基础知识和能力拓展训练一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.810.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 时,四边形MENF是正方形.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个(填代号).16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?答案与试题解析一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.解:A、正确,一组邻边相等的平行四边形是菱形;B、正确,对角线互相垂直的平行四边形是菱形;C、正确,有一个角为90°的平行四边形是矩形;D、不正确,对角线相等的平行四边形是矩形而不是正方形;故选D.2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个【分析】根据中心对称的概念以及平行四边形、正方形、菱形的判定定理进行判断即可.解:(1)因为正奇边形不是中心对称图形,故等边三角形不是中心对称图形,此选项错误;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,因为等腰梯形也符合此条件,此选项错误;(3)两条对角线互相垂直的矩形是正方形,此选项正确;(4)两条对角线互相垂直平分的四边形是菱形,此选项错误.故选:A.3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A、不能,只能判定为矩形;B、不能,只能判定为平行四边形;C、能;D、不能,只能判定为菱形.故选:C.4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定【分析】利用矩形的性质与判定方法得出四边形EMFN是矩形,进而利用等腰直角三角形的性质得出AM=ME,BM=MF=AM,则ME=MF,进而求出即可.解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∠EAB=∠ABF=∠BCD=∠CDA=90°,又∵E,F分别为AD,BC中点,AD=2AB,∴AE∥BF,ED∥CF,AE=BF=DE=CF=AB=DC,∴∠ABE=∠AEB=∠DEC=∠DCE=∠DFC=45°,∴∠BEN=90°,又∵DE BF,AE FC,∴四边形EMFN是矩形,∴AM⊥BE,BM⊥AF,∴AM=ME,BM=MF=AM,∴ME=MF,∴四边形EMFN是正方形.故选:A.6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:A、正确.∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形.故正确.B、错误.当E是BC中点时,无法证明∠ACD=90°,故错误.C、正确.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,D、正确.当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形.故选B.7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④【分析】根据正方形的判定定理即可得到结论.解:与左边图形拼成一个正方形,正确的选择为③,故选C.8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°【分析】由题意可得四边形AECF为一矩形,要使四边形AECF是正方形,只需添加一条件,使其邻边相等即可.解:过点E,F作EH⊥BD,FG⊥BD,∵CE,CF为∠ACB,∠ACD的角平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECH,∵∠ECH=∠ECO,∴∠FEC=∠ECO,∴OE=OC.同理OC=OF,∴OE=OF,∵点O运动到AC的中点,∴OA=OC,∴四边形AECF为一矩形,若∠ACB=90°,则CE=CF,∴四边形AECF为正方形.故选:D.9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.8【分析】如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选C.10.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为8,AE=BF=CG=DH=5,可得AH=3,由勾股定理得EH,得正方形EFGH的面积.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选B.二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 1:2 时,四边形MENF是正方形.【分析】首先得出四边形MENF是平行四边形,再求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是①②③.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当①BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项①正确;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项②正确;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项③正确;当AC=BF时,无法得出菱形BECF是正方形,故选项④错误.故答案为:①②③.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个①②或①④(填代号).【分析】因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.解:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,若AB=AD,则四边形ABCD为正方形;若AC⊥BD,则四边形ABCD是正方形.故填:①②或①④.16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为2.【分析】作辅助线,构建正方形AHGF,则AF=GH=GF,设GC=x,则FG=AF=HG=x+2,DG=x﹣1,在Rt△DGC中,利用勾股定理列方程可求得x的值,最后利用勾股定理计算AC的长即可.解:过A作AE⊥DC于E,将△AEC沿AC翻折得△AFC,将△ADE沿AD翻折得△ADH,延长FC、HD交于G,则∠EAC=∠CAF,∠EAD=∠HAD,∠H=∠F=90°,∴∠EAC+∠EAD=∠CAF+∠HAD,∵∠DAC=45°,即∠EAC+∠EAD=45°,∴∠HAF=90°,∴四边形AHGF是矩形,∵AH=AE,AE=AF,∴AH=AF,∴四边形AHGF是正方形,∴AF=GH=GF,∵AB=AC,AE⊥BC,∴BE=EC=2,由折叠得:FC=EC=2,HD=DE=3,设GC=x,则FG=AF=HG=x+2,∴DG=x﹣1,在Rt△DGC中,DC2=DG2+GC2,52=(x﹣1)2+x2,解得:x1=4,x2=﹣3(舍),∴AF=x+2=4+2=6,Rt△ACF中,AC==2.故答案为:2.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是57.75 .【分析】运用拼图的方法,构造一个正方形,用大正方形的面积﹣小正方形的面积,即可得出所求多边形的面积.解:运用拼图的方法,构造一个正方形,如图所示:大正方形的边长为12+8=20,小正方形的边长ED+DF=13,∴多边形ABCFDE的面积=(大正方形的面积﹣小正方形面积)=(202﹣132)=57.75.故答案为:57.75.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBA=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)【分析】过D作DG垂直AB于点G,由三个角为直角的四边形为矩形得到四边形CEDF为矩形,由AD为角平分线,利用角平分线定理得到DG=DF,同理得到DE=DG,等量代换得到DE=DF,利用邻边相等的矩形为正方形即可得证.证明:如图,过D作DG⊥AB,交AB于点G,∵∠C=∠DEC=∠DFC=90°,∴四边形CEDF为矩形,∵AD平分∠CAB,DF⊥AC,DG⊥AB,∴DF=DG;∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG,∴DE=DF,∴四边形CEDF为正方形.20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是正方形;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)【分析】(1)根据正方形性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,求出AH=DG=CF=BE=5,证△AEH≌△DHG≌△CGF≌△BFE,推出EH=EF=FG=HG,∠AHE=∠DGH,证出∠EHG=90°,即可得出答案.(2)在Rt△AEH中,由勾股定理求出EH=,根据正方形面积公式求出即可.(3)四边形EFGH的周长是×4,求出即可.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.【分析】(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,又因为CF=AE,BE=EC=BF=FC,根据四边相等的四边形是菱形,所以四边形BECF是菱形;(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.解:(1)四边形BECF是菱形.∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1,∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE,∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?【分析】(1)已知AF=EC,只需证明AF∥EC即可.DE垂直平分BC,易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC;(2)要使得平行四边形ACEF为菱形,则AC=CE,又∵CE=AB,∴使得AB=2AC即可,根据AB、AC即可求得∠B的值;(3)通过已知在△ABC中,∠ACB=90°,推出∠ACE<90°,不能为直角,进行说明.解:(1)四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形;(3)四边形ACEF不可能是正方形,∵∠ACB=90°,∴∠ACE<∠ACB,即∠ACE<90°,不能为直角,所以四边形ACEF不可能是正方形.。

