七年级数学上册易错题专项练习汇总
七上数学错题
七上数学错题标题:七年级上册数学常见错题及解析引言:数学是一门需要理解和运用的学科,而在学习过程中,学生常常会遇到一些容易出错的题目。
本文将详细介绍七年级上册数学中常见的错题,并给出解析,希望能帮助同学们更好地理解和掌握数学知识。
一、整数运算错误:1. 错题:计算 6 - 9 = ?解析:在整数运算中,减法可以转化为加法,即 6 - 9 可以转化为6 + (-9)。
因此,答案为 -3。
2. 错题:计算 -2 × 3 = ?解析:在整数乘法中,两个负数相乘的结果是正数。
因此,-2 × 3 = -6。
二、分数运算错误:1. 错题:计算 1/3 + 1/4 = ?解析:在分数相加时,需要找到两个分数的公共分母。
对于1/3和1/4,最小公倍数是12。
因此,1/3 + 1/4 = 4/12 + 3/12 = 7/12。
2. 错题:计算2/5 × 3/4 = ?解析:在分数相乘时,直接将两个分数的分子相乘,分母相乘。
因此,2/5 × 3/4 = 6/20 = 3/10。
三、代数式化简错误:1. 错题:化简表达式 2x + 3x + 4x = ?解析:在代数式化简中,相同字母的系数相加即可。
因此,2x + 3x + 4x = (2+3+4)x = 9x。
2. 错题:化简表达式 5a - 2b + 3a + b = ?解析:在代数式化简中,相同字母的系数相加,不同字母的项保持不变。
因此,5a - 2b + 3a + b = (5+3)a + (-2+1)b = 8a - b。
四、几何图形计算错误:1. 错题:计算矩形的面积,长为4cm,宽为3cm,求面积。
解析:矩形的面积可以通过长乘以宽得到。
因此,面积为4cm × 3cm = 12cm²。
2. 错题:计算圆的周长,半径为6cm,求周长。
解析:圆的周长可以通过直径乘以π得到。
因此,周长为2 × 6cm × π ≈ 37.68cm。
人教版七年级数学上册易考易错题集
七年级数学上册易考易错题1 让学生回忆本学期所学内容哪些知识在运用时较容易出错并列举例子。
2要求学生能够在所举易错例子中找出错误原因并能写出正确答案3加强学生学会发现问题和解决问题的能力同时培养学生多积累多总结的习惯教学过程一确定有效数字时容易忽略0而出错。
例1 近似数0.40350有几个有效数字?常见错解近似数0.40350 有3个有效数字分别是4,3,5错解分析正确答案二应用乘法分配律时运算符号出错例2 计算(-48)*(1-1/12+3/4)常见错解原式=-48-4+36=-16错解分析正确答案三违背有理数的运算顺序出错例3 计算-4-(-12)÷(-3)常见错解原式=-4+12÷(-3)=8÷(-3)=-8/3错解分析正确答案四对乘方的意义理解不透而出错例4 计算-2^2-50÷(-5)^2-1常见错解原式=4-50÷25-1=4-2-1=1错解分析正确答案五错用运算律而出错例五计算12÷(1/2-1/4+1/6)常见错解原式=12÷1/2-12÷1/4+12÷1/6=24-48+72=48错解分析正确答案六确定单项式的系数和次数出错例六单项式-2a^2b∏/3的系数是__次数是__常见错解-2/3,4次错解分析正确答案七同类项的概念把握不准而出错例七判断下列各项是否是同类项-x^2y与 3yx^2 (2)2^3 与 x^3常见错解(1)不是(2)是错解分析正确答案八去括号法则理解不透而出错例八计算 3x-[x-2(x-y)]常见错解1原式=3x-(x-2x-2y)=3x-x+2x-2y=4x-2y常见错解2原式=3x-(x-2x+y)=3x-(-x+y)=3x+x-y=2x-y 错解分析正确答案九移项没变号而出错例九解方程 2x-3=x+4常见错解 2x-x=4-3X=1错解分析正确答案十去括号没变号而出错例10 解方程2*(x-3)-3*(x+1)=6常见错解 2x-3-3x+3=62x-3x=6-x=6X=-6错解分析正确答案十一去分母时出错例11 解方程(4-x)/3=1-(x-3)/5常见错解1 5*(4-x)=1-3*(x-3)20-5x=1-3x+9-5x+3x=1+9-20-2x=-10X==5常见错解2 5*(4-x)=15-3x-920-5x=15-3x-9-5x+3x=15-9-20-2x=-14X=7错解分析正确答案随堂练习(1)近似数0.302050有几个有效数字?(2)计算(-48)*(1-1/6+3/4)(3)计算-6-(-24)÷(-3)(4)计算-3^2-50÷(-5)^2-1(5)计算2÷(1/2-1/4+1/6)(6)单项式(-3ab^3)/5的系数和次数分别是什么(7)判断下列各组十分是同类项(1)-3a^2b 与 10ba^2 (2) 3^2与 x^2(8)计算3a-[a-2(a-b)]+b(9)解方程 3x-3=x+1(10)解方程 3(x-3)-2(2x-1)=6(11)解方程 (4-x)/3=(x-3)/5-1小结我们这节课有什么收获?。
初一上册数学易错题汇总
第一章 走进数学世界 略 第二章 有理数单元测试题一.判断题:1.有理数可分为正有理数与负有理数 . ( ) 2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( ) 3.两个有理数的差一定小于被减数. ( ) 4.任何有理数的绝对值总是不小于它本身. ()5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( ) 二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 . 2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 . 4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = .5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 . 6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 . 三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdba cd p的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a <<C .a a a <<21D .aa a 12<<4.下列说法中正确的是 ( ). A. 若,0>+b a 则.0,0>>b a B. 若,0<+b a 则.0,0<<b a C. 若,a b a >+则.b b a >+ D. 若b a =,则b a =或.0=+b a 5.ccb b a a ++的值是 ( ) A .3± B .1± C .3±或1± D .3或16.设n 是正整数,则n)1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2 四.计算题 1.[]24)3(2611--⨯-- 2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+ba abab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×1 52-32=8×2 72-52=8×3 92-72=8×4…… 观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.八、已知当1=x 时,代数式42323+-+cx bx ax 的值为8,代数式15223--+cx bx ax 的值为-14,那么当1-=x 时,代数式645523+--cx bx ax 的值为多少?九、某种海产品,若直接销售,每吨可获利润1200元;若粗加工后销售,每吨可获利润5000元;若精加工后销售,每吨可获利润7500元.某公司现有这种海产品140吨,该公司的生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在15天内将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没有来得及进行精加工的直接销售; 方案三:将一部分进行精加工,其余的进行粗加工,并恰好15天完成. 你认为选择哪种方案可获利润最多,为什么?最多可获利润多少元?十、将一列数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中排列规律知,“峰1”中峰顶位置(C 的位置)是4,那么,“峰202”中C 的位置的有理数是 .“峰12+n ”中B 的位置的数是 (用n 表示);峰1 峰2 峰n……-7-12A第三章 整式的加减(一)一、填空题:(每小题3分,共24分) 1.代数式-7,x,-m,x 2y,2x y +, -5ab 2c 3, 1y 中,单项式有______个,其中系数为1 的有_____.系数为-1的有_____,次数是1的有________.2.把4x 2y 3,-3x 2y 4,2x,-7y 3,5 这几个单项式按次数由高到低的顺序写出是_________. 3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3x 2y-4xy 2的值,把前面两项放在前面带有“+”号的括号里, 后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光盘在租出的第n 天(n 是大于2的自然数),应收租金______元.7.如果m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.8.设M=3a 3-10a 2-5,N=-2a 3+5-10a,P=7-5a-2a 2,那么M+2n-3P=_________.M-3N+2P=_______. 9.已知a 、b 互为相反数,c 、d 互为倒数,试求:-(a+b+cd )+(a+b )2008+(-cd )2007的值_______.二、选择题:(每小题3分,共24分) 9.下列判断中,正确的个数是( )①在等式x+8=8+x 中,x 可以是任何数;②在代数式18x +中,x 可以是任何数; ③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8 A.0个 B.1个 C.2个 D.3个10.一种商品单价为a 元,先按原价提高5%,再按新价降低5%,得到单价b 元,则a 、b 的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y │+│y-z │+│z-x │的值为( ) A.2x-2z B.0 C.2x-2y D.2z-2x12.对于单项式-23x 2y 2z 的系数、次数说法正确的是( ) A.系数为-2,次数为8 B.系数为-8,次数为5 C.