合成氨合成工段工艺12

合集下载

年产19万吨合成氨合成工段初步工艺设计

年产19万吨合成氨合成工段初步工艺设计

合成氨是一种广泛应用于农业、化工、医药等领域的重要化工原料。

根据年产19万吨合成氨合成工段初步工艺设计,以下是一份工艺设计报告,为了保护设计者的利益,本文仅提供一部分内容。

一、工艺概述年产19万吨合成氨合成工段通过从天然气中提取氢气并与氮气在催化剂的作用下进行氨合成反应,得到合成氨产品。

该工艺采用了先进的床层式反应器系统,具有高效、稳定和可控性强的优点。

本工艺设计报告将对该工段的主要设备、流程和参数进行介绍和分析。

二、主要设备1.气体处理单元:主要包括气体压缩机、气体净化器和气体储罐等设备,用于对进入工段的天然气和纯净氮气进行预处理和储存。

2.反应器系统:主要包括催化剂床层反应器、冷凝器和分离器等设备,用于催化氢气和氮气反应生成合成氨,并进行产品分离和冷却。

3.工艺氨回收单元:主要包括氨切割器、热氮技术和氨回收器等设备,用于从反应器中回收未反应的氨气,并返回到催化剂床层反应器进行再次利用。

4.废气处理单元:主要包括废气处理装置和废气净化器等设备,用于对排放的废气进行净化处理,减少对环境的影响。

三、工艺流程1.天然气处理:将进入工段的天然气进行压缩处理,去除其中的杂质和硫化物等物质,然后储存在气体储罐中。

2.氮气制备:将氧气和氮气混合,通过特定的膜分离技术获取纯净氮气,用于后续反应过程中的氧气置换和稀释。

3.氢气制备:将从天然气中提取的氢气经过严格的纯化处理,去除其中的杂质和残留的气体,达到合成氨反应所需的纯度和浓度要求。

4.氨合成:在催化剂床层反应器中,将经过预处理的氢气和纯净氮气按一定的比例加入,通过催化剂的作用进行低温高压下的合成氨反应。

5.产品分离:将合成氨通过冷凝器进行冷却,然后进入分离器,从中分离出未反应的氮气和其他杂质,得到纯净的合成氨产品。

6.氨回收:将反应器中未反应的氨气通过氨切割器进行回收,然后经过热氮技术和氨回收器进行进一步处理,以便于再次利用。

7.废气处理:将反应过程中产生的废气经过废气处理装置净化处理,去除其中的有害物质和污染物,使其符合国家的排放标准。

合成氨的工艺流程

合成氨的工艺流程

合成氨的工艺流程
合成氨是一种重要的化工原料,广泛应用于化肥、医药、塑料等多个领域。

其工艺流程主要包括氮气和氢气的催化反应,下面将详细介绍合成氨的工艺流程。

首先,合成氨的工艺流程是通过哈伯-玻斯曼过程实现的。

在工业上,通常采用铁-铝催化剂进行合成氨的催化反应。

反应的化学方程式为N2 + 3H2 → 2NH3。

在反应过程中,氮气和氢气在催化剂的作用下发生反应,生成氨气。

其次,合成氨的工艺流程需要高温高压条件。

反应温度通常在400-500摄氏度,压力在100-200大气压。

高温高压条件有利于提高反应速率和转化率,从而提高合成氨的产率。

然后,合成氨的工艺流程需要进行氮气和氢气的预处理。

氮气通常来自空分设备,需要进行脱氧、脱水等处理,以保证氮气的纯度和干燥度;而氢气通常来自重整装置,也需要进行脱氧、脱硫等处理,以保证氢气的纯度和干燥度。

此外,合成氨的工艺流程还需要进行氨气的分离和净化。

合成
氨反应产生的氨气中通常伴随着少量的氮气、氢气、水蒸气和杂质气体,需要进行分离和净化,以得到高纯度的合成氨产品。

最后,合成氨的工艺流程还需要进行废气处理。