人教版八年级数学下册正方形知识点及同步练习、含答案

人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.2.2 一次函数(1)基础过关全练知识点1 一次函数的定义1.下列函数关系式中,属于一次函数的是( )A.y =2x -1  B.y =x 2+1C.y =kx +b (k 、b 是常数)D.y =1-2x2.(2022黑龙江哈尔滨期末)当m 为何值时,函数y =(m -3)x 3-|m |+m +2是一次函数( )A.2B.-2C.-2或2D.3知识点2 一次函数的图象与性质3.【教材变式·P92例3变式】下列函数图象中,表示直线y =2x +1的是( )A B C D4.【教材变式·P91思考变式】将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)5.(2020黑龙江牡丹江中考)已知一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,则m 、n 的取值是( )A.m >3,n >3B.m >32,n >-13 C.m <32,n <13 D.m >32,n <136.【新独家原创】新定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,-1]的函数为一次函数,对于该一次函数,下列说法正确的是( ) A.它的图象过点(1,0) B.y值随着x值的增大而减小C.它的图象经过第二象限D.当x>1时,y>07.(2022云南八中期末)在一次函数y=(5a2+8)x-3(a为常数)的图象上有A(x1,y1),B(x2,y2),C(x3,y3)三点.若x1<x2<x3,则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y18.(2020辽宁丹东中考)已知一次函数y=-2x+b,且b>0,则它的图象不经过第 象限.9.(2021四川眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减小,则常数a的取值范围是 .10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若该函数的图象与直线y=3x-3平行,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围. 能力提升全练11.(2022湖南邵阳中考,8,★☆☆)在直角坐标系中,已知点,m,点,n是直线y=kx+b(k<0)上的两点,则m,n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n12.(2022河南信阳期末,8,★☆☆)已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,则在平面直角坐标系内,它的图象大致是( )A B C D13.(2022浙江绍兴中考,9,★★☆)已知(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( ) A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>014.(2020四川凉山州中考,7,★★☆)若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( ) A.m>-12B.m<3C.-12<m<3 D.―12<m≤315.(2022安徽芜湖一中期末,12,★☆☆)已知点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是 .16.(2022重庆期末,12,★★☆)若关于x的分式方程6xx―1=3+axx―1的解为整数,且一次函数y=(7-a)x+a的图象不经过第四象限,则符合题意的整数a的个数为 .素养探究全练17.【几何直观】在平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.18.【运算能力】一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.答案全解全析基础过关全练1.D y =2x -1中,2x 不是整式,不是一次函数,y =x 2+1不是一次函数,y =kx +b (k 、b 是常数)中,当k =0时,不是一次函数,y =1-2x 是一次函数.故选D .2.C 由题意得3-|m |=1且m -3≠0,∴m =±2且m ≠3,∴m 的值为2或-2,故选C .3.B ∵k =2>0,b =1>0,∴直线经过第一、二、三象限.故选B .4.A 将直线y =5x 向下平移2个单位长度,所得直线的表达式为y =5x -2.故选A .5.B ∵一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,∴2m ―3>0,3n +1>0,解得m >32,n >-13,故选B .6.D 根据题意可得m -2=0,且m ≠0,解得m =2,所以该一次函数表达式为y =2x -1,把x =1代入y =2x -1得到y =1,故该函数图象经过点(1,1),不经过点(1,0),故选项A 错误;函数y =2x -1中,k =2>0,则y 值随着x 值的增大而增大,故选项B 错误;函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故选项C 错误;当x >1时,2x -1>1,即y >1,故y >0正确,故选项D 正确.故选D .7.A 一次函数y =(5a 2+8)x -3(a 为常数)中,5a 2+8>0,∴y随x的增大而增大,∵x1<x2<x3,∴y1<y2<y3,故选A.8.答案 三解析 ∵一次函数y=-2x+b,且b>0,∴它的图象经过第一、二、四象限,不经过第三象限.9.答案 a<-32解析 ∵一次函数y=(2a+3)x+2的值随x值的增大而减小,∴2a+3<0,解得a<-32.10.解析 (1)∵函数y=(2m+1)x+m-3的图象经过原点,∴当x=0时,y=0,即m-3=0,解得m=3.(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,∴2m+1=3,且m-3≠-3,解得m=1.(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<-12.能力提升全练11.A ∵点,m,点,n是直线y=kx+b上的两点,且k<0,∴y随x的增大而减小,∵32>72,∴m<n,故选A.12.A ∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,∴k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选A.13.D ∵y=-2x+3中,-2<0,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选D.14.D 根据题意得2m+1>0,m―3≤0,解得―12<m≤3.故选D.15.答案 a<2解析 ∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为a<2.16.答案 3解析 ∵一次函数y=(7-a)x+a的图象不经过第四象限,∴7―a>0,a≥0,解得0≤a<7,由分式方程6xx―1=3+axx―1得x=3a―3,∵分式方程6xx―1=3+axx―1的解为整数,且x≠1,∴整数a=0,2,4,∴符合题意的整数a的个数为3.素养探究全练17.解析 (1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2的图象上.(2)∵函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m -1<3,m -1<-12(m +1)+3,∴1<m <73.18.解析 (1)由题意得m 2-1=3,所以m =±2.又m -2≠0,所以m ≠2,所以m =-2,所以y =-4x +3.(2)由题意可得点B ,0.因为直线y =(n +2)x +n 2-1经过点A (0,3),所以n 2-1=3,所以n =±2.又n +2≠0,所以n ≠-2,所以n =2.所以y =4x +3,所以点C 的坐标为―34,0,所以线段BC 的长为34―=32.。

人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案

人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案

人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式测试1二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.1a表示二次根式的条件是______.2.当某______时,21有意义,当某______时,有意义.某1某33.若无意义某2,则某的取值范围是______.4.直接写出下列各式的结果:(1)49=_______;(2)(7)2_______;(3)(7)2_______;(4)(7)2_______;(5)(0.7)2_______;(6)[(7)2]2_______.二、选择题5.下列计算正确的有().①(2)22②22③(2)22④(2)22A.①、②B.③、④6.下列各式中一定是二次根式的是().A.32B.(0.3)2C.①、③D.②、④C.2D.某7.当某=2时,下列各式中,没有意义的是().A.某2 B.2某C.某22D.2某28.已知(2a1)212a,那么a的取值范围是().11B.a22三、解答题9.当某为何值时,下列式子有意义A.a(1)1某;(3)某21;C.a12D.a12(2)某2;(4)10.计算下列各式:(1)(32)2;综合、运用、诊断一、填空题11.2某表示二次根式的条件是______.12.使(2)(a21)2;3(3)2()2;4(4)(322).3某有意义的某的取值范围是______.2某113.已知某11某y4,则某y的平方根为______.14.当某=-2时,12某某214某4某2=________.二、选择题15.下列各式中,某的取值范围是某>2的是().11A.某2B.C.某22某16.若|某5|2y20,则某-y的值是().A.-7三、解答题17.计算下列各式:2(1)(3.14π);D.12某1B.-5C.3D.7(2)(32)2;2(3)[()1]2;3(4)(30.52)2.bb24ac18.当a=2,b=-1,c=-1时,求代数式的值.2a拓广、探究、思考19.已知数a,b,c在数轴上的位置如图所示:化简:a2|ac|(cb)2|b|的结果是:______________________.20.已知△ABC的三边长a,b,c均为整数,且a和b满足a2b26b90.试求△ABC的c边的长.测试2二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果4某y2某y成立,某,y必须满足条件______.11_________;(2)(3)(48)__________;1222.计算:(1)72(3)20.270.03___________.3.化简:(1)4936______;(2)0.810.25______;(3)45______.二、选择题4.下列计算正确的是().A.2355.如果某某3A.某≥0B.236C.84D.(3)23某(某3),那么().B.某≥3C.0≤某≤3D.某为任意实数6.当某=-3时,某2的值是().A.±3三、解答题7.计算:(1)62;(4)(7)(7)249;8.已知三角形一边长为2cm,这条边上的高为12cm,求该三角形的面积.(8)13252;(9)527;3125B.3C.-3D.9(2)53(33);(3)3228;(5)ab11;3a(6)2a2bc;5bc5a72某2y7.综合、运用、诊断一、填空题10.已知矩形的长为25cm,宽为10cm,则面积为______cm2.11.比较大小:(1)32_____23;(2)52______43;(3)-22_______-6.二、选择题12.若a2bab成立,则a,b满足的条件是().A.a<0且b>013.把42B.a≤0且b≥0C.a<0且b≥0D.a,b异号3根号外的因式移进根号内,结果等于().4B.11C.44D.211A.11三、解答题14.计算:(1)53某y36某_______;211_______;32(2)27a29a2b2_______;(3)122(4)3(312)_______.15.若(某-y+2)2与某y2互为相反数,求(某+y)某的值.拓广、探究、思考16.化简:(1)(21)10(21)11________;(2)(31)(31)_________.测试3二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)12______;(2)18某______;(3)48某5y3______;(4)y______;某(5)2111______.______;(6)4______;(7)某43某2______;(8)22332.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:32与2.(1)23与______;(2)32与______;(3)3a与______;(4)3a2与______;(5)3a3与______.二、选择题3.1某1某成立的条件是().某某A.某<1且某≠0B.某>0且某≠14.下列计算不正确的是().A.317164C.0<某≤1D.0<某<1 B.2y16某y3某3某42某3某9某111C.()2()24520D.5.把1化成最简二次根式为().32B.A.3232三、计算题6.(1)16;2513232C.128D.1247(2)2;9(3)24;3(4)5752125;(5)5;215(6)6633;11(7)11;32(8)110.125.22综合、运用、诊断一、填空题7.化简二次根式:(1)26________(2)11_________(3)4_________388.计算下列各式,使得结果的分母中不含有二次根式:(1) 15_______(2)22某__________(4)_________(3)__________某235y1______;27_________.(结果精确到0.001)39.已知31.732,则二、选择题10.已知a31,b2,则a与b的关系为().31C.a=-bD.ab=-1A.a=bB.ab=111.下列各式中,最简二次根式是().A.1某yB.abC.某24D.5a2b三、解答题ba312.计算:(1)ab;ba(2)12某y2y;3(3)abab2213.当某42,y42时,求某2某yy和某y2+某2y的值.拓广、探究、思考14.观察规律:12121,13232,12323,并求值.1722_______;(2)11110_______;(3)1nn1_______.15.试探究a2、(a)2与a之间的关系.测试4二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式32,27,125,445,28,18,12,15化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.1________;32.计算:(1)123二、选择题(2)3某4某__________.3.化简后,与2的被开方数相同的二次根式是().A.10B.12C.12D.164.下列说法正确的是().A.被开方数相同的二次根式可以合并C.只有根指数为2的根式才能合并5.下列计算,正确的是().A.2323B.5225D.y2某3某yB.8与80可以合并D.2与50不能合并C.52a2a62a三、计算题6.93712548.8.10.32某58某718某.7.24126.11128329.(12411)(340.5)8311.综合、运用、诊断一、填空题12.已知二次根式ab4b与3ab是同类二次根式,(a+b)a的值是______.13.2a8ab3与6b无法合并,这种说法是______的.(填“正确”或“错误”)32b二、选择题14.在下列二次根式中,与a是同类二次根式的是().A.2a三、计算题15.1817.a1a14bb2abB.3a2C.a3D.a4228(51)0.216.13(23)(227).2418.2ababab1aa3b2bab3.四、解答题y311某19.化简求值:某4yy,其中某4,y.29某20.当某拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“某”.①2123时,求代数式某2-4某+2的值.③444()41515④555()52424(2)你判断完以上各题后,发现了什么规律请用含有n的式子将规律表示出来,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.。

