LMS Test.Lab 传递路径分析
LMS Test.Lab中文操作指南_Spectral Testing谱分析
LMS b中文操作指南— Spectral Testing谱分析测试比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Spectral Testing谱分析测试目录LMS Test. Lab谱分析的测试流程: (3)步骤一,通道设置(Channel setup) (4)步骤二,跟踪设置(tracking setup) (6)步骤三,示波(scope) (7)步骤四,测试设置(test setup) (9)1. 采样参数设置 (9)2. 测量函数定义 (12)步骤五,测试(measurement) (13)步骤六,数据验证(validate) (14)LMS Test. Lab谱分析的测试流程:在软件窗口底部以工作表形式表示,按照每一个工作表依次进行即可,如下图示。
¾ Documentation――可以进行备忘录,测试图片等需要记录的文字或图片的输入,作为测试工作的辅助记录,如下图示。
¾ Navigator——文件列表及图形显示等功能,详见desktop说明。
¾ Geometry――创建几何(参见创建几何步骤说明)¾ Channel setup――通道设置,在该选项卡中可进行数采前端对应通道的设置,如定义传感器名称,传感器灵敏度等操作。
¾ Tracking Setup——在谱采集中可能也会需要记录一些转速信号,但并不能对这个转速通道进行跟踪或控制。
¾ Calibration――对传感器进行标定¾ scope――示波,用来确定各通道量程¾ Test setup――设置分析带宽、窗、平均次数以及其他测量参数¾ Measure――设置完成后进行测试¾ Validate——对测试结果进行验证步骤一,通道设置(Channel setup)假设已创建好了模型,传感器已布置完成,数采前端已连接完成。
LMS Test.Lab 传递路径分析
传递路径分析探究振动噪声问题的根源LMS b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。
作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。
在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。
例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。
进气和排气系统的空气传播也会对振动噪声问题有一定的影响。
强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。
LMS b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。
从故障诊断到根源分析传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。
一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。
传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。
激励源-路径-响应:系统级的方法LMS b传递路径分析是基于激励源-路径-响应的系统解决方案。
所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。
通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。
传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。
最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。
完整的解决方案LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。
LMS Testlab Tansfer Path Analysis
从故障诊断到根源分析传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。
一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。
传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。
激励源-路径-响应:系统级的方法LMS b传递路径分析是基于激励源-路径-响应的系统解决方案。
所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。
通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。
传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。
最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。
完整的解决方案LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。
LMS b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。
LMS b TPA综合了一系列TPA技术,包括LMS b单参考传递路径分析、空气声定量分析、LMS b多参考点传递路径分析、LMS b OPAX传递路径分析方法以及LMS b时域传递路径分析等。
管理海量数据LMS b传递路径分析软件可以对整个测试任务中的所有数据进行快捷高效的管理。
根据数据中内嵌的试验描述信息,如分析函数类型、测点位置标识、各个传递函数以及工况数据,将在传递路径模型中自动完成排序和定义。
这个自动处理功能可以保证排除数据处理过程中的人为操作失误,并保证数据处理的高效性。
相似的处理过程可以同时运用于各种不同的工况。
对于发动机传递路径分析,工程师一般更倾向于对在升速、降速过程中最重要的阶次进行分析,此外,也完全支持对各种其它形式的频谱数据进行分析(谱、自功率谱图、1/3倍频程谱等)。
电动五座SUV路噪控制优化
电动五座SUV路噪控制优化作者:邹杰单福奎夏仁峰张红军来源:《时代汽车》2023年第24期摘要:针对新能源五座SUV在试验阶段路噪声压大、噪声品质差的问题,提出了新能源汽车路噪控制系统优化方案。
首先,通过对产生路噪的激励进行分析,锁定优化轮胎本体及降低底盘衬套刚度,验证该路噪问题的优化方法;然后,将副车架由刚性连接改为衬套柔性连接,优化路噪响应,实现在粗糙路面60km/h工况下的路噪减小2.8dB(A);最后,分析轮胎本体,找出轮胎空腔噪声的影响因素,得到最优参数。