系数为-23,次数为4 D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项 ②4a 2b 与-ba 2不是同类项 ③-5x 6与-6x 5是同类项 ④-3(a-b)2与(b-a)2可以看作同类项 A.1个 B.2个 C.3个 D.4个14.已知x 是两数,y 是一位数,那么把y 放在x 的左边所得的三位数是( ) A.yx B.x+y C.10y+x D.100y+x15.如果m 是三次多项式,n 是三次多项式,则m+n 一定是( ) A.六次多项式 B.次数不高于三的整式 C.三次多项式 D.次数不低于三的多项式 16.若2ax 2-3b x+2=-4x 2-x+2对任何x 都成立,则a+b 的值为( ) A.-2 B.-1 C.0 D.1 三、解答题:(共52分) 17.如果单项式2amx y 与235a nx y --是关于x 、y 的单项式,且它们是同类项.(1)求2002(722)a -的值.(2)若2amx y 235a nx y --=0,且xy ≠0,求2003(25)m n -的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26y -=-. (2)已知A=x 2+4x-7,B=-12x 2-3x+5,计算3A-2B.(3)已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn)-7mn-5]的值.(4)若3x 2-x=1,求6x 3+7x 2-5x+1994的值.19.某同学做一道数学题,误将求“A-B ”看成求“A+B ”, 结果求出的答案是3x 2-2x+5.已知A=4x 2-3x-6,请正确求出A-B.(8分)20.探索规律(8分)(1)计算并观察下列每组算式: 88____55____1212____,,79____46____1113____⨯=⨯=⨯=⎧⎧⎧⎨⎨⎨⨯=⨯=⨯=⎩⎩⎩ (2)已知25×25=625,那么24×26=__________.(3)从以上的过程中,你发现了什么规律,你能用语言叙述这个规律吗?你能用代数式表示设这个规律吗?21. (8分)有理数a 、b 、c 在数轴上对应点为A 、B 、C,其位置如图所示, 试去掉绝对值符号并合并同类项: │c │-│c+b │+│a-c │+│b+a │.22.某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费, 然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6 元(本题的通话均指市内通话).若一个月内通话x 分钟,两种方式的费用分别为y1 元和y2元.(8分) (1)用含x 的代数式分别表示y1和y2,则y 1=________,y 2=________. (2)某人估计一个月内通话300分钟,应选择哪种移动通讯合算些?23、已知当1=x 时,代数式42323+-+cx bx ax 的值为8,代数式15223--+cx bx ax 的值为-14,那么当1-=x 时,代数式645523+--cx bx ax 的值为多少?24、已知210,x x --=求3222007x x -++的值。
2024版七年级上册数学易错题综合练习
2024版七年级上册数学易错题综合练习专业课试题部分一、选择题(每题2分,共30分)1. 一个三位数的十位和百位数字相同,且都不为零,个位数字比十位数字大2,这个三位数是()A. 255B. 266C. 247D. 2332. 下列各数中,最小的是()A. |3|B. |3|C. 3^2D. (3)^23. 已知a+b=5,ab=3,则a^2+b^2的值为()A. 7B. 16C. 23D. 324. 下列各式中,正确的是()A. |a|=aB. |a|=aC. |a|=±aD. |a|≥a5. 有理数a、b在数轴上的对应点如图所示,则()A. |a|>|b|B. |a|<|b|C. a<bD. a>b二、判断题(每题2分,共30分)6. 互为相反数的两个数的和为0。
()7. 两个负数相乘,积一定是正数。
()8. 任何两个有理数都可以比较大小。
()9. |3|=3。
()10. 2^3和3^2相等。
()三、填空题(每题2分,共30分)11. 若|a|=5,则a=______。
12. 若a+b=7,ab=3,则a=______,b=______。
13. 已知a、b互为相反数,且|a|=3,则a=______,b=______。
14. 若2x3=7,则x=______。
15. 若x^2=16,则x=______。
四、简答题(每题6分,共30分)16. 请简要说明有理数的乘法法则。
17. 请举例说明相反数的概念。
18. 请解释绝对值的意义。
19. 请简述解一元一次方程的基本步骤。
20. 请举例说明如何用数轴比较两个有理数的大小。
五、应用题(每题10分,共50分)21. 某数的2倍与3的差是7,求这个数。
22. 已知一个数的平方是25,求这个数的相反数。
23. 一个数的3倍减去5等于这个数的2倍加上3,求这个数。
24. 甲、乙两人年龄之和为35岁,甲的年龄是乙的2倍,求甲、乙两人的年龄。
七年级上册数学易错题精选及讲解答案
有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于而大于3的整数是________.错解 (1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解 (1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解 (1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解 |-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解 (1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解 (1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解 (1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解 (1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解 (1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解 (1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)0;(2).错解(1)0=×106;(2)=×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数有4个有效数字.(2)用四舍五入法,把精确到千分位的近似数是.(3)由四舍五入得到的近似数和是一样的.(4)由四舍五入得到的近似数万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知=,那么=,=;(2)已知=,那么=4097,=;(3)已知=,那么2=116300;(4)近似数×104精确到百分位,它的有效数字是2,4;(5)已知=,x3=,则x=.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)×108;(2)×10-5.41.(1)有3个有效数字;(2);(3)不一样;(4)千位.42.(1)2536,;(2)409700,;(3)341;(4)百位,有效数字2,4,0;(5).整式的加减例1 下列说法正确的是()A. 的指数是0B. 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D。
初一数学上册易错题整理完整版(值得收藏)
初一数学上册易错题整理完整版有理数易错题练习(一)一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个.⑼ 若0,a =则0ab=.⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________.⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b⋅=-,则a 、b 的关系是________.⑾若a b <0,bc<0,则ac 0. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.⑽已知abcd≠0,试说明ac、-ad、bc、bd中至少有一个取正值,并且至少有一个取负值.⑾已知a<0,b<0,c>0,判断(a+b)(c-b)和(a+b)(b-c)的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+----⎪⎝⎭⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭⑸221.430.57()33⨯-⨯-⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数易错题练习(二)一.多种情况的问题(考虑问题要全面) (1)已知:,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择 (1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
(完整)七年级上册数学易错题精选
有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.整式的加减例1 下列说法正确的是()A. b 的指数是0B. b 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D 。
七年级上册数学错题整理
七年级上册数学错题整理一、有理数1. 等式$-x-13=-5$的解为多少?2. 若$x+5=0$,求$x-2$的值。
3. 在有理数集中,以下式子中正确的是:$(-2)^2=2^2$。
4. 取反数的概念掌握不够熟练,解决方法是像$-\dfrac{3}{5}$的相反数是$\dfrac{3}{5}$,$-(-\dfrac{3}{5})=\dfrac{3}{5}$,还可以做$\dfrac{-3}{5}=\dfrac{3}{5}\cdot (-1) $推广到一般情况,即$-\dfrac{a}{b}=\dfrac{a}{b}\cdot(-1)$。
二、代数式与方程1. 若$2x-3=7x-2$,求$x$。
2. 若$\dfrac{3}{x}=\dfrac{5}{8}$,求$x$。
3. 如果$x=2$时,$2x+1=a$,求$a$。
4. 此章涉及到求解方程和代数式化简,需要掌握一些基本的方法和公式。
比如移项法,合并同类项,分配律,平方差公式等。