合成氨反应产生的废气中含有一定量的氮气、氢气和氨气,以及少量的催化剂粉尘和有机物,需要进行处理,以达到环保排放标准。

综上所述,合成氨的工艺流程是一个复杂的化学过程,需要高温高压条件下进行氮气和氢气的催化反应,同时进行氮气和氢气的预处理,以及氨气的分离和净化,最终进行废气处理。

这一工艺流程的稳定运行对设备的稳定性和操作技术都有较高要求,但合成氨作为重要的化工原料,其生产工艺的不断改进和优化将对化工行业的发展起到积极作用。

合成氨的合成工段工艺要点

合成氨的合成工段工艺要点

合成氨的合成工段工艺要点
合成氨的合成工艺有以下几个要点:
1. 催化剂选择:合成氨的催化剂通常采用铁、钼和钾的化合物。

常见的催化剂有铁钼催化剂和铁钾催化剂。

催化剂的选择要考虑到催化剂的活性、稳定性和寿命等因素。

2. 反应条件:合成氨的合成反应是在高温高压下进行的。

典型的反应条件为350-450摄氏度和100-250大气压。

高温高压有利于提高反应速率和提高氨的产率。

3. 进料气体配比:合成氨的进料气体通常是氢气和氮气。

为了提高氨的产率,进料气体的氢气和氮气的摩尔比要控制在3:1到3.2:1之间。

4. 反应器设计:合成氨的反应器通常采用垂直管式反应器。

反应器内部通常有多层催化剂床。

反应器的设计要考虑到反应器的温度和压力控制,以及催化剂的补给和废物处理等因素。

5. 中间产品的处理:合成氨反应过程中会生成一些副产物和杂质,如水、氨基酸和硫化物等。

这些中间产品需要进行处理和去除,以保证合成氨的纯度和质量。

6. 能源利用:合成氨的合成过程需要大量的能源。

为了提高能源利用效率,可
以采用废热回收和氨合成废气回收等技术手段。

综上所述,合成氨的合成工艺要点包括催化剂选择、反应条件控制、进料气体配比、反应器设计、中间产品的处理和能源利用等方面。

这些要点的合理选择和控制对于提高氨的产率和质量非常重要。

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计

合成氨是一种重要的化工原料,在农业、化肥、医药等领域具有广泛的应用。

年产五万吨合成氨合成工段的工艺设计需要确保生产效率、降低成本以及保护环境。

下面将介绍一种可能的工艺设计方案,并详细阐述其主要步骤和操作过程。

工艺设计方案:1.原料准备:气体原料包括天然气、汽油等,液体原料包括氨水和硫酸。

将气体原料经过净化处理后,与液体原料进行混合。

2. 混合反应器:将混合后的原料进入混合反应器中,进行催化合成反应。

合成反应通常使用铁催化剂,反应温度为400-500°C,压力为150-300 atm。

3.分离系统:将反应后的混合气体通过冷却器进行冷却,使其达到饱和水蒸气状态。

然后进入分离塔,其中含有若干个塔盘。

通过升温和降压,氨气和氮气分别从塔顶和塔底分离出来。

氨气经过冷凝器冷却,得到液氨产品。

4.副产物处理:除了氨气外,还产生了一些副产物,如甲烷、一氧化碳等。

这些副产物需要进行处理,如通过燃烧转化为二氧化碳和水蒸气。

5.产品处理:将液氨产品进行浓缩、脱水等处理,使其达到合适的纯度要求。

然后进行分装、储存和运输等环节。

在整个合成氨合成工段中,合成反应器是最关键的部分。

其选用合适的催化剂和反应条件,可以保证高效率、高选择性的合成氨反应。

此外,适当的分离系统和副产物处理方式,能够最大程度地回收和利用原料,减少能源消耗和环境污染。

整个工艺设计需要考虑到安全性、经济性和环境性能。