实验结果表明:通过试验测试对噪声进行优化,达到了降噪效果,该方案对试验车的路噪性能开发具有一定参考意义。
关键词:路噪轮胎底盘衬套副车架1 引言随着电动汽车的普及,电机取代了发动机,在汽车低速行驶时,发动机的噪声不复存在,高速情况下的路噪、胎噪成为了电动汽车内的主要噪声来源[1][2]。
近年来,随着人们生活水平的不断提高,以及汽车行业的快速发展,人们对车辆的舒适性要求越来越高,汽车NVH性能因其最易被感知,因此成為车辆舒适性评价中的重要指标之一[3][4]。
NVH性能中的路噪响应在汽车行驶过程中的所有工况均存在,因此路噪控制优化意义重大,又因其客观存在性,不能完全消除,因此在路噪设计的过程中,考虑的是优先提升路噪声品质,然后降低声压级,使路噪达到较好的设计水平[5][6]。
本文结合某车型路噪控制的实际案例,阐述了路噪控制的机理,通过优化轮胎本体及悬架衬套刚度,使粗糙路面60km/h工况下的后排噪声降低了2.8dB,为解决车辆噪声问题提供了思路及方法。
2 路噪声来源分析对电动汽车路噪声进行优化研究,首要目标是找到路噪声的来源,在此基础上进行优化设计[7][8]。
在实验环境相同的前提下,某五座新能源SUV在粗糙路面匀速60km/h行驶时,明显听到车内噪声大,轮胎空腔声明显,严重影响新能源五座SUV的行驶品质,初步确定噪声来源。
为进一步锁定问题发生根源,采用LMS b测试系统对路噪声进行测试[9][10],测试环境不变,测试位置为主驾右耳声压级(FFR)和右后排乘客左耳声压级(RRL),测试工况为粗糙路面60km/h,测试结果如图1所示。
基于逆矩阵法的汽车关键点振动传递路径分析
基于逆矩阵法的汽车关键点振动传递路径分析吕将;郭辉;祁宏钟;王岩松;王艺【摘要】针对某样车建立了关键点振动传递路径的分析模型,构建传递函数逆矩阵,建立了激励点载荷计算模型;通过试验测试获取各条传递路径的传递函数和各关键点响应,以传递函数逆矩阵法对各激励点进行载荷识别;对比目标点振动的计算值与实测值,验证模型的可靠性,将识别的载荷用于各条传递路径的振动贡献量分析以找出振动关键传递路径;结果表明,计算值与实测值的曲线吻合度高,验证了模型的可靠性;发动机后悬置 X向、排气管前悬挂 X和Y 向的贡献量最大,为关键的振动传递路径;进一步对关键振动路径进行传递函数与载荷力的分析结果表明,在频率为25 Hz和75.5 Hz左右时,方向盘Z向的振动主要是由激励点载荷力过大所引起的;此结果为汽车振动原因的诊断和改进提供理论依据.%Analytical model of vibration transfer path on key points is established,and load calculation model of excitation point is estab-lished based on constructed transfer function inverse matrix.Transfer function of each transfer path and response of each key point are ac-quired by test,and load identification of each excitation point is conducted by adopting transfer function inverse matrix method.The reliabili-ty of model is verified by comparing the calculation value of target point vibration with the measured value.Then,identified load is used to analyze vibration contribution of each transfer path and find out the critical vibration transfer path.The results show that the calculation val-ue matches well with the measured value,so the reliability of the model is verified.Rear mount of engine in X direction and front suspension point of exhaust pipe in X and Y direction that have the largestcontribution are the main vibration transfer path.Further analysis of transfer function and loading force of main vibration transfer path indicates that the vibration of steering wheel in Z direction is caused by overlarge load at excitation point when the frequency is about 25 Hz and 75.5 Hz.The result can provide theoretical basis for diagnosis and improve-ment of automobile vibration cause.【期刊名称】《计算机测量与控制》【年(卷),期】2018(026)003【总页数】5页(P232-235,240)【关键词】关键点;载荷识别;传递函数;逆矩阵;贡献量【作者】吕将;郭辉;祁宏钟;王岩松;王艺【作者单位】上海工程技术大学汽车工程学院,上海 201620;上海工程技术大学汽车工程学院,上海 201620;广州汽车集团股份有限公司汽车工程研究院,广州;上海工程技术大学汽车工程学院,上海 201620;上海工程技术大学汽车工程学院,上海201620【正文语种】中文【中图分类】U467.4+920 引言汽车作为一个复杂的系统,往往受到多种振动和噪声源的激励。
LMS Test lab-2010-
LMS b 标准桌面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 LMS b 高级桌面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