2021年人教版数学八年级下册18.2.2《 菱形》同步练习(含答案)

2021年人教版数学八年级下册18.2.2《 菱形》同步练习(含答案)

人教版数学八年级下册18.2.2《菱形》同步练习一、选择题1.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )A. B. C. D.2.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个3.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角5.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°7.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )A.5B.10C.15D.208.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC9.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米10.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.6二、填空题11.在菱形ABCD 中,AC=3,BD=6,则菱形ABCD的面积为.12.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是(只填一个你认为正确的即可).13.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是________(写出一个即可).14.如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________cm.15.在图中所示的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个小正方形的边长均为1,则该菱形的面积为________.三、解答题16.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.17.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.18.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.19.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.20.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.参考答案1.C.2.A3.D4.C5.A6.C7.A8.B9.A.10.B11.答案为:9.12.答案为:AC⊥BD或AB=BC或BC=CD或AB=AD;13.答案为:C;B=BF或BE⊥CF或∠EBF=60°或BD=BF(答案不唯一)14.答案为:16.15.答案为:12;16.解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.17.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,及∠ABD=60°,∴BE=1.18.证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BOA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.19.(1)证明:四边形ABCD是菱形,∴OA=OC=0.5AC,AD=CD,∵DE∥AC且DE=0.5AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=CD;(2)解:∵AC⊥BD,∴四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=.∴在Rt△ACE中,AE==.20.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE的面积为:×2=。

人教版数学八年级下册19.2.2 一次函数(1)同步练习(解析版)

人教版数学八年级下册19.2.2  一次函数(1)同步练习(解析版)

19.2.2 一次函数(1)基础闯关全练1.下列函数关系式:①y=-x;②y=2x+11;③y=x²+x+1;④y=x1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y-(m-2)x+(m+1)是关于x的一次函数,那么m的取值范围是()A.m≠2 B.m≠-1 C.m=-1 D.m≠2且m≠-13.一次函数y=-2x+3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在平面直角坐标系中,一次函数y=kx+b的图象如图19-2-2-1-1所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<O,b>0 D.k<0,b<0 5.一次函数y=kx+2(k为常数,且k≠0)的图象如图19-2-2-1-2所示,则k的可能值为_______.(写出一个即可)能力提升全练1.已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k>2,m<0 2.把函数y=x向上平移3个单位长度,下列点在该平移后的直线上的是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)3.如图19-2-2-1-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大 B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小三年模拟全练一、选择题1.下列函数关系式:①y=-2x+1;②y=x;③y=2x²+1;④y=123x,其中一次函数有()A.1个 B.2个 C.3个 D.4个2.关于函数y=-2x+1,下列结论正确的是()A.图象必经过点(-2,1) B.图象经过第一、二、三象限C.当x>21时,y<0 D. y随x的增大而增大3.在如图19-2-2-1-4所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C.D .二、填空题4.若一次函数y=(1-2k)·x+k的图象经过第一、二、三象限,则k的取值范围是_______.三、解答题5.已知一次函数y=(3-m)x+m-5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.五年中考全练一、选择题1.若b>0,则一次函数y=-x+b的图象大致是()A .B .C .D .2.已知点(-1,y₁),(4,y₂)在一次函数y=3x-2的图象上,则y₁,y₂,0的大小关系是 ( )A.O<y₁<y₂B.y₁<O<y₂C.y₁<y₂<0 D.y₂<O<y₁二、填空题3.将直线y=x向上平移2个单位长度,平移后直线的解析式为_______.4.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P₁(x₁,y₁.),P₂(x₂,y₂)两点,若x₁<x₂,则y₁_______y₂(填“>”“<”或“=”).5.已知点A是直线y=x+1上一点,其横坐标为-21,若点B与点A关于y轴对称,则点B的坐标为_________.核心素养全练1.已知关于x的一次函数y=(a+3)x+(b-2).(1)当a为何值时,y随x的增大而减小?(2)当a,b为何值时,函数图象与y轴的交点在x轴上方?(3)当a,b为何值时,函数图象经过第一、三、四象限?(4)当a,b为何值时,函数图象经过原点?(5)当a,b为何值时,函数的图象与直线y=-3x平行?2.一次函数y=(m-2)x+m²-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若(1)中的函数图象与x轴交于点B,直线y=(n+2)x+n²-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.19.2.2一次函数(1)1.B①y=-x是一次函数;②y=2x+11是一次函数;③④不符合一次函数的定义,故不是一次函数,故选B.2.A根据一次函数的定义知,一次项系数不等于0.即m-2≠0.解得m≠2.3.C ∵k=-2<0,∴一次函数y=-2x+3的图象必过第二、四象限,∴b=3,∴函数图象交y轴于正半轴,∴函数图象经过第一、二、四象限,不经过第三象限.故选C.4.A由图象可知,直线从左往右呈上升趋势,故k>0,图象与y轴的交点在y轴正半轴上,故b>0.5.答案 -2(答案不唯一)解析观察图象可知,OB<OA,k<0.当x=0时,y=kx+2=2,∴OA=2,令OB=1.则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.1.A整理得y=(k-2)x-m,因为函数图象与y轴负半轴相交,所以-m<0.即m>0,又函数值y随x的增大而减小,所以k-2<0.即k<2.故选A.2.D 一次函数的平移规律是“左加右减,上加下减”,故把函数y=x向上平移3个单位长度后的函数关系式为y=x+3,当x=2时.y=2+3=5.故选D .3.A 由函数图象可知,当x <1时,y 随x 的增大而增大,因此A 正确,B 错误;当1<x <2时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,因此C 、D 错误,故选A .一、选择题1.B ①y=-2x+1和②y=x 是一次函数,③④不符合一次函数的定义.故选B .2.C ∵k <0,所以y 随x 的增大而减小,故D 错误;∵k <0,b >0,∴图象经过一、二、四象限,故B 错误;当x=-2时,y=4+1=5,故A 错误.故选C .3.A 由题意得y=-2x+3,所以当x=0时,y=3;当y=0时,x=1.5,即图象经过点(0,3)和点(1.5,0),选项A 符合要求,故选A .二、填空题4.答案0<k <21解析 ∵一次函数y=(1-2k)x+k 的图象经过第一、二、三象限,∴⎩⎨⎧-,0,021>>k k ∴0<k<21. 三、解答题5.解析(1)∵一次函数图象过原点, ∴⎩⎨⎧,0=5-m ,0≠m -3解得m=5.(2)∵一次函数的图象经过第二、三、四象限,⎩⎨⎧,<<05-m ,0m -3∴3<m <5. 一、选择题1.C 对于一次函数y=kx+b(k ≠0),当k >0时,图象从左到右上升;当k <0时,图象从左到右下降;当b >0时,图象与y 轴的交点在y 轴正半轴;当b=0时,图象与y轴的交点在原点;当b <0时,图象与y 轴的交点在y 轴负半轴∵-1<0,∴图象从左到右下降,又b >0,∴图象与y 轴的交点在y 轴正半轴,故选C .2.B 解法一:将x=-1代入y=3x-2,得y=-5,∴y ₁=-5;将x=4代入y=3x-2,得y=10,∴y ₂=10,所以y ₁<O <y ₂.故选B .解法二:∵k=3>0,∴y 随x 的增大而增大,易知x=32时,y=0,又-1<32<4,∴y ₁<0<y ₁,故选B .二、填空题 3.答案y=x+2解析 由平移规律“左加右减,上加下减”,可知向上平移2个单位长度后,直线的解析式为y=x+2. 4.答案 >解析 一次函数y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,因为y=-2x+1中的k=-2<0,所以当x ₁<x ₂时,y ₁>y ₂. 5.答案(2121,)解析把x=-21代入y=x+1得y=21,∴点A 的坐标为(-2121,),∵点8和点A 关于y 轴对称,∴点B 的坐标为(2121,).1.解析(1)由一次函数的性质可知,当a+3<0,即a <-3时,y 随x 的增大而减小. (2)由题意知,当a+3≠0且b-2>0时,即当a ≠-3且b >2时,函数图象与y 轴的交点在x 轴上方.(3)因为函数图象经过第一、三、四象限,所以a+3>0且b-2<0.所以a >-3且b <2,即当a >-3且b <2时,函数图象经过第一、三、四象限.(4)由题意,得a+3≠0且b-2=0,解得a ≠-3且b=2.即当a ≠-3且b=2时,函数图象经过原点.(5)由题意,得a+3=-3且b-2≠0,解得a=-6且b ≠2.所以当a=-6且b ≠2时,函数图象与直线y=-3x 平行. 2.解析(1)由题意得m ²-1=3, 所以m=±2. 又m-2≠0,即m ≠2, 所以m=-2,所以y=-4x+3.(2)由题意可得B 点的坐标为(43,0). 因为直线y=(n+2)x+n ²-1经过点A(0,3), 所以n ²-1=3,所以n=±2. 又n+2≠0.即n ≠-2.所以n=2. 所以y=4x+3,所以C 点的坐标为(-43,0).所以BC=2343--43=⎪⎭⎫ ⎝⎛.。