三、图形的初步认识1. 若正方形的一条边的长度为$x$,那么正方形周长的长度为多少?2. 如果一条边长为$x$的正方形的面积是$25$,求$x$的解。
3. 关于平行线和平面内的角的知识点没有掌握好,如何定义平行线,平面内的角的定义和性质,需要及时补充。
4. 直角三角形中,直角所对的边叫做斜边,需要注意该术语的含义。
四、分数的初步认识1. 计算$\dfrac{2}{3}+\dfrac{3}{4}$。
2. 计算$\dfrac{3}{4}-\dfrac{1}{3}$。
3. 无论是加减乘除,涉及到分数的化简操作时,需要将分数化为通分分数或化为约分后更简便的形式。
4. 考虑到分数的本质即为除法,可以通过将除数与被除数颠倒后,乘以倒数的形式来进行计算。
五、一次函数初步1. 已知函数$f(x)=2x+3$,求$f(-2)$的值。
2. 已知函数$f(x)=\dfrac{1}{2}x-1$,求当$x=6$时,$f(x)$的值。
七年级数学上册易错题100道
人教版七年级数学上册易错题100道相交线和平行线易错题(28题)1、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A 、第一次向左拐300,第二次向右拐300 ;B 、第一次向右拐500,第二次向左拐1300;C 、第一次向右拐500,第二次向右拐1300 ;D 、第一次向左拐500,第二次向左拐1300. 2、如图1,AB ∥CD ,那么∠A+∠C+∠AEC =( ) A .360° B .270° C .200° D .180°(1) (2) (3) 3、如图2所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D 4 如图3所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( ) A. 3对 B. 4对 C. 5对 D. 6对 5 观察图形,下列说法正确的个数是( ) ①过点A 有且只有一条直线AC 垂直于直线l ; ②线段AC 的长是点A 到直线l 的距离。
③线段AB 、AC 、AD 中,线段AC 最短,根据是垂线段最短; ④线段AB 、AC 、AD 中,线段AC 最短,根据是两点之间线段最短; A .1个 B .2个 C .3个 D .4个6、下列说法中正确的是( )A .三角形三条高所在的直线交于一点。
B .有且只有一条直线与已知直线平行。
C .垂直于同一条直线的两条直线互相垂直。
EDCBA4321E DCBACD .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
7、如图,DH ∥EG ∥BC ,且DC ∥EF ,那么图中和∠1相等的角的个数是( )A 、2B 、4C 、5D 、6H C1G D FEB A8 下列语句:①直线外一点到这条直线的垂线段叫做点到直线的距离;②若两条直线被第三条截,则内错角相等;③过一点有且只有一条直线与已知直线平行,真命题有( )个 A .1 B .2 C .3 D .以上结论皆错9 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138 、;B . 都是10 ;C . 42138 、或4210 、;D . 以上都不对10、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补D .平移变换中,各组对应点连成两线段平行且相等11、如图5,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180 B .270 C .360 D .54012、已知:如图6,AB//CD ,则图中α、β、γ三个角之间的数量关系为( ).A 、α+β+γ=360︒B 、α+β+γ=180︒C 、α+β-γ=180︒D 、α-β-γ=90︒abMP N 1 23 图5A B 120°α25°C D15、把“等角的补角相等”写成“如果…,那么…”形式 16、如图7,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = 17、如图8,把长方形纸片沿折叠,使,分别落在,的位置,若,则等于图7 图818、如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数.CDFEBA19、如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠DNF ,∠1=∠2,那么MG ∥NP ,试写出推理过程.图6ABCDE20 如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论无需证明.APB DC E21如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?22 如图,已知直线 1l ∥2l ,且 3l和1l 、2l 分别交于A 、B 两点,点P 在AB 上。
数学初一上学期期末易错题(附答案)
数学初一上学期期末易错题一、计算题1.解方程:(1)0.1−0.2x 0.3−1=0.7−x 0.4(2)3x ﹣7(x ﹣1)=3+2(x+3)2.解方程(1)0.1x+0.030.2−0.2x−0.030.3+34=0 (2)2014−x 2013+2016−x 2015=2018−x 2017+2020−x20193.若有理数a 、b 、c 在数轴上对应的点A 、B 、C 位置如图 化简 |c|−|c −b|+|a +b|+|b|4.已知2x m y 2与-3xy n 是同类项 试计算下面代数式的值:m -(m 2n +3m -4n)+(2nm 2-3n). 5.解关于x 的方程mx-1=nx6.计算: −12016×[(−2)5−32−514÷(−17)]−2.57.计算 |13−12|+|14−13|+|15−14|+⋯|12002−12001| |8.−(−3)2−[3+0.4×(−112)]÷(−2)9.如果1<x <2 求代数式 |x−2|x−2−|x−1|1−x +|x|x 的值.10.化简 | |x−1|−2|+|x+1| 11. 解下列方程:(1)3x+2=2x-5 (2)3(2x+1)=4(x-3)(3)13(4−3x)=12(5x −6)(4)313x +123=511x +17(5)2x −23(x −2)=13[x −12(3x +1)](6)12{12[12(12x −2)−2]−2}−2=2 12. 计算下列各式(1)(3x 2+2x −3)(2x −1)(2)(4x 4−6x 2+2)(5x 3−2x 2+x −1) (3)(a +b)2−(a −b)2 (4)(a +b)3−3ab(a +b)(5)(a +b +c)(a 2+b 2+c 2−ab −bc −ca) (6)(3x 3−4x 2+5x −1)÷(x 2+3x −1) (7)(5x 3−7x +1)÷(2x +1) (8)(x 3+1)÷(x +1)(9)(a 2−b 2)÷(a 2+2ab +b 2)×(a 3+b 3) (10)(7x 2+3x)÷(2x +1)×(6x +3)÷(7x +3)13.观察 11×2 + 12×3 =(1- 12 )+( 12 - 13 )=1- 13 = 23(1)计算:11×2 + 12×3 + 13×4 +……+ 12013×2014 = (2)计算: 11×3+13×5+15×7+⋯…+199×10114.先化简 再求值.(1)2−(3x −2)−x 2 其中 x =1(2)2(12x 2−3xy −y 2)−2(−2x 2−7xy +3y 2) 其中 x y 满足 |x −2|=−√y −2x15.已知 |a|a + |b|b+ |c|c =-1 试求 ab |ab| + bc |bc| + ca |ca| + abc|abc| 的值. 16.试证明: (x +y −2z)3+(y +z −2x)3+(z +x −2y)3 = 3(x +y −2z)(y +z −2x)(z +x −2y)17.若 a <0 试化简 2a−|3a|||3a|−a|18.已知 |a|=523,|b|=113求a-b 的值19.解关于x 的方程 x−a b −x−b a =b a 其中 a ≠0,b ≠0,a ≠b20.若 x <0 化简 ||x|−2x||x−3|−|x|二、解答题21.已知关于x 的方程3a(x+2)=(2b-1)x+5有无数多个解 求a 与b 的值.22.数字1、2、3、4、5及6可组成不同组合的三个两位数 且每个数字恰好用一次.把每组合的三个两位数相加 写出全部由此得到的和.(例如 因为12+34+56=102 所以102是其中一个得到的和.)23.已知a 、b 、c 为有理数 且满足a=8-b c 2=ab-16.求a 、b 、c 的值.24.已知线段AB=10cm 直线AB上有一点C 且BC=4cm M是线段AC的中点求AM的长.25.一项工程甲单独做15天完工乙单独做20天完工丙单独做24天完工.现在先让甲、乙合做5天剩下工程由丙一个人完成.丙需做多少天?26.设(ax3−x+6)(3x2+5x+b)=6x5+10x4−7x3+13x2+32x−12求a与b的值27.8点20分时针与分针所成的角是多少度?28.已知A B C三点在同一条直线上AB=16.D是BC中点并且AD=12 求BC。
人教版七年级数学上册知识点与易错题汇总
精品基础教育教学资料,仅供参考,需要可下载使用!七年级数学(上)易错题及解析(1)(认真分析,找出易错原因)1、近两年,国际市场黄金价格涨幅较大,中国银行推出“金御鼎”的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为280元/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六、星期日休市)问:(1)本周星期三黄金的收盘价是多少?(2)本周黄金收盘时的最高价、最低价分别是多少?(3)上周,小王以周五的收盘价280元/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?考点:有理数的混合运算;正数和负数.专题:应用题;经济问题.分析:根据上表和题意可列表解答:解:(1)280+(+7)+(+5)+(-3)=289(元/克)(2)最高价是292元/克;最低价是283元/克(3)291×1000×(1-5‰-3‰)-280×1000×(1+5‰)=7272(元)答:赚了7272元.(若分步列式,计算正确,可酌情给分)点评:本题考查有理数的混合运算.解决本题的关键是理解题意,根据题意写出算式.2、每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?考点:正数和负数;有理数的加法.专题:应用题;图表型.分析:(1)由题意可知每袋大米的标准重量为50千克,超过标准重量的记为正数,不足的记为负数,然后相加即可;(2)由题(1)可知10袋大米总计超过5.4千克,然后用10×50+5.4千克即可.解答:解:(1)与标准重量比较,10袋大米总计超过1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量3、小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是15;。