安全性方面,需要对原料进行严格的净化处理,防止催化剂中毒等问题的发生。

经济性方面,需要优化工艺参数,提高产量和纯度,降低生产成本。

环境性能方面,需要优化副产物处理方式,减少废气和废水的排放。

综上所述,年产五万吨合成氨合成工段的工艺设计需要综合考虑多个因素,包括催化剂的选择、反应条件的控制、分离系统的设计、副产物处理方式等。

只有通过优化这些环节,才能够实现高效、稳定、安全和环保的合成氨生产。

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计

年产五万吨合成氨合成工段工艺设计一、引言合成氨是一种重要的化工原料,广泛应用于农业、工业和化工等领域。

合成氨的生产工艺是通过氮气和氢气在一定条件下进行催化反应,生成氨气。

年产五万吨合成氨合成工段工艺设计是一个重要的工程项目,本文将对该工艺设计进行详细介绍。

二、工艺流程1. 原料准备:氮气和氢气是合成氨的原料,氮气主要来自空分设备,氢气主要来自蒸汽重整装置。

2. 原料净化:氮气和氢气需要经过净化处理,去除其中的杂质和水分,以保证反应的纯净度和稳定性。

3. 反应器设计:合成氨的反应器通常采用催化剂床层式反应器,反应器的设计需要考虑到反应条件、催化剂选择、温度控制等因素。

4. 热力平衡:合成氨反应是一个放热反应,需要进行热力平衡设计,确保反应器内温度的稳定。

5. 催化剂再生:催化剂在反应过程中会逐渐失活,需要定期进行再生或更换。

6. 产品分离:合成氨反应生成的氨气需要进行分离和纯化,得到符合工业标准的合成氨产品。

三、工艺参数1. 反应温度:合成氨反应的适宜温度为350-550摄氏度,需要根据具体情况进行调整。

2. 反应压力:合成氨反应的适宜压力为100-300大气压,过高或过低的压力都会影响反应效果。

3. 催化剂选择:常用的合成氨催化剂有铁、铑、铑铁等,需要根据反应条件选择合适的催化剂。

4. 原料比例:氮气和氢气的摩尔比需要按照化学方程式进行精确控制,以确保反应的充分进行。

5. 反应速率:合成氨反应的速率受到温度、压力、催化剂活性等因素的影响,需要进行精确的反应速率控制。

四、设备选型1. 反应器:合成氨反应器需要选择耐高温、耐压的材料制造,通常采用碳钢或不锈钢材料。

2. 分离设备:合成氨反应产生的氨气需要通过冷凝、吸附等方式进行分离,需要选择适宜的分离设备。

3. 催化剂再生装置:催化剂再生装置需要具备高温高压下的操作能力,通常采用氢气再生或空气再生的方式。

4. 热力平衡设备:合成氨反应需要进行热力平衡设计,需要选择适宜的换热器、冷凝器等设备。

合成氨的工艺流程

合成氨的工艺流程

合成氨的工艺流程合成氨是一种重要的化工原料,广泛应用于农药、化肥、塑料、纺织品和燃料电池等工业领域。

合成氨的工艺流程主要包括催化剂的选择、反应条件的控制、氨的分离和纯化等几个关键步骤。

下面将详细介绍合成氨的工艺流程。

1.催化剂的选择:2.原料准备:合成氨的原料主要包括空气和氢气。

空气中的氮气和氧气是制取氨的主要原料,而氢气则是为了提供还原剂。

为了保证原料的纯净度,通常会进行空气分离和氢气净化处理。

3.原料压缩:由于合成氨反应需要较高的压力,所以需要将原料气体进行压缩。

通常采用多级压缩机将氮气和氢气分别压缩到较高压力下。

4.原料进料与预热:将压缩后的氮气和氢气分别进入合成氨反应器前的预热器进行预热,提高其反应温度。