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.下列几组数据中,不能作为直角三角形的三条边的是()A.1,2,B.3,4,5C.1,,D.4,12,13 2.在△ABC中,若AB=3,BC=5,AC=,则下列说法正确的是()A.△ABC是锐角三角形B.△ABC是直角三角形且∠C=90°C.△ABC是钝角三角形D.△ABC是直角三角形且∠B=90°3.如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.下列各组数中,是勾股数的是()A.7,8,9B.6,8,10C.5,12,14D.3,4,65.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=45°6.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为()A.2.5m B.3m C.1.5m D.3.5m7.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是()A.B.C.D.8.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是()A.30°B.45°C.50°D.60°二.填空题9.一个三角形的三边长为8cm、17cm、15cm,则其面积为cm2.10.如图,已知∠BAC=90°,BC=,AB=1,AD=CD=1,则∠BAD=.11.如图,长方体木箱的长、宽、高分别为12cm,4cm,3cm,则能放进木箱中的直木棒最长为cm.12.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑤组勾股数为.13.如图,露在水面上的鱼线BC长为6m,钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,若BB'的长为2m,则钓鱼竿AC的长为m.14.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.15.如图是某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=8米,BC=6米,他们踩坏了米的草坪,只为少走米的路.16.图是屋架设计图的一部分,点E、F分别为斜梁AB、AC的中点,D为横梁BC的中点,EM⊥BC于点M,FN⊥BC于点N,若AB=AC=6m,∠BAC=120°,则EM+AD+FN 等于m,四边形AEDC的周长为m.三.解答题17.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.18.为了绿化环境,我市某中学有一块四边形的=空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?19.“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C处,过了1.5秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为40米,判断这辆小汽车是否超速?若超速,则超速了多少?若没有超速,说明理由.20.如图,有一艘货船和一艘客船同时从港口A出发,客船与货船速度的比为4:3,出发1小时后,客船比货船多走了5海里.货船沿东偏南10°方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距50海里.(1)求两船的速度分别是多少?(2)求客船航行的方向.21.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.22.位于沈阳的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?23.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以16海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.(1)如图1,若反走私艇A和走私艇C的距离是10海里,A、B两艇的距离是6海里;反走私艇B测得距离C艇8海里,若走私艇C的速度不变,则再过多少小时它会进入我国领海?(2)如图2,若反走私艇A和走私艇C的距离是12海里,A、B两艇的距离是8海里,反走私艇B测得距离C艇10海里,发现走私艇C时,反走私艇B便立即沿领海线MN 对走私艇C进行拦截.若要使拦截成功,假设走私艇C的速度不变,那么反走私艇B的速度至少应为多少海里/时?(结果中若有根号,则保留根号).参考答案一.选择题1.解:A、12+()2=22,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、32+42=52,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、12+()2=()2,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、42+122≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:D.2.解:在△ABC中,AB=3,BC=5,AC=,∴AC2=34,AB2+BC2=9+25=34,∴AC2=AB2+BC2,∴△ABC是直角三角形,∠B=90°,故选:D.3.解:设原直角三角形的两直角边分别为a,b,斜边为c,则a2+b2=c2,∵三条边长同时扩大10倍为10a,10b,10c,∴(10a)2+(10b)2=100a2+100b2=100(a2+b2)=100c2,∴(10c)2=100c2,∴(10a)2+(10b)2=(10c)2,∴如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是直角三角形,故选:C.4.解:A、72+82≠92,故不是勾股数,故选项不符合题意;B、62+82=102,能构成直角三角形,都是整数,是勾股数,故选项符合题意;C、52+122≠142,故不是勾股数,故选项不符合题意;D、32+42≠62,故不是勾股数,故选项不符合题意.故选:B.5.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.6.解:设BO=xm,依题意得:AC=0.5m,BD=0.5m,AO=2m.在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=22+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(2﹣0.5)2+(x+0.5)2,∴22+x2=(2﹣0.5)2+(x+0.5)2,解得:x=1.5,∴AB==2.5(m),即梯子的长度AB为2.5m,故选:A.7.解:选项A如图:A、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项符合题意;选项B如图:B、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项不符合题意;选项C如图:C、∵AB2=22+22=8,AC2=22+22=8,BC2=16,∴△ABC是直角三角形,故本选项不符合题意;选项D如图:D、∵AC2=12+32=10,BC2=12+32=10,AB2=22+42=20,∴△ABC是直角三角形,故本选项不符合题意.故选:A.8.解:延长AP到点C,连接BC,如右图所示,由图可得,∠CPB=∠P AB+∠PBA,PC==,BC==,PB==,∴BC2+PC2=PB2,CP=CB,∴△BCP是等腰直角三角形,∴∠CPB=45°,∴∠P AB+∠PBA=45°,故选:B.二.填空题9.解:∵82+152=172,∴此三角形是直角三角形,∴此直角三角形的面积为:×8×15=60(cm2).故答案为:60.10.解:∵∠BAC=90°,BC=,AB=1,∴AC==,∵AD=CD=1,12+12=()2,AD2+CD2=AC2,∴∠D=90°,∴∠DAC=45°,∴∠BAD=90°﹣45°=45°.故答案为:45°.11.解:∵侧面对角线BC2=32+42=52,∴CB=5cm,∵AC=12cm,∴AB==13(cm),∴空木箱能放的最大长度为13cm,故答案为:13.12.解:根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+2),第二个是:(n+1)(n+3),第三个数是:(n+2)2+1,故可得第⑤组勾股数是14,48,50.故答案为:14,48,50.13.解:设AB′=xm,∵AC′=AC,∴AB′2+B′C′2=AB2+BC2,∴x2+82=(x+2)2+62.解得x=6,∴AB=8m,∴AC===10(m),故答案为:10.14.解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.15.解:在Rt△ABC中,∠ABC=90°,AB=8米,BC=6米,∴AC===10(米),∴BC+AB﹣AC=6+8﹣10=4(米),∴他们踩坏了10米的草坪,只为少走4米的路,故答案为:10,4.16.解:∵AB=AC=6m,∠BAC=120°,D为横梁BC的中点,∴∠B=∠C=30°,∠BAD=∠DAC=60°,∵点E、F分别为斜梁AB、AC的中点,EM⊥BC于点M,FN⊥BC于点N,∴AE=AD=AB=3m,FN=EM=BE=AB=1.5m,∴△AED是等边三角形,∴EM+AD+FN=3+1.5+1.5=6(m),∵AD=3m,AC=6m,∴DC==3(m),∴四边形AEDC的周长为:3+3+3+6=(12+3)m.故答案为:6,(12+3).三.解答题17.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.18.解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36(平方米);(2)需费用36×300=10800(元).19.解:小汽车已超速,理由如下:根据题意得:AC=24米,AB=40米,∠ACB=90°,在Rt△ACB中,根据勾股定理得:BC===32(米),∵小汽车1.5秒行驶32米,∴小汽车行驶速度为76.8千米/时,∵76.8>60,∴小汽车已超速,超速76.8﹣60=16.8(千米/时).20.解:(1)设两船的速度分别是4x海里/小时和3x海里/小时,依题意得4x﹣3x=5.解得x=5,∴4x=20,3x=15,∴两船的速度分别是20海里/小时和15海里/小时;(2)由题可得,AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°,又∵货船沿东偏南10°方向航行,∴客船航行的方向为北偏东10°方向.21.解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.22.解:在Rt△ABC中,∠ABC=90°,BC=8m,AC=17m,∴AB===15(m),∵工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,∴CD=17﹣0.35×20=10(m),∴BD===6(m),∴AD=AB﹣BD=9(m).答:此时游船移动的距离AD的长是9m.23.解:(1)由题意,AC=10海里,AB=6海里,BC=8海里,∴AB2+BC2=AC2,∴∠ABC=90°.由面积法得AC•BE=AB•BC,即10BE=6×8,∴BE=.在Rt△BEC中,CE==,∵艇C的速度为16海里/时,∴所求的时间为÷16=,答:再过小时艇C会进入我国领海.(2)由题意,AC=12海里,AB=8海里,BC=10海里,设CE=x,由勾股定理,得AB2﹣AE2=BC2﹣CE2,即82﹣(12﹣x)2=102﹣x2,解得x=,∴CE==7.5,再由勾股定理,得BE==(海里)设反走私艇B的速度为y海里/时,则=,解得y=.检验可知y=是方程的解,且适合题意.答:反走私艇B的速度至少应为海里/时.。