七年级上册数学错题集
七年级上册数学错题集1、若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8 乘以-1,不等号改向 -8<4x-28<0加上28 20<4x<28 除以4 5<x<7x是整数所以x=6 4x+20=44所以有6间宿舍,44人2、甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元. x+100=2*(y-100) 6*(x-10)=y+10 x=40 y=1703、小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x 设路程为单位1,则:80(1\2x+x)=1 解得x=1\120 所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4、一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+20 10X=70-20 X=5 答:老鼠每秒跑5米。
5、一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?设甲乙合作一起还需要x天完成,总工程为1,甲先做了2天,他完成了总工程的2*1/10=1/5 那么此时还剩下为1-1/5=4/5 ,那么就有了(1/10+1/6)*x=4/5 解得x=3 ,即一起工作3天完成整个工作。
七年级上册数学易错题整理
七年级上册数学易错题整理七年级上册数学易错题1、一个数的平方是81,那么这个数是()。
2、用四舍五入法得到的近似数是2.003万,关于这个数下列说法正确的是()A.它精确到万分位B.它精确到0.001 C.它精确到万位D.它精确到十位。
3、说法正确的是()A.带根号的数是无理数B.无理数就是开方开不尽而产生的数C.无理数是无限小数D.无限小数是无理数。
4、81的算术平方根是()A.±81B.±9C.9D.3.5、多项式-2a²b+3x²-π/5的项数和次数分别为()A.3,2B.3,5C.3,3D.2,3.6、已知9x⁴和3n²是同类项,则n的值是()A.2B.4C.2或4D.无法确定。
7、已知-1<y<3,化简|y+1|+|y-3|=()A.4B.-4C.2y-2D.-2.8、已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为()。
9、下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数。
10、___销售甲、乙两种书籍,分别卖得1560元和1350元,其中甲种书籍盈利25%,而乙种书籍亏本10%,则这一天___共盈亏情况为()A.盈利162元B.亏本162元C.盈利150元D.亏本150元。
11、下列四种说法:①是整数;②是自然数;③是偶数;④是非负数。
其中正确的有()A.4个B.3个C.2个D.1个。
12、下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数。
13、在数轴上,与表示数-1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或-3.14、数轴上表示整数的点称为整点。
某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003B.2003或2004C.2004或2005D.2005或2006.15、点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________。
初一数学上册易错题整理完整版(值得收藏)
初一数学上册易错题整理完整版有理数易错题练习(一)一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个.⑼ 若0,a =则0ab=.⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________.⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b⋅=-,则a 、b 的关系是________.⑾若a b <0,bc<0,则ac 0. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.⑽已知abcd≠0,试说明ac、-ad、bc、bd中至少有一个取正值,并且至少有一个取负值.⑾已知a<0,b<0,c>0,判断(a+b)(c-b)和(a+b)(b-c)的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+----⎪⎝⎭⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭⑸221.430.57()33⨯-⨯-⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数易错题练习(二)一.多种情况的问题(考虑问题要全面) (1)已知:,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择 (1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
七年级上册数学易错题题集
初一上册数学易错题1一、有理数部分1、向东行进-30米表示的意义是( ) A 、向东行进30米 B 、向东行进-30米 C 、向西行进30米 D 、向西行进-30米2.下列说法中正确的是 ……………………………………………………………〖 〗 A .有最小的负整数,有最大的正整数 B .有最小的负数,没有最大的正数 C .有最大的负数,没有最小的正数 D .没有最大的有理数和最小的有理数 3.给出下列说法:①0是整数;②312 是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的有………………………………………………………………………〖 〗A .1个B .2个C .3个D .4个 4、数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( ) A.7 B.3 C.-7 D.-2 5.下列说法中,正确的是( )A.一个有理数的绝对值不小于它自身B.若两个有理数的绝对值相等,则这两个数相等C.若两个有理数的绝对值相等,则这两个数互为相反数D.-a 的绝对值等于a6、若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数 7、下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b | 8、下列说法正确的是( )A .两数之和必大于任何一个加数B .同号两数相加,符号不变,并把绝对值相加C .两负数相加和为负数,并把绝对值相减D .异号两数相加,取绝对值较大的加数的符号,并把绝对值相加 9、如果│a+b │=│a │+│b │成立,那么( ) A .a ,b 同号 B .a ,b 为一切有理数C .a ,b 异号D .a ,b 同号或a ,b 中至少有一个为零 10、若x>y>z ,x+y+z=0,则一定不能成立的是( )A .x>0,y=0,z<0;B .x>0,y>0,z<0;C .x>0,y<0,z>0;D .x>0,y<0,z<0 11、实数a ,b ,c 在数轴上的位置如图所示,下列式子正确的是( ) A .b+c>0 B .a+b<a+c C .ac>bc D .ab>ac-1-2cba212、下列等式正确的是( )A .│x │-x=0;B .│-x │-│x │=0;C .-x-x=0;D .│-x │+│x │=0 13、如果a>0,那么a 与它的相反数的差的绝对值等于( ) A .a B .0 C .2a D .-2a 14、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×2215、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22416、如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为( ).A .6B .3C .200623 D .10033231003⨯+17、把(4×5)5用科学记数法表示,正确的是 ( )A .2.0×105B .2.0×106C .3.2×106D .3.2×10418、2004年6月5日是第三十三个世界环境日,其主题是“海洋存亡,匹夫有责”.目前,全球海洋的总面积约为36105.9万km 2,用科学记数法(•精确到0.01)可表示为( ).A .3.61×108km 2B .3.60×108km 2C .361×106km 2D .36 100km 2(二)、填空题1、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
七年级数学上册易错题集