预热器中通常使用废热回收的方式,将反应后的热量传递给进料气体,以提高能量利用效率。

5.反应器:合成氨反应通常采用通过铁-铝催化剂催化的低温高压合成方法。

反应器中的催化剂床层通常采用多层填料堆积,以增加反应面积和接触时间,提高反应效率。

同时,反应器内部的温度和压力需要严格控制,一般为300-400℃和100-250atm。

6.反应气体的冷却与净化:经过反应后,反应气体中除了产生的氨气外,还会有未反应的氮气、氢气以及其他杂质气体。

这些气体需要经过冷却器和废热回收器进行冷却和净化处理,以去除其中的杂质。

7.氨的分离与纯化:在反应气体中,氨气的浓度相对较低,需要进行分离与纯化。

常用的方法是采用低温吸附分离技术,将氨气吸附在吸附剂上,然后通过加热解吸的方式将氨气从吸附剂中释放出来。

8.尾气处理:总的来说,合成氨的工艺流程包括催化剂的选择、原料准备、压缩、进料与预热、反应器、冷却与净化、分离与纯化以及尾气处理等主要步骤。

合理控制每个步骤的条件和参数,能够提高合成氨的产率和质量,减少能源消耗和环境污染。

简述合成氨的生产工艺流程

简述合成氨的生产工艺流程

简述合成氨的生产工艺流程摘要:氨作为重要的化工产品,在人们的生产生活中占有重要地位。

农业中用到的大部分氮肥,包含尿素、硝酸铵、氯化铵等复合肥都是以氨为原料的。

据统计,世界每年合成氨产量不少于一亿吨,大部分都是用做原料来生产化肥,所以合成氨的重要性不言而喻,本文将结合安徽晋煤中能化工股份有限公司的车间操作规程,对合成氨的生产工艺流程进行分析和整理。

关键词:合成氨;生产工艺;反应一、氨合成的基本原理氨合成反应是在高温、高压、并有催化剂存在条件下进行的放热、体积缩小、可逆的反应。

其化学反应式如下:N2+3H22NH3+Q由于氨合成反应是可逆、放热、体积缩小的反应,根据化学平衡移动定律(勒沙特列原理),提高压力,降低温度,降低进塔氨含量,控制合适的氢氮比,有利于反应向生成氨的方向进行,即有利于氨的合成。

二、氨合成的反应机理在催化剂的作用下,氢与氮生成氨的反应是一多相气体催化反应,多相气体催化反应的历程一般由以下几个步骤所组成:1、气体反应物扩散到催化剂外表面;2、反应物自催化剂外表面扩散到毛细孔内表面;3、气体被催化剂表面(主要是内表面)活性吸附;4、吸附状态的气体在催化剂表面上起化学反应,生成产物;5、产物自催化剂表面解吸;6、解吸后的产物从催化剂毛细孔向外表面扩散;7、产物由催化剂外表面扩散至气相主流。

以上七个步骤是氢和氮自气相空间向催化剂表面接近,其绝大部分自外表面向催化剂的毛细孔的内表面扩散,并在表面上进行活性吸附。

吸附氮与吸附氢及气相氢进行化学反应,依次生成NH, NH2, NH3,后者自表面脱附后进入气相空间。

三、安徽晋煤中能化工股份有限公司氨合成的工艺流程氨的合成主要包含脱硫、转化、变换、脱碳、甲烷化、氨的合成、吸收制冷及输入氨库和氨吸收八个工序,下面主要针对徽晋煤中能化工股份有限公司的氨的合成部分进行阐述。

来自压缩七段出口的新鲜气,经七段油分分离后,在冷交气体出口氨冷前补入,进入氨冷器冷却后,进入氨分离器分离液氨,并在下部进入冷交换器管内上行(降低水冷后气体),由上部出来进入循环机加压,加压后的气体先进入油分离器分离油滴,然后进入热交与水加热器来的热气预热交换后进入合成塔(为调节炉温在油分离后至水冷进口设置一近路管线,在油分离器后至合成塔底部及g3冷激设副线以便调节催化剂床层温度)。