LMS b Structures 结构试验 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LMS b 锤击法试验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 LMS b 频谱试验和激励源控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 LMS b 工作变形分析和时域动画 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 LMS b 模态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 LMS b 工作模态分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LMS b MIMO正弦扫频试验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 LMS b MIMO 步进正弦试验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 LMS b MIMO 纯模态试验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 LMS b 地面共振试验 (GVT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 LMS b 模态修改预测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 LMS b 刚体特性计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LMS Test Lab在整车路面载荷提取中的运用
LMS Test Lab 在整车路面载荷提取中的运用1 前言随着汽车产业的迅猛发展,汽车的乘坐舒适性能如噪声和振动常常成为区分汽车好坏最为直接的重要因素之一。
乘用车低频噪声问题一直是目前设计和控制的难点,路面噪声通常可以分为两类,一是轮胎与路面相互作用直接辐射进车内的噪声,称为直接路面噪声;二是由于路面激励,通过悬架系统引起车身振动而产生的结构辐射噪声,称为间接路面噪声。
由路面激励引起的结构噪声已成为现代汽车日益关注的焦点。
汽车受路面激励力的作用,通过不同的传递路径引起车身结构的振动,从而向车内辐射大量噪声。
为了有效的控制和分析路面噪声,通常需要进行路面噪声传递路径分析,可以通过传递路径试验分析,也可以通过CAE 仿真分析,以确定每条路径对目标点(车内噪声)的贡献量,从而为汽车低噪声产品设计和控制提供强有力的指导方案。
目前CAE 仿真已成为解决NVH 最为便利和快捷的分析方法,为了确保分析结果的准确度,在进行CAE 仿真过程中,需尽可能的采用与实际相近的输入条件。
通常需要结合试验测量分析方法来获取激励力,从而保证输入条件的真实性。
针对轮胎噪声仿真分析,通常需要悬架与车身接点处的激励力,加载于整车有限元分析模型,进行结构噪声分析。
2 基本思想通常进行路面载荷提取的试验及求取流程如下图所示:图1 路面载荷提取流程图对于路面激励引起的结构噪声,系统结构有多个相关的激励源,通常需要多个参考信号。
对于这种耦合问题,需要通过主分量分析(PCA)将多参考问题转换为单参考问题,即解耦后进行单独分析。
通常采用奇异值分解对工况数据进行主分量分析,将多个相关的耦合问题转化为一个和几个相互独立的问题。
在对试验工况数据进行主分量分析后,可以建立传递路径分析模型,在分析模型中提取激励力。
激励力的获取方法主要有直接测量法、动态复刚度法、逆矩阵。
基于传递路径分析的车内噪声源识别
第30卷第7期2013年7月机械设计JOURNAL OF MACHINE DESIGNVol.30No.7Jul.2013基于传递路径分析的车内噪声源识别*冯海星,高云凯,刘爽(同济大学汽车学院,上海201804)摘要:简述了车内噪声的产生机理和传递路径分析试验的基本原理。
针对某国产试制SUV在怠速和三档急加速工况下车内噪声偏大的问题,建立传递路径分析模型,进行传递路径分析试验。
根据试验结果识别出车内噪声的主要传递路径,找出主要传递路径贡献量大的具体原因。
最后提出降低车内噪声的修改建议,为降低车内噪声提供依据。
关键词:车内噪声;传递路径分析;结构噪声;空气噪声中图分类号:U467.1文献标识码:A文章编号:1001-2354(2013)07-0019-06随着人们生活水平的提高,人们对汽车的舒适性能(如振动和噪声)提出了更高的要求。
因此,汽车的NVH性能成为了各大汽车公司所共同关注的话题。
在汽车行业,传统的传递路径分析方法是一种广泛用于试验、仿真以及两者相结合的方法。
基于试验的传递路径分析则是以试验为基础,能够用于汽车研发初期的声学设计、整车NVH目标分解以及使用过程中的故障诊断[1-3]。
汽车作为一种复杂的机械系统,在行驶过程中受到多种振动噪声源的激励,每种激励通过不同的路径传递到车内,然后叠加形成车内噪声。
如果能够通过对各传递路径进行预测和分析,找出贡献量大的主要传递路径,然后对其进行优化,就能够有效地降低车内噪声。
车内噪声主要来自两个方面:一是结构传播噪声,其产生机理为发动机和排气系统等的振动和路面激励传递到车身,引起车身壁板的振动从而辐射出噪声。
二是空气传播噪声,其产生机理为发动机表面、进排气等噪声通过板件缝隙传播到车内。
文中首先介绍传递路径分析方法的基本原理,然后以某国产试制SUV为例建立传递路径分析模型,利用LMS SCADAS III316W数据采集系统和LMS Test.Lab测量激励力和传递函数,采用LMS的TPA(Trans-fer Path Analysis)模块进行车内噪声合成,最后对各传递路径的贡献度进行分析,识别出车内噪声的主要传递路径,判断路径贡献量大的具体原因,提出降低车内噪声的优化方案。
比利时LMS Test' Lab Modal 基于实验的传递路径分析
传递路径分析 基础
基本方程
{Y} = [H] {F}
{Y} 所测得响工应作条件下的情况 噪声, 振动
[H] 系统特性 系统特性 结构特性, 传递路径
{F} 工作载荷 工作载荷 振动源, 声源
工作情况下的测试
系统特性 载荷识别
10 copyright LMS International - 2008
4 copyright LMS International - 2008
!
=
=
=
X
X
X
关键: 载荷
关键: 系统特性
最坏的情况
议程 传递路径分析
1 介绍 2 应用 3 载荷辨识 4 挑战和痛苦 5 LMS b 传递路径分析 6 结论
5 copyright LMS International - 2008
• 系统工程 • 工程假设
传递路径分析 应用
概概念念设设计计
工工程程设设计计
样样机机修修改改
• (快速)故障诊断 • 关键部件和路径的辨识和评估 • 有效优化
8 copyright LMS International - 2008
传递路径分析 应用
空气传播源的量化 – ASQ
空气传递 – 板或管口
&x&1 Fn ... &x&m Fn
⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦
−1
⎡ ⎢
&x&1oper
⎢ ...
⎢⎣ &x&m oper
⎤ ..