第一章从自然数到有理数1.2有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【发现易错点】【反思及感悟】变式:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元【发现易错点】【反思及感悟】类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【发现易错点】【反思及感悟】变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数4.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,﹣30,0.15,﹣128,,+20,﹣2.6,正数集合﹛____ _____…﹜负数集合﹛_____ ____…﹜整数集合﹛_____ ____…﹜分数集合﹛_____ ____…﹜【发现易错点】【反思及感悟】1.3数轴选择题1.(2009•绍兴)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和)x,则(A.9<x<10 B.10<x<11C.11<x<12 D.12<x<132.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣33.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004C.2004或2005 D.2005或20064.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣35.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB)的中点,则点C表示的数是(A.﹣0.5 B.﹣1.5 C.0 D.0.56.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣27.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且)AB=BC=CD=DE,则点D所表示的数是(填空题8.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________.解答题9.已知在纸面上有一数轴(如图),折叠纸面.(1)若折叠后,数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数_________表示的点重合;(2)若折叠后,数3表示的点与数﹣1表示的点重合,则此时数5表示的点与数_________表示的点重合;若这样折叠后,数轴上有A、B两点也重合,且A、B两点之间的距离为9(A在B的左侧),则A点表示的数为,B点表示的数为.10.如图,数轴上A、B两点,表示的数分别为﹣1和,点B关于点A的对称点为C,点C所表示的实数是_________.11.把﹣1.5,,3,﹣,﹣π,表示在数轴上,并把它们用“<”连接起来,得到:_________.12.如图,数轴上的点A、O、B、C、D分别表示﹣3,0,2.5,5,﹣6,回答下列问题.(1)O、B两点间的距离是_________.(2)A、D两点间的距离是_________.(3)C、B两点间的距离是_________.(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,那么用含m,n的代数式表示A、B两点间的距离是___.1.4绝对值类型一:数轴1.若|a|=3,则a的值是_________.2.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或23.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<0【发现易错点】【反思及感悟】变式:4.﹣|﹣2|的绝对值是_________.5.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边6.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣1【发现易错点】【反思及感悟】1.5有理数的大小比较类型一:有理数的大小比较1、如图,正确的判断是()A.a<-2 B.a>-1 C.a>b D.b>22、比较1,-2.5,-4的相反数的大小,并按从小到大的顺序用“<”边接起来,为_______ 【发现易错点】【反思及感悟】第二章有理数的运算2.1有理数的加法类型一:有理数的加法1.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.2【发现易错点】【反思及感悟】类型二:有理数的加法与绝对值1.已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A.8 B.﹣2 C.8或﹣8 D.2或﹣2变式:2.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|=_________.【发现易错点】【反思及感悟】2.2有理数的减法类型一:正数和负数,有理数的加法与减法选择题1.某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表)2.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差()A.0.8kg B.0.6kg C.0.4kg D.0.5kg填空题3.﹣9,6,﹣3三个数的和比它们绝对值的和小______.4.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=______.解答题5.一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场.(1)客房7楼与停车场相差_________层楼;(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在层;(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了_________层楼梯.6.某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是______,盈利或亏损了元.2.3有理数的乘法类型一:有理数的乘法1.绝对值不大于4的整数的积是()A.16 B.0 C.576 D.﹣1【发现易错点】【反思及感悟】变式:2.五个有理数的积为负数,则五个数中负数的个数是()A.1 B.3 C.5 D.1或3或53.比﹣3大,但不大于2的所有整数的和为_________,积为_________.4.已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是.【发现易错点】【反思及感悟】2.4有理数的除法类型一:倒数1.负实数a的倒数是()A.﹣a B.C.﹣D.a【发现易错点】【反思及感悟】变式:2.﹣0.5的相反数是_________,倒数是_________,绝对值是_________.3.倒数是它本身的数是_________,相反数是它本身的数是_________.【发现易错点】【反思及感悟】类型二:有理数的除法1.下列等式中不成立的是()A .﹣B .=C .÷1.2÷D .【发现易错点】【反思及感悟】变式:2.甲小时做16个零件,乙小时做18个零件,那么()A.甲的工作效率高B.乙的工作效率高C.两人工作效率一样高D.无法比较【发现易错点】【反思及感悟】2.5有理数的乘方类型一:有理数的乘方选择题1.下列说法错误的是()A.两个互为相反数的和是0B.两个互为相反数的绝对值相等C.两个互为相反数的商是﹣1D.两个互为相反数的平方相等2.计算(﹣1)2005的结果是()A.﹣1 B.1 C.﹣2005 D.2005 3.计算(﹣2)3+()﹣3的结果是()A.0 B.2 C.16 D.﹣16 4.下列说法中正确的是()A.平方是它本身的数是正数B.绝对值是它本身的数是零A.0个B.1个C.2个D.3个6.若(﹣ab)103>0,则下列各式正确的是()A .<0B .>0 C.a>0,b<0 D.a<0,b>07.如果n 是正整数,那么[1﹣(﹣1)n](n2﹣1)的值()A.一定是零B.一定是偶数C.是整数但不一定是偶数D.不一定是整数8.﹣22,(﹣1)2,(﹣1)3的大小顺序是()A.﹣22<(﹣1)2<(﹣1)3B.﹣22<(﹣1)3<(﹣1)2C.(﹣1)3<﹣22<(﹣1)2D.(﹣1)2<(﹣1)3<﹣229.最大的负整数的2005次方与绝对值最小的数的2006次方的和是()A.﹣1 B.0 C.1 D.210.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个11.a为有理数,下列说法中,正确的是()A.(a +)2是正数B.a2+是正数C.﹣(a ﹣)2是负数D.﹣a2+的值不小于12.下列计算结果为正数的是()A.﹣76×5 B.(﹣7)6×5 C.1﹣76×5 D.(1﹣76)×5 13.下列说法正确的是()A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身14.下列说法正确的是()A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数15.(﹣2)100比(﹣2)99大()A.2 B.﹣2 C.299D.3×29916.1118×1311×1410的积的末位数字是()A.8 B.6 C.4 D.217.(﹣5)2的结果是()A.﹣10 B.10 C.﹣25 D.2518.下列各数中正确的是()A.平方得64的数是8 B.立方得﹣64的数是﹣4C.43=12 D.﹣(﹣2)2=419.下列结论中,错误的是()A.平方得1的有理数有两个,它们互为相反数B.没有平方得﹣1的有理数C.没有立方得﹣1的有理数D.立方得1的有理数只有一个20.已知(x+3)2+|3x+y+m|=0中,y为负数,则m的取值范围是()A.m>9 B.m<9 C.m>﹣9 D.m<﹣921.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米22.﹣2.040×105表示的原数为()A.﹣204000 B.﹣0.000204 C.﹣204.000 D.﹣20400填空题23.(2008•十堰)观察两行数根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果)_________.24.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5;10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的110111等于十进制的数_________.25.若n为自然数,那么(﹣1)2n+(﹣1)2n+1=_________.26.平方等于的数是_________.27.0.1252007×(﹣8)2008=_________.28.已知x2=4,则x=_________.2.6有理数的混合运算类型一:有理数的混合运算1.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,22.计算48÷(+)之值为何()A.75 B .160 C.D.903.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=44.按图中的程序运算:当输入的数据为4时,则输出的数据是_________.5.计算:﹣5×(﹣2)3+(﹣39)=_________.6.计算:(﹣3)2﹣1=_________.=_________.7.计算:(1)=_________;(2)=_________.2.7准确数和近似数类型一:近似数和有效数字1.用四舍五入法得到的近似数是2.003万,关于这个数下列说法正确的是()A.它精确到万分位B.它精确到0.001 C.它精确到万位D.它精确到十位2.已知a=12.3是由四舍五入得到的近似数,则a的可能取值范围是()A.12.25≤a≤12.35 B.12.25≤a<12.35 C.12.25<a≤12.35 D.12.25<a<12.35 【发现易错点】【反思及感悟】变式:3.