2022-2023学年全国初中八年级下数学人教版同步练习(含答案解析)053914

2022-2023学年全国初中八年级下数学人教版同步练习(含答案解析)053914

2022-2023学年全国初中八年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 一次函数的图象经过点,每当增加个单位时,增加个单位,则此函数表达式是( )A.B.C.D.2. 一次函数的图象向下平移个单位,所得图象的函数表达式是( )A.B.C.D.3. 如图,点、分别在直线和上,点、是轴上的两点,已知四边形是正方形,则的值为 A.B.C.D.不能确定4. 若直线经过点,,则,的大小关系是( )A.y =kx+b A(2,3)x 1y 3y =x+1y =−3x+9y =4x−5y =3x−3y =2x+32y =2x−3y =2x+2y =2x+1y =2xB C y =2x y =kx A D x ABCD k ()1y =−(+1)x+bk 2A(a,m)B(a +3,n)m n m>nB.C.D.无法确定5. 已知点,在一次函数的图像上,则,,的大小关系是( )A.B.C.D.6. 在平面直角坐标系中,函数=的图象不经过第二象限与第四象限,则常数满足( )A.=B.=C.=D.7. 若反比例函数的图象过点,则一次函数的图象过( )A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限8. 如果的圆心为,直线恰好平分的面积,那么的值是( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )m<nm=n(−1,)y 1(3,)y 2y =−x+2y 1y 200<<y 1y 2<0<y 1y 2<<0y 1y 2<0<y 2y 1y (k −1)x+(k +2)(k −2)k k 2k −2k 1k >1y =k x (−2,1)y =kx−k ⊙P P (5,3)y =kx−3⊙P k 65125629. 将直线向上平移个单位后,所得直线的表达式是________.那么将直线沿轴向右平移个单位得到的直线方程是________.10. 写出一个随的增大而增大的正比例函数解析式________.11. 如图,在平面直角坐标系中,点、的坐标分别为、,若直线=与线段有公共点,则的值可以为________.12. 已知,一次函数=的图象经过点,且随的增大而减小,请你写出一个符合上述条件的函数关系式:________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 已知与成正比例,且当时, .求与之间的函数解析式;当时,求的值.14. 已知一次函数图象经过点并且与轴相交于点,直线与轴相交于点,点恰与点关于轴对称,求这个一次函数的解析式.15. 平面直角坐标系中,一次函数到= B.坐标系内有点(,—的图象上?说明理由。

人教版数学八年级下册同步练习(含答案)

人教版数学八年级下册同步练习(含答案)

16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简222m n m mn-+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+ 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、扩大4倍 C 、缩小2倍 D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。