⎢⎣Qn oper
⎤ ⎥ ⎥ ⎥ ⎦
=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣
p1
Q1 ... pm
Q1
LMSTestLab中文操作指南全
LMS b中文操作指南比利时LMS国际公司北京代表处2009年 6月内容¾ Desktop桌面操作¾ Geometry几何建模¾ Signature信号特征测试分析¾ Impact锤击法模态测试¾ Spectral Testing谱分析¾ Modal Analysis模态分析¾ Modification Prediction模态修改预测¾ ODS工作变形分析¾ OMA运行模态分析LMS b中文操作指南— Desktop桌面操作比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Desktop桌面操作目录1.开始 (2)2.浏览数据 (3)3.显示数据 (4)3.1.测试的数据 (4)3.2.图形拷贝 (8)3.3.几何图形显示 (8)4.数据调理 (10)5.搜索功能 (11)6.Documentation 界面 (13)6.1.添加附件 (13)6.2.添加模板 (14)6.3.添加用户属性 (15)7.导入外部数据 (17)1. 开始¾ 启动 LMS b Desktop 从 开始菜单 Æ 所有程序 Æ LMS b 9AÆ Desktop 或者通过 桌面的快捷图标软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。
默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。
可以浏览数据,图形显示数据。
页面在LMS b 资源管理器中可以看到Project ,另外还有:My Computer: 资源管理器最后一个项目。
可以浏览您电脑中的数据。
My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。
LMS操作学习
2.2 Channel Setup
8
2.3 calibration
9
2.4 Tacking Setup
10
2.5 Acquisitiong Setup
11
2.6 Onilne Processing
12
13
2.7 Measure
14
THANKS&END
15
LMS b 振动控制是一款可提供高端性能的振动控制解 决方案。 精确的闭环振动台控制和极其安全的内置安全机制可帮助 用户最大限度降低损坏昂贵的测试对象的风险。
5
(7)高级环境测试解决方案 LMS b 环境解决方案提供了市场上最先进和最全面的环
境测试解决方案,能通过功能强大的高速多通道声学和振动控制系统 来测试、监控和控制卫星的发射前振动测试。 (8)安全访问重要测试数据
LMS Test Lab 16A 基础测试操作
1
ห้องสมุดไป่ตู้ 一. 概述
1.1 简介
LMS Test Lab 16A是一款综合全面的振动噪声试验解决方案,具 备基于测试的耐久性、噪声和振动工程,内置数据采集、数字信号处 理、结构试验、旋转机械分析、声学和环境试验等实用功能,可将高 速多通道数据采集功能与集成测试、分析及报告的整套工具结合在一 起。同时,LMS Test Lab也可和LMS Tec.Manager无缝集成,进行试 验数据管理。可以和LMS Virtual Lab无缝集成,用于虚拟样机的仿真, 从而赋予“集成试验室”这一概念以新的内涵。
2
1.2 功能特色
(1)适用于(公路)载荷数据采集的集成式端到端解决方案 LMS b耐久性采集是一种适用于(公路)载荷数据采集的
集成式端到端解决方案。借助单一软件平台,您可以全面控制整个载 荷数据采集过程。对于放眼未来的耐久性测试部门来说,这是一款十 分理想的工具,能够在易用性和功能灵活性之间保持恰当平衡。 (2)功能强大的声学分析工具
MIRA选择TestLab进行快速详细的NVH试验
MIRA选择TestLab进行快速详细的NVH试验作者:LMS国际公司MIRA选择LMS b进行快速详细的NVH试验MIRA有限公司选择LMS b为其世界各地的汽车制造商客户进行车辆振动噪声的测试和开发。
很多重要的汽车OEM和供应商将零部件、子系统和整车,包括车辆整体设计和开发流程送到MIRA公司进行检测和验证。
MIRA公司多年以来,不断地在最先进的技术领域投入大量资金,保持其在车辆设计和工程开发方面的优势。
MIRA采用的NVH试验系统是由LMS b软件包和120通道数的多个LMS S CAD AS III数据采集前端构成。
这套系统帮助MIRA缩短了在客户试验场进行的NVH试验周期,同时也缩短了在MIRA试验场上的移动式数据采集时间。
Mark Randle,NVH工程师,MIRA公司使用LMS系统的技术人员之一,认为LMS b最主要的优势之一是其便携性,以及系统所能提供的快速报告生成功能。
“我们以前使用的系统从数据采集到结果显示,整个试验过程非常繁琐而且耗时。
此外,以前的系统不能实时监控测试过程,并且原始数据拿回办公室要经过长时间的后处理才能看到分析结果。
”“现在,使用LMS b,我们能够轻松地将笔记本大小的系统设置在乘客坐椅上,模版式的试验流程可以在整个试验过程中指导我们。
数据采集的时候,在线的信号采集监控功能可以通过各种在线显示方式立即反馈相关信息。
这种在线验证功能使得我们可以快速地了解试验是否正常,是否合适。
这样,我们可以在数分钟内对车辆设计进行修改,并且验证修改的效果。
”Randle表示:数据采集后,他可以方便地浏览结果,并且在数分钟内鉴别问题出现在什么地方。
更详细的分析包括工作变形分析软件,能够显示车辆和子系统在工作条件下的动态性能。
试验环境的高级分析包括使用LMS b进行冲击测试,可以用于判断独立零部件和装配的共振问题。
采集的数据还可以用于LMS b的模态分析和LMS PolyMAX 软件模块,用于判断整车或者子系统的自然共振问题。
LMS Testlab Acoustics
精确的声学试验及分析技术•声学分析:多通道声级计和倍频程分析 •声学材料与部件试验 •声功率和认证试验 •通过噪声试验•声源定位(声强、波束成形、声全息和声聚焦) •声品质和品牌声音工程•传递路径分析与空气声定量分析LMS b Acoustics 声学试验精确的声学试验及分析解决方案产品的声音及其品质是对产品认知的重要信息。