据统计,海南省2009年财政总收入达到1580亿元,近似数1580亿精确到()A.个位B.十位C.千位D.亿位4.若测得某本书的厚度1.2cm,若这本书的实际厚度记作acm,则a应满足()A.a=1.2 B.1.15≤a<1.26 C.1.15<a≤1.25 D.1.15≤a<1.25【发现易错点】【反思及感悟】类型二:科学记数法和有效数字1.760 340(精确到千位)≈_________,640.9(保留两个有效数字)≈_________.【发现易错点】【反思及感悟】变式:2.用四舍五入得到的近似数6.80×106有______个有效数字,精确到______位.3.太阳的半径是6.96×104千米,它是精确到_____位,有效数字有_____个.4.用科学记数法表示9 349 000(保留2个有效数字)为_________.【发现易错点】【反思及感悟】第三章实数3.1平方根类型一:平方根1.下列判断中,错误的是()A.﹣1的平方根是±1 B.﹣1的倒数是﹣1C.﹣1的绝对值是1 D.﹣1的平方的相反数是﹣1【发现易错点】【反思及感悟】变式:2.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7 D.负数有一个平方根3.如果一个数的平方根等于这个数本身,那么这个数是()A.1 B.﹣1 C.0 D.±1【发现易错点】【反思及感悟】类型二:算术平方根1.的算术平方根是()A.±81 B.±9 C.9 D.3【发现易错点】【反思及感悟】变式:2.的平方根是()A.3 B.±3 C.D.±【发现易错点】【反思及感悟】3.2实数类型一:无理数1.下列说法正确的是()A.带根号的数是无理数B.无理数就是开方开不尽而产生的数C.无理数是无限小数D.无限小数是无理数2.在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.4【发现易错点】【反思及感悟】变式:3.在中无理数有()个.A.3个B.4个C.5个D.64.在中,无理数有_________个.【发现易错点】【反思及感悟】3.3立方根类型一:立方根1.如果一个实数的平方根与它的立方根相等,则这个数是()A.0 B.正实数C.0和1 D.12.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2 D.43.﹣64的立方根是_________,的平方根是_________.【发现易错点】【反思及感悟】变式:1.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零2.若x2=(﹣3)2,y3﹣27=0,则x+y的值是()A.0 B.6 C.0或6 D.0或﹣63.=_________,=_________,的平方根是_________.4.若16的平方根是m,﹣27的立方根是n,那么m+n的值为_________.【发现易错点】【反思及感悟】3.5实数的运算类型一:实数的混合运算1.两个无理数的和,差,积,商一定是()A.无理数B.有理数C.0 D.实数2.计算:(1)﹣13+10﹣7=_________;(2)13+4÷(﹣)=_________;(3)﹣32﹣(﹣2)2×=_________;(4)(+﹣)×(﹣60)=_________;(5)4×(﹣2)+3≈_________(先化简,结果保留3个有效数字).【发现易错点】【反思及感悟】变式:3.已知:a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab,,ab+a﹣b,ab+a+b可能成为有理数的个数有_________个.4.计算:(1)=_________(2)3﹣2×(﹣5)2=_________(3)﹣≈_________(精确到0.01);(4)=_________;(5)=_________;(6)=_________.【发现易错点】【反思及感悟】第四章代数式4.2代数式类型一:代数式的规范1.下列代数式书写正确的是()A.a48 B.x÷y C.a(x+y)D.abc【发现易错点】【反思及感悟】类型二:列代数式1.a是一个三位数,b是一个一位数,把a放在b的右边组成一个四位数,这个四位数是()A.ba B.100b+a C.1000b+a D.10b+a2.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是()cm2.A.a2﹣a+4 B.a2﹣7a+16 C.a2+a+4 D.a2+7a+163.李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款_________元.【发现易错点】【反思及感悟】变式:4.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米B.50n厘米C.(50n+10)厘米D.(60n﹣10)厘米5.今年某种药品的单价比去年便宜了10%,如果今年的单价是a元,则去年的单价是()A.(1+10%)a元B.(1﹣10%)a元C.元D.元6.若一个二位数为x;一个一位数字为y;把一位数字为y放到二位数为x的前面,组成一个三位数,则这个三位数可表示为_________.【发现易错点】【反思及感悟】4.3代数式的值类型一:代数式求值1.如果a是最小的正整数,b是绝对值最小的数,c与a2互为相反数,那么(a+b)2009﹣c2009=_________.2.(1)当x=2,y=﹣1时,﹣9y+6 x2+3(y)=_________;(2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.当a=2,b=﹣时,A﹣2B=_________;(3)已知3b2=2a﹣7,代数式9b2﹣6a+4=_________.【发现易错点】【反思及感悟】变式:3.当x=6,y=﹣1时,代数式的值是()A.﹣5 B.﹣2 C.D.4.某长方形广场的长为a米,宽为b米,中间有一个圆形花坛,半径为c米.(1)用整式表示图中阴影部分的面积为_________m2;(2)若长方形的长a为100米,b为50米,圆形半径c为10米,则阴影部分的面积为_________m2.(π取3.14)【发现易错点】【反思及感悟】类型二:新定义运算1.如果我们用“♀”、“♂”来定义新运算:对于任意实数a,b,都有a♀b=a,a♂b=b,例如3♀2=3,3♂2=2.则(瑞♀安)♀(中♂学)=_________.【发现易错点】【反思及感悟】变式:2.设a*b=2a﹣3b﹣1,那么①2*(﹣3)=_________;②a*(﹣3)*(﹣4)=_________.【发现易错点】【反思及感悟】4.4整式类型一:整式1.已知代数式,其中整式有()A.5个B.4个C.3个D.2个【发现易错点】【反思及感悟】变式:2.在代数式x﹣y,3a,a2﹣y+,,xyz,,中有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式个数相同【发现易错点】【反思及感悟】类型二:单项式1.下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个2.单项式﹣26πab的次数是_________,系数是_________.【发现易错点】【反思及感悟】变式:3.单项式﹣34a2b5的系数是_________,次数是_________;单项式﹣的系数是_________,次数是_________.4.是_________次单项式.5.﹣的系数是_________,次数是_________.【发现易错点】【反思及感悟】类型三:多项式1.多项式﹣2a2b+3x2﹣π5的项数和次数分别为()A.3,2 B.3,5 C.3,3 D.2,32.m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或n C.m+n D.m,n中的较大数【发现易错点】【反思及感悟】变式:3.多项式2x2﹣3×105xy2+y的次数是()A.1次B.2次C.3次D.8次4.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于55.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.n C.m+n D.m,n中较大的数6.若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7.若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【发现易错点】【反思及感悟】4.5合并同类项类型一:同类项1.下列各式中是同类项的是()A.3x2y2和﹣3xy2B.和C.5xyz和8yz D.ab2和2.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是_________.【发现易错点】【反思及感悟】变式:3.下列各组中的两项是同类项的是()A.﹣m2和3m B.﹣m2n和﹣mn2C.8xy2和D.0.5a和0.5b4.已知9x4和3n x n是同类项,则n的值是()A.2 B.4 C.2或4 D.无法确定5.3x n y4与﹣x3y m是同类项,则2m﹣n=_________.6.若﹣x2y4n与﹣x2m y16是同类项,则m+n=_________.【发现易错点】【反思及感悟】类型一:整式的加减选择题1.x、y、z在数轴上的位置如图所示,则化简|x﹣y|+|z﹣y|的结果是)(Array A.x﹣z B.z﹣x C.x+z﹣2y D.以上都不对2.已知﹣1<y<3,化简|y+1|+|y﹣3|=()A.4 B.﹣4 C.2y﹣2 D.﹣23.已知x>0,xy<0,则|x﹣y+4|﹣|y﹣x﹣6|的值是()A.﹣2 B.2 C.﹣x+y﹣10 D.不能确定4.A、B都是4次多项式,则A+B一定是()A.8次多项式B.次数不低于4的多项式C.4次多项式D.次数不高于4的多项式或单项式5.若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.数次不高于5的整式D.次数不低于5次的多项式6.M,N分别代表四次多项式,则M+N是()A.八次多项式B.四次多项式C.次数不低于四次的整式D.次数不高于四次的整式7.多项式a2﹣a+5减去3a2﹣4,结果是()A.﹣2a2﹣a+9 B.﹣2a2﹣a+1C.2a2﹣a+9 D.﹣2a2+a+98.两个三次多项式相加,结果一定是()A.三次多项式B.六次多项式C.零次多项式D.不超过三次的整式.9.与x2﹣y2相差x2+y2的代数式为()A.﹣2y2B.2x2C.2y2或﹣2y2D.以上都错10.若m是一个六次多项式,n也是一个六次多项式,则m﹣n一定是()A.十二次多项式B.六次多项式C.次数不高于六次的整式D.次数不低于六次的整式11.下列计算正确的是()A.B.﹣18=8C.(﹣1)÷(﹣1)×(﹣1)=﹣3 D.n﹣(n﹣1)=1 12.