2022-2023学年全国初中八年级下数学人教版同步练习(含答案解析)080222

2022-2023学年全国初中八年级下数学人教版同步练习(含答案解析)080222

2022-2023学年全国初中八年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,已知一个直角三角形的直角顶点与原点重合,另两个顶点,的坐标分别为,.现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为( )A.B.C.D.2. 在平面直角坐标系中,正方形的顶点坐标分别为 ,,,,轴上有一点 .作点关于点的对称点,作点关于点的对称点,作点关于点的对称轴,作点关于点的对称点,作点关于点的对称点,作点关于点的对称点,…,按此操作下去,则点的坐标为( )A.B.C.D.3. 点与点的关系是( )A.关于轴对称B.关于轴对称C.关于原点对称D.以上各项都不对A B (−1,0)(0,)3–√A O △OCB ′B B ′(1,0)(,)3–√3–√(1,)3–√(−1,)3–√A(1,1)B(1,−1)C(−1,−1)D(−1,1)y P(0,2)P A P 1P 1B P 2P 2C P 3P 3D P 4P 4A P 5P 5B P 6P 2016(0,2)(2,0)(0,−2)(−2,0)A(−3,2)B(−3,−2)x y4. 在平面直角坐标系中,点关于轴的对称点在A.第一象限B.第二象限C.第三象限D.第四象限5. 若将点向左平移个单位,再向下平移个单位得到点,则点的坐标为( )A.B.C.D.6. 如图,一束光线从点出发,经轴上的点反射后经过点,则点的坐标是( )A.B.C.D.7. 若点与点关于原点对称,则等于( )A.B.C.D.8. 点关于轴的对称的点的坐标是( )P (3,−2)x ( )A(1,3)24B B (−2,−1)(−1,0)(−1,−1)(−2,0)A(4,4)y C B(1,0)C (0,1)(0,2)(0,)12(0,)45P(x,−3)Q(4,y)x−y 1−17−7P(2,3)xA.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,平面直角坐标系中,、两点的坐标分别为、,若将线段平移至,点的坐标为,则点的坐标为________.10. 如图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点坐标是,则经过第变换后所得的点坐标是________.11. 在平面直角坐标系中,点 关于原点对称的点的坐标是________.12. 点关于轴的对称点是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.点是三角形的边上的任意一点,三角形经过平移后得到三角形,点的对应点为.在图中画出平移后的三角形;点的对应点的坐标是________.(2,−3)(−2,3)(2,3)(−2,−3)A B (2,0)(0,1)AB A 1B 1A 1(3,1)B 1△ABC A (a,b)2016A A(2,−3)(−3,5)x ABC A(−2,−2)B(3,1)C(0,2)P (a,b)ABC AC ABC A ′B ′C ′P (a −2,b +3)P ′(1)A ′B ′C ′(2)A A ′14. 如图,在平面直角坐标系中,的坐标分别为(注:每个方格的边长均为个单位长度).画出向右平移个单位得;画出关于原点点对称的;与是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由. 15. 如图,在平面直角坐标系中, 各顶点的坐标分别为 ,,.分别写出点、关于原点对称的点的坐标;画出绕点顺时针旋转 后的.16. 在平面直角坐标系中的位置如图所示.,,三点在格点上.△ABC A(−3,5),B(−4,2),C(−1,4)1(1)△ABC 6△A 1B 1C 1(2)△ABC O △A 2B 2C 2(3)△A 1B 1C 1△A 2B 2C 2△ABC A(1,1)B(4,4)C(5,1)(1)A B O (2)△ABC A 90∘△AB 1C 1△ABC A B C作出关于轴对称的;写出点的坐标为________;在轴上作点,使得最小.(1)△ABC x △A 1B 1C 1(2)C 1(3)y D AD+BD参考答案与试题解析2022-2023学年全国初中八年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】坐标与图形变化-平移【解析】本题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.【解答】解:因为点与点对应,点,点,所以图形向右平移了个单位长度,所以点的对应点的坐标为,即.故选.2.【答案】A【考点】坐标与图形变化-对称【解析】从特殊到一般寻找规律,发现从开始出现循环,由此即可解决问题.【解答】解:由题意,,,,,…与重合,从开始出现循环,,∴与重合,∴.A O A(−1,0)O(0,0)1B B ′(0+1,)3–√(1,)3–√C P 5(2,0)P 1(0,−2)P 2(−2,0)P 3(0,2)P 4(2,0)P 5P 5P 1P 52016÷4=504P 2016P 4(0,2)P 2016故选.3.【答案】A【考点】关于原点对称的点的坐标关于x 轴、y 轴对称的点的坐标【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】关于x 轴、y 轴对称的点的坐标【解析】先求出 关于轴的对称点的坐标,再判断其所在的象限.【解答】解:点关于轴的对称点是,在第一象限.故选.5.【答案】C【考点】坐标与图形变化-平移【解析】根据向左平移横坐标减,向下平移纵坐标减求解即可.A P (3,−2)x P (3,−2)x (3,2)A【解答】解:∵点向左平移个单位,再向下平移个单位得到点,∴点的横坐标为,纵坐标为,∴的坐标为.故选.6.【答案】D【考点】坐标与图形变化-对称全等三角形的性质与判定待定系数法求一次函数解析式【解析】延长交轴于点,利用反射定律,推出等角,再证,已知点坐标,从而得点坐标,利用,两点坐标,求出直线的解析式,从而可求得点坐标.【解答】解:如图所示,延长交轴于点.∵这束光线从点出发,经轴上的点反射后经过点,∴设,由反射定律可知,,∴.∵于,∴.在和中,∴,∴,∴.设直线的解析式为.将点,点代入得A(1,3)24B B 1−2=−13−4=−1B (−1,−1)C AC x D △COD ≅△COB(ASA)B D A D AD C AC x D A(4,4)y C B(1,0)C(0,c)∠1=∠OCB ∠OCB =∠OCD CO ⊥DB O ∠COD =∠COB △COD △COB ∠OCD =∠OCB ,OC =OC ,∠COD =∠COB ,△COD ≅△COB(ASA)OD=OB=1D(−1,0)AD y=kx+b A(4,4)D(−1,0){ 4=4k +b ,0=−k +b ,=,4解得∴直线的解析式为,∴点坐标为.故选.7.【答案】D【考点】关于原点对称的点的坐标【解析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得到、的值,再算出即可.【解答】解:∵点与点关于原点对称,∴,,∴.故选.8.【答案】A【考点】关于x 轴、y 轴对称的点的坐标【解析】根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点关于轴的对称点的坐标是得出即可.【解答】解:∵点坐标为∴点关于轴的对称点的坐标为:.故选:.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )k =,45b =,45AD y =x+4545C (0,)45D x y x−y P(x,−3)Q(4,y)x =−4y =3x−y =−7D x P(x,y)x P'(x,−y)P (2,3)P x (2,−3)A9.【答案】【考点】坐标与图形变化-平移【解析】根据横坐标,右移加,左移减;纵坐标,加,减可得线段向右平移个单位,向上平移个单位,进而可得、的值.【解答】∵、两点的坐标分别为、,平移后,∴线段向右平移个单位,向上平移个单位,∴==,==,点的坐标为,10.【答案】【考点】坐标与图形变化-对称【解析】观察不难发现,次变换为一个循环组依次循环,用除以,根据正好整除可知点与原来的位置重合,从而得解.【解答】解:由图可知,次变换为一个循环组依次循环,∵=,∴第变换后为第循环组的第四次变换,∴变换后的点与原来的点重合,又原来点坐标是,∴经过第变换后所得的点坐标是.故答案为:.11.【答案】(1,2)AB 11a b A B (2,0)(0,1)(3,1)A 1AB 11a 0+11b 1+12B 1(1,2)(a,b)420164A 42016÷45042016504A A A (a,b)2016A (a,b)(a,b)(−2,3)关于原点对称的点的坐标【解析】本题主要考查了关于原点对称的点的坐标.【解答】解:根据关于原点对称的点的横坐标与纵坐标都互为相反数,可得点 关于原点对称的点的坐标是,故答案为:.12.【答案】【考点】关于x 轴、y 轴对称的点的坐标【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:经过平移后,点的对应点为,可知三角形向左平移个单位,向上平移个单位,所以图中三角形即为所求.A(2,−3)(−2,3)(−2,3)(1)P (a,b)(a −2,b +3)P ′ABC 23A ′B ′C ′(−4,1)坐标与图形变化-平移【解析】直接利用点平移变化规律得出答案;直接利用得出各对应点位置进而得出答案;【解答】解:经过平移后,点的对应点为,可知三角形向左平移个单位,向上平移个单位,所以图中三角形即为所求.由可知. 故答案为:.14.【答案】解:如图,即为所求;如图,即为所求;P (1)P (a,b)(a −2,b +3)P ′ABC 23A ′B ′C ′(2)(1)(−4,1)A ′(−4,1)(1)△A 1B 1C 1(2)△A 2B 2C 2与成中心对称,对称中心点的坐标为【考点】坐标与图形变化-对称坐标与图形变化-平移【解析】此题暂无解析【解答】解:如图,即为所求;如图,即为所求;(3)△A 1B 1C 1△A 2B 2C 2P (3,0).(1)△A 1B 1C 1(2)△A 2B 2C 2与成中心对称,对称中心点的坐标为15.【答案】解:据图可知,点、关于原点对称的点的坐标分别为 .如图所示:即为所求.【考点】作图-旋转变换关于原点对称的点的坐标【解析】此题暂无解析【解答】解:据图可知,点、关于原点对称的点的坐标分别为 .如图所示:即为所求.(3)△A 1B 1C 1△A 2B 2C 2P (3,0).(1)A B O (−1,−1),(−4,−4)(2)△AB 1C 1(1)A B O (−1,−1),(−4,−4)(2)△AB 1C 116.【答案】解:如图所示,即为所求.确定出点关于轴的对称点,根据轴对称确定最短路线问题连接,与轴的交点即为所求的点,如图所示,点即为所求.【考点】作图-轴对称变换关于x 轴、y 轴对称的点的坐标【解析】(1)根据轴对称的定义作图;(2)利用关于轴对称的点的坐标规律:横坐标不变,纵坐标互为相反数即可求解;(3)确定出点关于轴的对称点,根据轴对称确定最短路线问题连接,与轴的交点即为所求的点.【解答】解:如图所示,即为所求.关于轴对称的点的坐标规律:横坐标不变,纵坐标互为相反数.∵,∴.故答案为:.确定出点关于轴的对称点,根据轴对称确定最短路线问题连接,(1)△A 1B 1C 1(3,−2)(3)B y B ′AB ′y D D x B y B ′AB ′y D (1)△A 1B 1C 1(2)x C(3,2)C 1(3,−2)(3,−2)(3)B y B ′AB ′与轴的交点即为所求的点,如图所示,点即为所求.y D D。

(完整版)人教版初中数学八年级下册同步练习试题及答案_第17章

(完整版)人教版初中数学八年级下册同步练习试题及答案_第17章

第十七章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________. 二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)xy 3=(B)x y 3-= (C)x y 31= (D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ).(A)4 (B)-4 (C)3 (D)-3 三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考 14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______.2.如果函数y =2x k +1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1(B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2(B)y 2<0<y 1(C)y 1<y 2<0(D)y 2<y 1<011.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大(B)当x <0时,y 随x 的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题1.若反比例函数x ky =与一次函数y =3x +b 都经过点(1,4),则kb =______. 2.反比例函数xy 6-=的图象一定经过点(-2,______).3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______.4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线x y 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________.二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限 13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ).(A)-1 (B)0 (C)1 (D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x x y (B))0(5>=x x y (C))0(5>-=x xy(D))0(6>=x xy15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky =2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上,∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD的另一边交于点B,求过A、B两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______. 2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______.3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3 (D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ).(A)①④ (B)② (C)①② (D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______. 2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).(A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300则可以反映y 与x 之间的关系的式子是( ). (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______.7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数表示这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第十七章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)x y 8000=,反比例;(2)xy 1000=,反比例;(3)s =5h ,正比例,ha 36=,反比例;(4)xwy =,反比例.3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A .8.(1)xy 6=; (2)x =-4.9.-2,⋅-=xy 410.反比例. 11.B . 12.D .13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2).14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18x … -4 -3-2 -1 1 2 3 4 … y…134 24-4-2 -34-1 …(1)y =-2;(2)-4<y ≤-1; (3)-4≤x <-1. 19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081.测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A .9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320.测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6.4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x 108(x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天第十七章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