如何才能包含正确信息并发挥关键的作用呢?这些信息关系到它的功能、舒适性和品牌形象以及质量。
法规与竞争压力迫使制造商将产品噪声级控制在限定的范围内,并满足日益严格的声学标准。
声学工程师寻找试验与分析效率更高的解决方案,以快速高效地找到声学问题的根本原因,并帮助制造商有效地设计出具有良好品牌形象的产品。
满足对多种声学技术的需求LMS b 声学试验提供一套完整且独特的声学试验及分析的软硬件解决方案。
其应用领域涵盖基本的声学分析、声学材料和部件试验、声功率以及通过噪声试验,完成声源定位,声振工程和声品质及声音品牌等工作,并且可根据项目要求进行扩展,每个解决方案都能够对特定任务提供最优的投资回报。
对于更复杂的根源分析,LMS 专家能够提供先进的声学及声振工程工具与服务。
追根溯源多年来,声学工程师一直在运用声学技术进行试验,寻找最好的方式以满足声学需求,解决声音问题。
第一步是深入理解声音的组成及各因素的贡献量。
声音属性一旦被确定,就能够将其与物理部件联系起来。
LMS b 声学试验解决方案致力于帮助声学专家和工程师应对声学方面的许多挑战。
LMS声学解决方案涵盖整个产品开发周期•对标试验和品牌声音工程 •声音设计和目标设定•可扩展的产品优化,声音工程和故障诊断处理的先进技术 •资格认证和检测 •内部检验与试验“声学试验对满足噪音排放的法规非常重要,同时也为了提高品牌定位和整体客户满意度。
”达到声音目标LMS b声学试验解决方案集成了所有评估声音品质的基本功能,以满足工程师的需要。
该解决方案涵盖了广泛的工作任务,如跟踪总声压级,确定谱的成分,或创建指标来量化感知水平或用清晰度指数评价语言清晰度。
混合传递路径分析(TPA)方法的准确性验证
混合传递路径分析(TPA)方法的准确性验证唐贵基;陈卓群【摘要】分析了混合TPA的计算方法,即将传统TPA方法,与有限元模型仿真计算所得传递函数相结合,以达到减少计算工作量、缩短实验周期。
论文针对某车型传动系统扭振引起的车内轰鸣问题,搭建混合传递路径分析模型,在准确识别副车架与车身耦结合处载荷力的基础上,确认贡献量较大的传递路径,并将各传递路径对目标点的声压贡献量进行矢量叠加,拟合出车内目标点声压谱图。
分析得到的目标点噪声情况与试验测得结果能够很好的吻合,重现了问题频段的频谱特征,证明了混合TPA方法的准确性。
%The method for hybrid transfer path analysis (TPA) was introduced. This method combined the traditional TPA method with the transfer functions from the finite element modeling so as to reduce the computer-time consuming and save the cost of the testing. Aiming at the interior booming problem induced by torsional vibration of vehicle’s drive sys-tems, the hybrid TPA model was established for analyzing the transmission path of vibration. On the basis of accurately rec-ognizing the load force at the joint between the auxiliary frame andt he vehicle’s body, the transfer paths which have large contribution to the vibration transmission were confirmed. The vector superposition for sound pressure contribution from each transfer path to the target points was done. And the sound pressure spectrum diagrams at the target points inside the ve-hicle were obtained by curve’s fitting. The sound pressure spectrum diagrams from this method can agree well with the re-sults directly measured in the test. And the accuracy of this method was verified.【期刊名称】《噪声与振动控制》【年(卷),期】2015(000)002【总页数】4页(P184-187)【关键词】振动与波;混合TPA;载荷识别;逆矩阵法;声传递向量;贡献量分析【作者】唐贵基;陈卓群【作者单位】华北电力大学能源动力与机械工程学院,河北保定 071003;华北电力大学能源动力与机械工程学院,河北保定 071003【正文语种】中文【中图分类】O422.6汽车作为一个复杂的机械系统,在运行当中会受到多种振动噪声源的激励,各激励通过不同的路径,经过衰减、传递到各个响应点。
LMS_Test.Lab中文操作指南
LMS b中文操作指南比利时LMS国际公司北京代表处2009年7月内容¾ Desktop桌面操作¾ Signature信号特征测试分析¾ Spectral Testing谱分析¾ Geometry几何建模¾ ODS工作变形分析LMS b中文操作指南— Desktop桌面操作比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Desktop桌面操作目录1.开始 (2)2.浏览数据 (3)3.显示数据 (4)3.1.测试的数据 (4)3.2.图形拷贝 (8)3.3.几何图形显示 (8)4.数据调理 (10)5.搜索功能 (11)6.Documentation 界面 (13)6.1.添加附件 (13)6.2.添加模板 (14)6.3.添加用户属性 (15)7.导入外部数据 (17)1. 开始¾ 启动 LMS b Desktop 从 开始菜单 Æ 所有程序 Æ LMS b 9AÆ Desktop 或者通过 桌面的快捷图标软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。