下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab13.两个三次多项式的和的次数是()A.六次B.三次C.不低于三次D.不高于三次14.如果M是一个3次多项式,N是3次多项式,则M+N一定是()A.6次多项式B.次数不高于3次整式C.3次多项式D.次数不低于3次的多项式15.三个连续整数的积是0,则这三个整数的和是()A.﹣3 B.0 C.3 D.﹣3或0或316.已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A .﹣B .C .﹣D .17.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b Array填空题18.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=_________.19.(﹣4)+(﹣3)﹣(﹣2)﹣(+1)省略括号的形式是_________.20.计算m+n﹣(m﹣n)的结果为_________.21.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是_________.22.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=_________23.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=_________.解答题24.化简(2m2+2m﹣1)﹣(5﹣m2+2m)25.先化简再求值.①②若a﹣b=5,ab=﹣5,求(2a+3b﹣2ab)﹣(a+4b+ab)﹣(3ab﹣2a+2b)的值26.若(a+2)2+|b+1|=0,求5ab2﹣{2a2b﹣[3ab2﹣(4ab2﹣2a2b)]}的值27.已知|a ﹣2|+(b +1)2=0,求3a 2b +ab 2﹣3a 2b +5ab +ab 2﹣4ab +a 2b = 的值4.7专题训练(找规律题型)选择题1.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a 0a 1a 2,其中a 0a 1a 2均为0或1,传输信息为h 0a 0a 1a 2h 1,其中h 0=a 0+a 1,h 1=h 0+a 2.运算规则为:0+0=0,0+1=1,1+0=1,1+1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A .11010 B .10111 C .01100 D .000112.在一列数1,2,3,4,…,200中,数字“0”出现的次数是( ) A .30个 B .31个 C .32个 D .33个 3.把在各个面上写有同样顺序的数字1~6的五个正方体木块排成一排(如图所示),那么与数字6相对的面上写的数字是()A .2B .3C .5D .以上都不对4.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:若按此规律继续作长方形,则序号为⑧的长方形周长是( ) A .288 B .178 C .28 D .1105.如图,△ABC中,D为BC的中点,E为AC上任意一点,BE交AD于O.某同学在研究这一问题时,发现了如下事实:①当==时,有==;②当==时,有=;③当==时,有=;…;则当=时,=()A .B .C .D .填空题6.古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,a100﹣a99=_________,a100=_________.7.表2是从表1中截取的一部分,则a=_________.8.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_________.9.有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时,共数了_________个数;当按顺序从第m个数数到第n个数(n>m)时,共数了_________个数.10.我们把形如的四位数称为“对称数”,如1991、2002等.在1000~10000之间有_________个“对称数”.11.在十进制的十位数中,被9整除并且各位数字都是0或5的数有_________个.12.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒______根.S=_________.14.请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成_________段.15.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为_________._________个.17.观察规律:如图,PM1⊥M1M2,PM2⊥M2M3,PM3⊥M3M4,…,且PM1=M1M2=M2M3=M3M4=…=M n﹣1M n=1,那么PM n的长是_________(n为正整数).摆成第10个“H”字需要_________个棋子.19.现有各边长度均为1cm的小正方体若干个,按下图规律摆放,则第5个图形的表面积是_________cm2.20.正五边形广场ABCDE的周长为2000米.甲,乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过_________分钟,甲、乙两人第一次行走在同一条边上.解答题21.(试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:(1)在横线上填写“<”、“>”、“=”号:12_________21,23_________32,34_________43,45_________54,56_________65,…(2)从上面的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是:当n≤_________时,n n+1_________(n+1)n;当n>_________时,n n+1_________(n+1)n;(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007与20072006.22.从1开始,连续的自然数相加,它们的和的倒数情况如下表:(1)根据表中规律,求=_________.(2)根据表中规律,则=_________.(3)求+++的值.23.从1开始,连续的奇数相加,它们和的情况如下表:(1)如果n=11时,那么S的值为_________;(2)猜想:用n的代数式表示S的公式为S=1+3+5+7+…+2n﹣1=_________;(3)根据上题的规律计算1001+1003+1005+…+2007+2009.第五章一元一次方程5.1一元一次方程类型一:等式的性质1.下列说法中,正确的个数是()①若mx=my,则mx﹣my=0;②若mx=my,则x=y;③若mx=my,则mx+my=2my;④若x=y,则mx=my.A.1 B.2 C.3 D.4【发现易错点】【反思及感悟】变式:2.已知x=y,则下面变形不一定成立的是()A.x+a=y+a B.x﹣a=y﹣a C.D.2x=2y3.等式的下列变形属于等式性质2的变形为()A .B .C.2(3x+1)﹣6=3x D.2(3x+1)﹣x=2 【发现易错点】【反思及感悟】类型二:一元一次方程的定义1.如果关于x 的方程是一元一次方程,则m的值为()A .B.3 C.﹣3 D.不存在【发现易错点】【反思及感悟】变式:2.若2x3﹣2k+2k=41是关于x的一元一次方程,则x=_________.3.已知3x|n﹣1|+5=0为一元一次方程,则n=_________.4.下列方程中,一元一次方程的个数是_________个.(1)2x=x﹣(1﹣x);(2)x2﹣x +=x2+1;(3)3y =x +;(4)=2;(5)3x ﹣=2.【发现易错点】【反思及感悟】类型三:由实际问题抽象出一元一次方程1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3402.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④3.某电视机厂10月份产量为10万台,以后每月增长率为5%,那么到年底再能生产()万台.A.10(1+5%)B.10(1+5%)2C.10(1+5%)3D.10(1+5%)+10(1+5%)24.一个数x,减去3得6,列出方程是()A.3﹣x=6 B.x+6=3 C.x+3=6 D.x﹣3=65.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x天.则方程为()A .B .C .D .6.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm,每人离桌边10cm,有后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为xcm.则根据题意,可列方程为:()A .B .C.2π(80+10)×8=2π(80+x)×10D.2π(80﹣x)×10=2π(80+x)×87.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只设鸡为x只,得方程()A.2x+4(14﹣x)=44 B.4x+2(14﹣x)=44C.4x+2(x﹣14)=44 D.2x+4(x﹣14)=448.把一张纸剪成5块,从所得的纸片中取出若干块,每块又剪成5块,如此下去,至剪完某一次后,共得纸片总数N可能是()A.1990 B.1991 C.1992 D.19939.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少设定价为x,则下列方程中正确的是()A .x﹣20=x+25B .x +20=x+25C .x﹣25=x+20D .x +25=x﹣2010.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.B.C.D.5.2一元一次方程的解法类型一:一元一次方程的解1.当a=0时,方程ax+b=0(其中x是未知数,b是已知数)()A.有且只有一个解B.无解C.有无限多个解D.无解或有无限多个解2.下面是一个被墨水污染过的方程:,答案显示此方程的解是x=,被墨水遮盖的是一个常数,则这个常数是()A.2 B.﹣2 C.﹣D.【发现易错点】【反思及感悟】变式:3.已知a是任意有理数,在下面各题中结论正确的个数是()①方程ax=0的解是x=1;②方程ax=a的解是x=1;③方程ax=1的解是x=;④方程|a|x=a的解是x=±1.A.0 B.1 C.2 D.34.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程•a=﹣(x﹣6)无解,则a的值是()A.1 B.﹣1 C.±1 D.a≠15.如果关于x的方程3x﹣5+a=bx+1有唯一的一个解,则a与b必须满足的条件为()A.a≠2b B.a≠b且b≠3 C.b≠3 D.a=b且b≠36.若方程2ax﹣3=5x+b无解,则a,b应满足()A.a≠,b≠3 B.a=,b=﹣3 C.a≠,b=﹣3 D.a=,b≠﹣3【发现易错点】【反思及感悟】。