(完整版)人教八年级数学下册同步练习题及答案

(完整版)人教八年级数学下册同步练习题及答案

1第十六章、分式 16.1.1从分数到分式(第一课时)一、课前小测:1、________________________统称为整式.2、23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.二、基础训练:1、分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零; 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 2、有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④23、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1三、综合训练:1、当x______时,分式2134x x +-无意义. 2、当x_______时,分式2212x x x -+-的值为零. 3、当x 取何值时,下列分式有意义?(1) (2)2323x x +-16.1.2分式的基本性质(第二课时)一、课前小测:23+x31.如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x 2. 当_____时,分式4312-+x x 无意义.当______时,分式68-x x 有意义 二、基础训练:1、分式的基本性质为:_________ ___.用字母表示为:_____________________.2、判断下列约分是否正确:(1)c b c a ++=b a , (2)22y x y x --=y x +1, (3)nm n m ++=0。

3、根据分式的基本性质,分式a a b --可变形为( ) A .a a b-- B .a a b + C .-a a b - D .a a b + 4、填空:4 (1) x x x 3222+= ()3+x , (2) 32386b b a =()33a , 5、约分:(1)c ab b a 2263 (2)532164xyz yz x - 三、综合训练:1、通分:(1)231ab 和b a 272 (2)xx x --21和x x x +-21 2、若a =23,则2223712aa a a ---+的值等于______。