默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。
可以浏览数据,图形显示数据。
页面在LMS b 资源管理器中可以看到Project ,另外还有:My Computer: 资源管理器最后一个项目。
可以浏览您电脑中的数据。
My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。
Search Results: LMS b 软件可以进行搜索,搜索的结果放在此处。
Input Basket: 暂时存放准备作处理的数据。
LMS Test.Lab中文操作指南全
LMS b中文操作指南比利时LMS国际公司北京代表处2009年 6月内容¾ Desktop桌面操作¾ Geometry几何建模¾ Signature信号特征测试分析¾ Impact锤击法模态测试¾ Spectral Testing谱分析¾ Modal Analysis模态分析¾ Modification Prediction模态修改预测¾ ODS工作变形分析¾ OMA运行模态分析LMS b中文操作指南— Desktop桌面操作比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Desktop桌面操作目录1.开始 (2)2.浏览数据 (3)3.显示数据 (4)3.1.测试的数据 (4)3.2.图形拷贝 (8)3.3.几何图形显示 (8)4.数据调理 (10)5.搜索功能 (11)6.Documentation 界面 (13)6.1.添加附件 (13)6.2.添加模板 (14)6.3.添加用户属性 (15)7.导入外部数据 (17)1. 开始¾ 启动 LMS b Desktop 从 开始菜单 Æ 所有程序 Æ LMS b 9AÆ Desktop 或者通过 桌面的快捷图标软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。
默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。
可以浏览数据,图形显示数据。
页面在LMS b 资源管理器中可以看到Project ,另外还有:My Computer: 资源管理器最后一个项目。
可以浏览您电脑中的数据。
My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。
基于LMS Test. Lab 的车内声振传递路径分析
基于LMS Test. Lab 的车内声振传递路径分析1 前言汽车噪声、振动及因其而引发的车辆乘坐舒适性问题,即NVH(Noise, Vibration & Harshness)问题,是衡量汽车产品质量的一个综合性问题。
它给用户的感受最直接,越来越影响到产品的美誉度和市场占有率,因此受到各大整车制造企业和零部件企业的普遍关。
汽车内部噪声和振动现象,往往是由多个激励,经由不同的传递路径抵达目标位置后叠加而成的。
当今汽车新产品研发过程中,为了进一步优化整车NVH 性能,往往要综合考虑各个激励和传递路径的情况,而传递路经分析(TPA,Transfer Path Analysis)就是一个行之有效的方法。
通过传递路径分析,确定各途径流入的激励能量在整个问题中所占的比例,找出传递途径上对车内噪声起主导作用的环节,通过控制这些主要环节,如使声源的强度,路径的声学灵敏度等参数在合理的范围里,以使车内噪声控制在预定的目标值内。
本文基于LMS SCANDAS MOBILE SCM05 便携式采集前端及LMS Test. lab 8A 软件对某国产轿车车内声振传递路径进行分析,得出分析结果并为进一步提高和改善整车NVH 性能奠定了基础。
2 车辆声振传递路径分析原理在工程振动噪声测试分析工作中,谱分析以及概率统计分析应用很多,但是都具有一个共同缺点,要求对比试验的条件和工况完全相同,否则无法进行对比。
同时,这样试验的工况十分复杂,要求处理的数据多,工作量非常大,而又很难用简单的图表全面地说明问题。
传递特性的分析能够很好地解决上面说的问题,其分析结果具有较好的可比性,为了取得结果,一般仅需选择一种工况进行试验就可以得到满意的结果。
由于传递特性分析具有这一突出的优点,在实际工程问题上应用很普遍,从而得到迅速的发展。
车内噪声总体上可分为结构声和空气声两种。
在结构声情况下,激励源和目标点分属于两个不同的系统,激励源一侧的结构称为主动方,目标点一侧的结构称为受动方,一般两者在分界处(可称之为耦合点)通过某种耦合元件连接起来,具体可表现为发动机、底盘部件在车身上的支撑、铰链及橡胶轴套等。
LMS Test.Lab中文操作指南_Signature信号特征测试分析
LMS b中文操作指南— Signature信号特征测试分析比利时LMS国际公司北京代表处2009年2月LMS b中文操作指南— Signature信号特征测试分析目录---开启软件--- (2)第一步,通道设置(Channel Setup) (4)第二步,校准灵敏度(Calibration)—选做项 (8)第三步,跟踪设定(Tracking Setup) (9)第四步,示波/采集设定(Acquisition Setup) (14)第五步,在线分析设定(Online Processing) (17)第六步,开始测量(Measure) (20)第七步,频域后处理(Post Processing) (23)第八步,时域信号选择(Time Data Selection ) (24)第九步,时域信号后处理(Time Data Processing ) (24)---开启软件---1- 在 Windows 桌面上点击 Test Lab的快捷方式,然后点击进入b Signature文件夹,在快捷方式里选择打开 Signature Acquisition (只是采集,无后处理功能)或Signature testing (根据购买协议,有高级版和标准版之分,主体内容2者一致,都有Post processing频域后处理功能,高级版则多了时域信号后处理功能(time data processing)). 图标见下图:2- 下面以Signature Testing – Advanced 为例说明 Signature testing的操作说明,点击打开后出现软件界面如下:3- 开始软件操作,打开项目a) 点击 File键正下方的空白项目图标,新建一个软件默认空白设置的项目(Newproject);b) 也可以点击 File键,在下拉菜单里选择 New,弹出选择项目模板的界面如下在模板列表中选择点击一个以前存好的或者软件默认提供的模板(后缀为.tpl),然后点击Open打开一个新的项目,打开的新项目将套用模板里所有的设置(包括通道设置,采样频率,加什么窗函数等各种设置);c) 当然也可以点击图标来打开以前已经存在硬盘里的项目文件(后缀为.lms,路径在安装 Test Lab软件时已设定,存数据的文件夹叫LMSLocal9A(9A是版本号,如果8A 的话就是LMSLocal8A)路径假设设定成 E:\LMSLocal9A\,那么格式为*.lms的项目文件和与*同名的文件夹(存有全程时域信号Time date的TDF格式文件)存在路径E:\LMSLocal9A\电脑用户名\Data下)。