完整)七年级上册数学易错题精选
完整)七年级上册数学易错题精选有理数部分1.填空:1) 当a为负数时,a与-a必有一个是负数;2) 在数轴上,与原点相距5个单位长度的点所表示的数是正数5或负数-5;3) 在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是正数4或负数-2;4) 在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是6.2.用“有”、“没有”填空:在有理数集合里,有最大的负数,没有最小的正数,没有绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:1) 所有的整数都不是负整数;2) 小学里学过的数不都是正数;3) 带有“+”号的数都是正数;4) 有理数的绝对值都是正数;5) 若|a|+|b|=0,则a,b都是零;6) 比负数大的数都是正数.4.用“一定”、“不一定”、“一定不”填空:1) -a一定是负数;2) 当a>b时,不一定有|a|>|b|;3) 在数轴上的任意两点,距原点较近的点所表示的数一定大于距原点较远的点所表示的数;4) |x|+|y|一定是正数;5) 一个数一定大于它的相反数;6) 一个数一定小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:-3 < -2 < -1 <0 < 1 < 2 < 3并用“>”连接起来:3 > 2 > 1 > 0 > -1 > -2 > -38.填空:1) 如果-x=11,那么x=-11;2) 绝对值不大于4的负整数是-4,-3,-2,-1,0;3) 绝对值小于4.5而大于3的整数是4.9.根据所给的条件列出代数式:1) (a+b)/(|a|+|b|);2) -(a+b)*(|a-b|);3) (x+6)/x;4) -(x+y)*(|x+y|).10.代数式|x|的意义是什么?正确解:代数式|x|的意义是x的绝对值。
11.用适当的符号(>、<、≥、≤)填空:1)若a是负数,则a<-a;2)若a是负数,则-a<0;3)如果a>0,且|a|>|b|,那么a>b.12.写出绝对值不大于2的整数。
七年级上册数学考试易错题汇总汇总
七年级上册数学考试易错题汇总汇总
七年级上册数学考试易错题汇总如下:
1. 填空题:
题目:$- [1 - (a + b)] - [- (a - b)]$ 去掉括号后得 _______。
答案:$-2b$
2. 单项式:
题目:第100项和第$n$项分别是 _______。
答案:第100项是$-100x^{100}$,第$n$项是$(-1)^{n}nx^{n}$。
3. 整数比较与求和:
题目:比-3大而比2小的所有整数的和为 _______。
答案:$23$
4. 三角形边长问题:
题目:一个三角形的第一边长为$(2a - b)$厘米,第二边的长比第一边长$(a + b)$厘米,第三边的长比第一边的2倍少$b$厘米,则这个三角形的周长为 _______。
答案:$5a - b$厘米。
5. 多项式加减法:
题目:小明计算一个多项式加上$xy - 3yz - 2xz$时,误认为减去此式,计算出错误的结果为$2xy - 3yz + 4xz$,求正确的计算结果。
答案:$3xy - 6yz - xz$
6. 多项式化简与条件:
题目:已知代数式$a^{3}b^{3} - 12ab^{2} + b^{2} - 2a^{3}b^{3} +
^{2} + b^{2} + a^{3}b^{3} - 2b^{2} - 3$,其中$a = , b = -$。
林林说题目中的条件$a = , b = -$是多余的,他的说法对吗?请说明理由。
答案:林林的说法不对。
因为代数式化简后结果与给定条件无关,所以给定的条件不是多余的。
建议在做数学题目时认真审题、细心计算,尽量避免因为粗心而导致的错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.a、b 在数轴上得位置如图所示,化简: |a+b|﹣2|b﹣a|=__________. 13.已知∠1 与∠2 互余,∠2 与∠3 互补,∠1=67°,则∠3=__________. 14.在有理数范围内定义运算“△”,其规则为 a△b=ab+1,则方程(3△4)△x=2 的解应为 x=__________. 15.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成 第 4 个图形需要火柴棍__________根,拼成第 n 个图形(n 为正整数)需要火柴棍 __________根(用含 n 的代数式表示).
9.观 察 下 面 一 列 数 : ﹣ , , ﹣ , , ﹣ , , …探 求 其 规 律 . 得 到 第 2012 个 数 是
__________.第 n 个数应该表示为____________________. 10.若 a 的绝对值等于 5,b=﹣2,且 ab>0,则 a+b=__________.
七年级数学上册易错题专项练习汇总
1.已知 a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为__________.
2.已知 A、B、C 三点在同一直线上,若 AB=20,AC=30,则 BC 的长为__________.
3.在数轴上,A 表示的数为-2,AB 长为 5,则 B 表示的数为___________.
计算|9﹣★|+|9﹣△|+|★﹣△|得到,其结果为__________;若取前 9 个格子,则所有的|a﹣b|的
和为__________.
19.三个有理数a、b、c之积是负数,其和是正数,当 x= a b c 时,则 abc
x19 92x 2 ______ 。
二、解答题 1.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现: 甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多 50 元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服, 送一个足球;乙商场优惠方案是:若购买队服超过 80 套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少? (2)若城区四校联合购买 100 套队服和 a 个足球,请用含 a 的式子分别表示出到甲商场和 乙商场购买装备所花的费用; (3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
4.有一个三位数,百位数字为 a,个位数是十位数字的 2 倍少 3,十位数比百位数字的
3
倍少 4,则这个三位数应表示为:____________(用含 a 的代数式表示)
5.学校组织一次篮球比赛,比赛要求每两个队只比赛一场,一共有 8 支球队参赛,则共
需要安排_________场比赛。
6.若方程(a﹣3)x|a|﹣2﹣7=0 是一个一元一次方程,则 a 等于__________.
(1)可求得 x=__________,第 2014 个格子中的数为__________;
(2)若前 m 个格子中所填整数之和 p=2015,则 m=__________,若 p=2014,则
m=__________;
(3)若取前 3 个格子中的任意两个数记作 a、b,且 a≥b,那么所有的|a﹣b|的和可以通过
3.如图,已知数轴上点 A 表示的数为 8,B 是数轴上一点,且 AB=14.动点 P 从点 A 出 发,以每秒 5 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t(t>0)秒.
(1)写出数轴上点 B 表示的数__________,点 P 表示的 数__________(用含 t 的代数式 表示); (2)动点 Q 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向左匀速运动,若点 P、Q 同时出发,问点 P 运动多少秒时追上点 Q? (3)若 M 为 AP 的中点,N 为 PB 的中点.点 P 在运动的过程中,线段 MN 的长度是否发 生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段 MN 的长; (4)若点 D 是数轴上一点,点 D 表示的数是 x,请你探索式子|x+ 6|+|x﹣8|是否有最小值? 如果有,直接写出最小值;如果没有,说明理由.
2.如图 1,O 为直线 AB 上一点,过点 O 作射线 OC,∠AOC=30°,将一直角三角板(∠ M=30°)的直角顶点放在点 O 处,一边 ON 在射线 OA 上,另一边 OM 与 OC 都在直线 AB 的上方. (1)将图 1 中的三角板绕点 O 以每秒 3°的速度沿顺时针方向旋转一周.如图 2,经过 t 秒 后,OM 恰好平分∠BOC.①求 t 的值;②此时 ON 是否平分∠AOC?请说明理由; (2)在(1)问的基础上,若三角板在转动的同时,射线 OC 也绕 O 点以每秒 6°的速度沿 顺时针方向旋转一周,如图 3,那么经过多长时间 OC 平分∠MON?请说明理由; (3)在(2)问的基础上,经过多长时间 OC 平分∠MOB?请画图并说明理由.
;⑤43m=n+2.其中正确的是 …+ 的
值,在 边长为 1 的正方形中,设计了如图所示的几何图形.则 …+ 的值为__________(结果用 n 表示).
18.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意 三个相邻格子中所填整数之和都相等.
9 ★ △ x ﹣6
2
…
7.对于有理数 x,我们规定[x]表示不大于 x 的最大整数,例如[1.2]=1]=__________;②若[x+3]=﹣15,且 x 是整数,则 x=__________.
8.若∠AOB=50°,∠BOC=20°,则∠AOC=_______________.
16.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 10 人不能上车;若每辆客车乘 43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m﹣2;②
40m﹣10=43m+2;③
= ;④ =
__________(只填序号). 17.在数学兴趣小组活动中,小明为了求