人教版数学2022-2023学年八年级下册第十九章正比例函数同步练习题含答案

人教版数学2022-2023学年八年级下册第十九章正比例函数同步练习题含答案

人教版数学2022-2023学年八年级下册第十九章正比例函数同步练习题学校:___________姓名:___________班级:_______________一、填空题1.像y =0.5x +10这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的__________.2.若函数y =(m ﹣2)x +5﹣m 是关于x 的正比例函数,则m =_____. 3.对于正比例函数y=1m mx -,若图像经过第一,三象限,则m=____. 4.已知y 与2x -成正比例,且当1x =时,1y =,则y 与x 之间的函数关系式为______________.5.若两个变量x ,y 间的对应关系可以表示成____的形式,则称y 是x 的一次函数.特别地,当____时,称y 是x 的正比例函数,即____.6.在下列函数中,x 是自变量,y 是因变量,则一次函数有___,正比例函数有___.(将代号填上即可)①1y =+;①22y x x =+;①5y x =;①14y x =-;①1y x= 二、单选题7.下列问题中,两个变量之间成正比例关系的是( ) A .圆的面积S (cm 2)与它的半径r (cm )之间的关系B .某水池有水15m 3,现打开进水管进水,进水速度为5m 3/h ,x h 后这个水池有水y m 3C .三角形面积一定时,它的底边a (cm )和底边上的高h (cm )之间的关系D .汽车以60km/h 的速度匀速行驶,行驶路程y 与行驶时间x 之间的关系 8.下列说法正确的是( )A .面积一定的平行四边形的一边和这边上的高成正比例B .面积一定的平行四边形的一边和这边上的高成反比例C .周长一定的等腰三角形的腰长与它底边的长成正比例D .周长一定的等腰三角形的腰长与它底边的长成反比例 9.正比例函数3y x =-的图象经过( ). A .第一、第二象限 B .第一、第三象限 C .第二、第四象限 D .第三、第四象限10.正比例函数13y x =的图像大致是( )A .B .C .D .11.在同一平面直角坐标系中,函数()20y ax bx a =+≠与y ax b =+的图象可能是( )A .B .C .D .12.下列函数中,正比例函数有( ).(1)2y x =-(2)y =3)1yx =-(4)v =5)213y x =-(6)2y r π=(7)22y x =A .1个B .2个C .3个D .4个三、解答题 13.函数问题:(1)作出y 与x 的函数2y x =的图象①自变量x 的取值范围是____________; ①列表并画出函数图象:①当自变量x 的值从1增加到2时,则函数y 的值增加了____________.(2)在一个变化的过程中,两个变量x 与y 之间可能是函数关系,也可能不是函数关系: 下列各式中, y 是x 的函数的是____________. ①1x y +=; ①1x y +=; ①1xy =; ①221x y +=; 14.用适当的符号表示下列关系: (1)x 的3倍与8的和比x 的5倍大; (2)2x 是非负数;(3)地球上海洋面积大于陆地面积; (4)老师的年龄比你年龄的2倍还大; (5)铅球的质量比篮球的质量大.15.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L .环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L )与时间x (天)的变化规律如图所示,其中线段AC 表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L .从第3天起,所排污水中硫化物的浓度y 与时间x 满足下面表格中的关系:(1)在整改过程中,当0≤x <3时,硫化物的浓度y 与时间x 的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?参考答案:1.解析式 【解析】略 2.5【分析】直接利用正比例函数的定义进而得出答案.【详解】解:①函数y =(m ﹣2)x +5﹣m 是关于x 的正比例函数, ①50m -= ,20m -≠ , 解得:m =5. 故答案为:5.【点睛】本题主要考查了正比例函数的定义,正确把握定义是解题关键. 3.2【分析】根据正比例函数自变量x 的指数为1,且系数不为0即可求出m 的值,再根据图像经过第一、三象限进而舍去不符合要求的m 值即可.【详解】解:由题意可知:110m m ⎧-=⎨≠⎩,解得:2m =±,又图像经过第一、三象限, ①2m =, 故答案为:2.【点睛】本题考查了正比例函数的定义,正比例函数(0)y kx k =≠要求自变量的指数为1,且自变量前面的系数不为0. 4.2y x =-+##2y x =-【分析】根据题意,可设()()20y k x k =-≠ ,将1x =时,1y =,代入即可求解. 【详解】解:根据题意,可设()()20y k x k =-≠ , ①当1x =时,1y =,①()121k -= ,解得:1k =- ,①y 与x 之间的函数关系式为()22y x x =--=-+ . 故答案为:2y x =-+【点睛】本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意()()20y k x k =-≠ 是解题的关键.5. y =k x +b (k ,b 是常数,k ≠0) b =0 y =kx (k ≠0) 【解析】略 6. ①①① ①【分析】根据一次函数及正比例函数的定义,即可一一判定.【详解】解:①1y =+是一次函数,不是正比例函数; ①22y x x =+不是一次函数;①5y x =是正比例函数,因为正比例函数一定是一次函数,所以还是一次函数; ①14y x =-是一次函数;①1y x= 故答案为:①①①,①.【点睛】本题考查了一次函数及正比例函数的定义,熟知正比例函数是一次函数的特例是解决本题的关键. 7.D【分析】分别列出每个选项的解析式,根据正比例函数的定义判断即可. 【详解】解:A 选项,S =πr 2,故该选项不符合题意; B 选项,y =15+5x ,故该选项不符合题意; C 选项,①12ah =S , ①a =2Sh,故该选项不符合题意; D 选项,y =60x ,故该选项符合题意; 故选:D .【点睛】本题考查了正比例函数的定义,掌握形如y =kx (k ≠0)的函数是正比例函数是解题的关键. 8.B【分析】利用正比、反比的性质进行判断即可.【详解】解:面积一定的平行四边形的一边和这边上的高成反比例,故A 错误,B 正确; 周长一定的等腰三角形的腰长与它底边的长成一次函数,故C 、D 错误. 故选:B .【点睛】本题考查了正比、反比的性质,平行四边形的面积公式,等腰三角形的腰、底、周长的关系,解决本题的关键是明确正比与反比的意义. 9.C【分析】根据正比例函数y =k x (k ≠0)k 的符号即可确定正比例函数y =-3x 的图象经过的象限.【详解】解:在正比例函数y =-3x 中, ①k =-3<0,①正比例函数y =-3x 的图象经过第二、四象限, 故选:C【点睛】本题主要考查了正比例函数的性质,熟记“当k <0时,正比例函数y =kx (k ≠0)的图象经过第二、四象限”是解决问题的关键. 10.A【分析】根据正比例函数的图像和性质,即可得出正确选项.【详解】因为正比例函数是一条经过原点的直线,且k >0,经过一三象限,故排除C 、D 选项;当x =1时,13y =,故选A .【点睛】本题考查了正比例函数的图像和性质,熟练掌握性质和图像是本题的关键. 11.A【分析】根据二次函数和一次函数图象的性质依次进行判断即可.【详解】解:函数()20y ax bx a =+≠经过原点(0,0),则B 错误;当a <0时,y ax b =+经过二、四象限,则D 错误; 当02ba->时,b >0, y ax b =+经过一、二、四象限,则C 错误; 当a >0,02ba->时,b <0, y ax b =+经过一、三、四象限,则A 符合题意. 故选:A .【点睛】本题考查二次函数与一次函数的综合,熟练掌握函数图象的性质是解决问题的关键. 12.C【分析】利用正比例函数定义分析即可.【详解】解:(1)2y x =-是正比例函数,(2)y =x 次数不是1,不是正比例函数,(3)1yx =-是反比例函数,不是正比例函数,(4)=v 是正比例函数,(5)213y x =-是一次函数,不是正比例是函数,(6)2y r π=正比例是函数,(7)22y x =是二次函数,不是正比例函数,所以共3个 故选:C .【点睛】此题主要考查了正比例函数定义,关键是掌握形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数.13.(1)①全体实数;①4,2,0,2,4;图见解析;①2 (2)①①【分析】(1)①根据2y x =求出x 的取值范围即可;①根据解析式填出列表,并在坐标系中描出各点,画出函数图象即可; ①把自变量x 的值从1增加到2时,代入函数解析式中求解即可; (2)根据函数的关系式的定义来求解即可. (1)解:①在函数2y x =中,x 的取值范实为全体实数, 故答案为:全体实数; ①列表如下:函数2y x =变形为2y x =或2y x =-,画图如下:①当1x =时,2y =,当2x =时,4y =,所以当自变量x 的值从1增加到2时,则函数y 的值增加了2; (2)解:在①1x y +=,①1x y +=,①1xy =,①221x y +=中,①①中对于x 的每一个值,y 都有唯一确定的值与它对应,①①中对于x 的每一个值,y 都有两个值与它对应,所以①①中y 是x 的函数,①①中y 不是x 的函数. 故答案为:①①.【点睛】本题主要考查了函数关系式,自变量取值范围,函数图象的画法,理解相关知识是解答关键.14.(1)385x x +>;(2)20x ≥;(3)12S S >(1S 表示地球上的海洋面积,2S 表示陆地面积);(4)2x y >(x 表示老师的年龄,y 表示你的年龄);(5)12m m >(1m 表示铅球的质量,2m 表示篮球的质量)【分析】(1)直接利用已知关系得出不等式;(2)直接利用非负数的定义(大于或等于0的数是非负数)得出不等式; (3)利用未知数表示出海洋与陆地面积进而得出答案; (4)利用未知数表示出老师与自己的年龄进而得出答案; (5)利用未知数表示出铅球与篮球的质量进而得出答案. 【详解】解:(1)由题意可得:3x +8>5x ; (2)由题意可得:x 2≥0;(3)设地球上海洋面积为1S ,陆地面积为2S ,根据题意可得:1S >2S ; (4)设老师的年龄为x ,我年龄为y ,根据题意莪哭的:x >2y ; (5)设铅球的质量为1m ,篮球的质量为2m ,根据题意可得:1m >2m .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键. 15.(1)线段AC 的函数表达式为:y =﹣2.5x +12(0≤x <3); (2)y =13.5x(x ≥3); (3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg /L ,理由见解析.【分析】(1)设线段AC 的函数表达式为:y =k x +b ,把A 、C 两点坐标代入求出k 、b 的值即可;(2)设函数的表达式为:y =kx,把C 点坐标代入,求出k 的值即可;(3)根据(2)所得表达式,求出x =15时,y 的值与硫化物浓度允许的最高值比较即可. (1)解:由前三天的函数图像是线段,设函数表达式为:y =kx +b把(0,12)(3,4.5)代入函数关系式,得124.53bk b =⎧⎨=+⎩ , 解得:k =﹣2.5,b =12①当0≤x <3时,硫化物的浓度y 与时间x 的函数表达式为:y =﹣2.5x +12; (2)解:当x ≥3时,设y =kx,把(3,4.5)代入函数表达式,得4.5=3k,解得k =13.5,①当x ≥3时,硫化物的浓度y 与时间x 的函数表达式为:y =13.5x; (3)解:能,理由如下: 当x =15时,y =13.515=0.9, 因为0.9<1,所以该企业所排污水中硫化物的浓度,能在15天以内不超过最高允许的1.0mg /L . 【点睛】本题考查一次函数和反比例函数,熟练掌握根据坐标确定解析式的一次项系数和常数项是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1 分式同步测试题1、式子①x 2 ②5y x + ③a −21 ④1−πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13−+x a x 中,当a x −=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31−≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1−x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (XXXX 年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21−≠−≠x x 且 C.1−≠x D. 1−≠x 且0≠x6.当_____时,分式4312−+x x 无意义. 7.当______时,分式68−x x 有意义. 8.当_______时,分式534−+x x 的值为1. 9.当______时,分式51+−x 的值为正. 10.当______时分式142+−x 的值为负. 11.要使分式221y x x −+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+−−x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn−+2m n m −m n m −m n m +m n m n−+13.XXXX-XXXX 年某地的森林面积(单位:公顷)分别是321,,S S S ,XXXX 年与XXXX 年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用4.(辨析题)下列各式a π,11x +,15x+y ,22a b a b −−,-3x 2,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +−.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 7.(探究题)当x______时,分式2134x x +−无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x −+−的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +−的值为1; 当x_______时,分式435x x +−的值为-1. 课后系统练 基础能力题10.分式24x x −,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a −,④1x π−中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +−中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x −+的值为正;当x______时,分式241x −+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +−B .211m m −+C .211m m +− D .211m m ++15.使分式||1x x −无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1拓展创新题16.(学科综合题)已知y=123x x −−,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +−−−的值.22.(XXXX .杭州市)当m=________时,分式2(1)(3)32m m m m −−−+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________.3.把下列各组分数化为同分母分数:(1)12,23,14;(2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x yx y−+的各项系数化为整数,分子、分母应乘以(• )A.10 B.9 C.45 D.906.(探究题)下列等式:①()a bc−−=-a bc−;②x yx−+−=x yx−;③a bc−+=-a bc+;④m nm−−=-m nm−中,成立的是()A.①② B.③④ C.①③ D.②④7.(探究题)不改变分式2323523x xx x−+−+−的值,使分子、分母最高次项的系数为正数,正确的是(• )A.2332523x xx x+++−B.2332523x xx x−++−C.2332523x xx x+−−+D.2332523x xx x−−−+题型2:分式的约分8.(辨析题)分式434y xa+,2411xx−−,22x xy yx y−++,2222a abab b+−中是最简分式的有()A.1个 B.2个 C.3个 D.4个9.(技能题)约分:(1)22699x xx++−;(2)2232m mm m−+−.题型3:分式的通分10.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a −++,261a −.课后系统练基础能力题11.根据分式的基本性质,分式a a b−−可变形为( ) A .a a b −− B .a a b + C .-a a b − D .a a b + 12.下列各式中,正确的是( )A .x y x y −+−−=x y x y −+;B .x y x y −+−=x y x y −−−;C .x y x y −+−−=x y x y +−;D .x y x y −+−=x y x y−+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c −−=−− D .221x y x y x y −=−+ 14.(XXXX ·天津市)若a=23,则2223712a a a a −−−+的值等于_______. 15.(XXXX ·广州市)计算222a ab a b+−=_________. 16.公式22(1)x x −−,323(1)x x −−,51x −的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x −=+−,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.20.(妙法求解题)已知x+1x =3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x+中的、都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小9倍2、把分式xy yx +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(XXXX 年株洲市)若使分式2xx −有意义,则x 的取值范围是( )A .2x ≠B .2x ≠−C .2x >−D .2x < 5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分)1、分式392−−x x 当x __________时分式的值为零.2、当x __________时分式x x 2121−+有意义.当________________x 时,分式8x 32x +−无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=−+a a . 4、约分:①=ba ab 2205__________,②=+−−96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。

6、a>0>b>c,a+b+c=1,M=ac b +,N=b c a +,P=c b a +,则M 、N 、P 的大小关系是___. 三、解答题(共分) 1、(分)2、(分)已知22221111x x x y x x x x+++=÷−+−−。

相关文档
最新文档