LMSTestLab传递路径研究分析
传递路径分析探究振动噪声问题地根源LMS b传递路径分析提供了基于工程试验方法地系统级振动噪声解决方案,对关键零部件进行工程分析.作为一个全面理解振动噪声问题地方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定.在一个由多个子结构组成地复杂结构(诸如汽车、飞机或船舶)中,某一特定位置地振动噪声现象往往是由一个远处地振动源所引起地.例如,能量可以通过不同地路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内.进气和排气系统地空气传播也会对振动噪声问题有一定地影响.强大地传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生地根源.LMS b提供高效地解决方案,以识别振动噪声问题及其产生地根本原因,并能够快速地评价设计修改.从故障诊断到根源分析传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置地各个结构传播和声传播地传递路径.一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易地设计工作.传递路径分析用于定量分析不同地激振源及其传递路径,并且计算出其中哪些是重要地,哪些对噪声问题有贡献,哪些会互相抵消.激励源-路径-响应:系统级地方法LMS b传递路径分析是基于激励源-路径-响应地系统解决方案.所有地振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知地响应位置.通过分析激励源及传递路径对响应地影响,并可以通过对其中地某几个因素进行调整,来解决振动噪声问题.传递路径分析地目标是计算从源到响应地各条路径地矢量贡献量,识别出传递路径中各零部件地NVH特性,并通过对其调整来解决特定地问题.最终,TPA通过合理选择各个零部件地特性以避免振动噪声问题,从而有助于产品优化设计.完整地解决方案LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用地TPA解决方案.LMS b可以通过各个可能地角度来帮助客户解决问题——从简单系统到复杂结构.LMS b TPA综合了一系列TPA技术,包括LMS b单参考传递路径分析、空气声定量分析、LMS b多参考点传递路径分析、LMS b OPAX传递路径分析方法以及LMS b时域传递路径分析等.管理海量数据LMS b传递路径分析软件可以对整个测试任务中地所有数据进行快捷高效地管理.根据数据中内嵌地试验描述信息,如分析函数类型、测点位置标识、各个传递函数以及工况数据,将在传递路径模型中自动完成排序和定义.这个自动处理功能可以保证排除数据处理过程中地人为操作失误,并保证数据处理地高效性.相似地处理过程可以同时运用于各种不同地工况.对于发动机传递路径分析,工程师一般更倾向于对在升速、降速过程中最重要地阶次进行分析,此外,也完全支持对各种其它形式地频谱数据进行分析(谱、自功率谱图、1/3倍频程谱等).LMS b传递路径分析易于操作并且高效.工程师们得益于其引导型地工作流程界面及强大地数据管理功能,能够在各阶段对数据进行检查,从而减少数据转换和操作失误.另外,还有一些其它增强性软件功能,如活动图片,可以使团队中地任何人都能从各种可能地角度对数据进行深入细致地分析研究,以充分理解TPA分析结果.清晰地结果诠释LMS b传递路径分析帮助用户完成数据处理,并且快速有效地进行结果解释.庞大地TPA结果能够容易、清晰地组织起来,对于每一个工况和传递路径,工作载荷都能够被获取并储存.为了能够快速识别出多个路径中相对重要地路径,通过彩色视图,可显示出不同转速或频率下各个路径贡献量地幅值.LMS解决方案能够帮助用户从客观和主观两方面分析车内声学响应,识别出其中地故障频谱成分,甚至可以识别掩蔽地频谱成分.对于那些有问题地频率成分,采用工况数据和试验室数据相结合地方法,以确定不同源和路径对其地贡献量.一旦这些激励源与传递路径被识别出来并建立模型后,优化系统就成为了一个相对简单而直接地设计工作.各种TPA技术可以进一步扩展,以支持“如果…,那么…”模式地系统优化功能.对载荷和(或)传递路径进行交互式地修改,可实时地对其效果进行直观地评估.只要通过点击鼠标就可以对各种修改方案进行相互比对,这样大大增强目标设定地流程.多年工程经验地凝聚LMS b解决方案多年来一直处于市场领先地位,可以最大限度地保证数据质量并避免操作失误,它还提供了足够地工程应用灵活性,来调整流程以满足每个问题地特殊需要.在最终地贡献量分析中,通过使用4维图表显示,进行多维度地检查.LMS b传递路径分析是基于大量地工程实践经验基础上开发出来地,已经被广泛应用于工程实践中,以帮助工程师解决关键地振动噪声问题.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX。
某纯电动汽车空调压缩机支架NVH性能分析
某纯电动汽车空调压缩机支架NVH性能分析作者:李永越杨树岗刘巧红张晓坤来源:《汽车与驾驶维修(维修版)》2023年第10期摘要:某純电动汽车在怠速工况下打开空调开关,车内出现振动、噪声过大的问题,导致车内乘坐舒适性较差。
采用LMS 数据采集前端SCADAS Mobile对整车在怠速开空调工况下的振动和噪声进行测试,经过频谱分析发现,问题频率主要集中在72.00 Hz 左右,与压缩机工作转频吻合。
对支架进行模态测试及仿真分析,确定问题原因为压缩机在某特定转速下转频与支架固有频率过于接近,产生了共振,导致车内振动、噪声异常。
基于以上分析,对压缩机支架结构进行了结构优化,优化后有效控制了压缩机支架共振的问题,改善了车内振动、噪声水平,提高了乘坐舒适性。
关键词:纯电动汽车;NVH ;压缩机支架;传递路径;模态分析中图分类号:U463.63+1 文献标识码:A0 引言近年来,随着环保意识的不断提高和能源危机的日益严峻,新能源汽车作为未来出行的重要选择,受到全球汽车行业和消费者的广泛关注。
新能源汽车的电动化特性带来了零排放和静音驾驶的优势,然而,随之而来的是对车辆NVH 性能更高的要求。
在汽车的NVH 问题中,空调压缩机作为主要的激励源之一,其振动与噪声问题越发显著。
传统燃油车由于内燃机本身的噪声掩盖效应,使得空调系统的噪声问题相对较轻。
然而,在新能源汽车中,由于电动驱动的静音特性,空调压缩机引发的噪声和振动问题变得更加突出,严重影响了乘坐舒适性和驾驶体验。
当前,虽然对于传统燃油车空调系统的振动和噪声问题已经有了较多的研究和解决方案,但针对新能源汽车空调压缩机的NVH 性能分析研究还相对较少。
因此,深入探讨新能源汽车空调压缩机支架的NVH 性能,对于提高车辆乘坐舒适性,增强新能源汽车市场竞争力具有重要意义。
本文以某纯电动汽车空调压缩机支架系统为研究对象,通过频谱分析及模态测试等相关手段确定问题频率,并利用有限元分析手段进行验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传递路径分析
探究振动噪声问题的根源
LMS b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。
作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。
在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。
例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。
进气和排气系统的空气传播也会对振动噪声问题有一定的影响。
强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。
LMS b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。
从故障诊断到根源分析
传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。
一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。
传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。
激励源-路径-响应:系统级的方法
LMS b传递路径分析是基于激励源-路径-响应的系统解决方案。
所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。
通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。
传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。
最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。
完整的解决方案
LMS b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。
LMS b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。
LMS b TPA综合了一系列TPA
技术,包括LMS b单参考传递路径分析、空气声定量分析、LMS b多参考点传递路径分析、LMS b OPAX传递路径分析方法以及LMS b时域传递路径分析等。
管理海量数据
LMS b传递路径分析软件可以对整个测试任务中的所有数据进行快捷高效的管理。
根据数据中内嵌的试验描述信息,如分析函数类型、测点位置标识、各个传递函数以及工况数据,将在传递路径模型中自动完成排序和定义。
这个自动处理功能可以保证排除数据处理过程中的人为操作失误,并保证数据处理的高效性。
相似的处理过程可以同时运用于各种不同的工况。
对于发动机传递路径分析,工程师一般更倾向于对在升速、降速过程中最重要的阶次进行分析,此外,也完全支持对各种其它形式的频谱数据进行分析(谱、自功率谱图、1/3倍频程谱等)。
LMS b传递路径分析易于操作并且高效。
工程师们得益于其引导型的工作流程界面及强大的数据管理功能,能够在各阶段对数据进行检查,从而减少数据转换和操作失误。
另外,还有一些其它增强性软件功能,如活动图片,可以使团队中的任何人都能从各种可能的角度对数据进行深入细致的分析研究,以充分理解TPA分析结果。
清晰的结果诠释
LMS b传递路径分析帮助用户完成数据处理,并且快速有效地进行结果解释。
庞大的TPA结果能够容易、清晰地组织起来,对于每一个工况和传递路径,工作载荷都能够被获取并储存。
为了能够快速识别出多个路径中相对重要的路径,通过彩色视图,可显示出不同转速或频率下各个路径贡献量的幅值。
LMS解决方案能够帮助用户从客观和主观两方面分析车内声学响应,识别出其中的故障频谱成分,甚至可以识别掩蔽的频谱成分。
对于那些有问题的频率成分,采用工况数据和试验室数据相结合的方法,以确定不同源和路径对其的贡献量。
一旦这些激励源与传递路径被识别出来并建立模型后,优化系统就成为了一个相对简单而直接的设计工作。
各种TPA技术可以进一步扩展,以支持“如果…,那么…”模式的系统优化功能。
对载荷和(或)传递路径进行交互式的修改,可实时地对其效果进行直观的评估。
只要通过点击鼠标就可以对各种修改方案进行相互比对,这样大大增强目标设定的流程。
多年工程经验的凝聚
LMS b解决方案多年来一直处于市场领先地位,可以最大限度的保证数据质量并避免操作失误,它还提供了足够的工程应用灵活性,来调整流程以满足每个问题的特殊需要。
在最终的贡献量分析中,通过使用4维图表显示,进行多维度的检查。
LMS b传递路径分析是基于大量的工程实践经验基础上开发出来的,已经被广泛应用于工程实践中,以帮助工程师解决关键的振动噪声问题。