年产万吨合成氨厂合成工段工艺设计工艺流程选择

年产万吨合成氨厂合成工段工艺设计工艺流程选择

年产18万吨合成氨厂合成工段工艺设计
工艺步骤选择
原料气为天然气
1、进行原料气预脱硫(钴钼加氢转化)
2、气态烃类蒸汽转化, CH4+H20==CO+3H2
3、一氧化碳变换, 除去CO, 得到制取尿素原料CO2
4、脱除和回收CO2,
5、甲烷化控制CO 和CO2 含量,
6、氨合成
此次设计关键设计氨合成工段
选择工艺步骤为新乡心连心氨合成工艺, 工艺步骤图以下:
具体工艺步骤为:
自烃化工段来原料气和循环机出口循环气精制原料气和循环机出口循环气一起进入油分离器, 分离油污后, 进入塔前预热器, 预热至适宜温度送入氨合成塔, 进行多段合成反应, 反应后热气经合成塔下部换热器冷却进入废热锅炉用锅炉软水回收热量, 以后送入塔前预热器管间冷却, 以后经过冷排器冷却, 温度降至常温进入冷交换管间回收冷量, 下部分离氨后进入卧式氨冷器, 温度降至约10℃左右进氨分离器分离液氨, 气氨回收处理, 液氨经冷交换管内换热升温至25℃进循环机加压与新鲜气混合进氨合成塔进行循环反应, 大部分液氨由氨分离器出口送入液氨储罐。

年产 10万吨合成氨厂合成工段工艺设计

年产 10万吨合成氨厂合成工段工艺设计

年产10万吨合成氨厂合成工段工艺设计第一部分设计说明书一、概述产品在国民经济中的地位及用途;国内外生产的发展概况;合成氨工业的展望。

氨在国民经济中占有重要的地位,现在约有80%的氨用来制造化学肥料,其余作为生产其他化工产品的原料。

除液氨可直接作为肥料外,农业上使用的氨肥,例如尿素、硝酸铵、磷酸铵、硫酸铵、氯化铵、氨水以及各种含氨混肥和复肥,都是以氨为原料的氨在工业上主要用来制造炸药和各种化学纤维和塑料。

从氨可以制的硝酸,继而再制造硝酸铵、硝化甘油、三硝基甲苯和硝基纤维素等。

在化纤和塑料工业中,则以氨、硝酸和尿酸作为氮源,生产已内酰胺,己二胺、人造丝、全脂树脂和脲醛树脂等产品氨的其他工业用途也十分广泛,例如作为制冰、空调、冷藏等系统的制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属,在医药和生物化学方面生产磺胺类生物、维生素、蛋氨酸和其他氨基酸等。

氨气的发现十七世纪 30 年代末英国的牧师、化学家 S.哈尔斯(HaLes,1677~1761) ,用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出, 1774 年化学家普利斯德里重做该实验,用汞代替水来密封,制得了碱空气(氨),并且他还研究发现了氨的性质,发现氨极易溶于水、可以燃烧,还发现该气体通以电火花时其容积增加,而且分解为两种气体: H2和 N2,其后 H.戴维(Davy, 1778~1829) 等化学家继续研究,进一步证明了 2 体积的氨通过电火花放电后,分解为 1体积的氮气和 3 体积的氢气[2]。

19 世纪以前农业上所需的氮肥来源主要来自于有机物的副产物和动植物的废物,如粪便、腐烂动植物等等,随着农业和军工生产的发展的需要,迫切的需要建立规模巨大的探索性的研究,化学家们设想,能不能把空气中大量的氮气固定下来,从而开始设计以氮和氢为原料的合成氨流程。

19 世纪,大量的化学家开始试图合成氨,他们试图利用高温、高压、电弧、催化剂等手段试验直接合成氨,均未成功。

(完整word版)合成氨的工艺流程

(完整word版)合成氨的工艺流程

(完整word版)合成氨的工艺流程合成氨工艺流程氨是重要的无机化工产品之一,在国民经济中占有重要地位。

除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。

合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。

反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。

合成氨反应式如下:N2+3H2≒2NH3合成氨的主要原料可分为固体原料、液体原料和气体原料。

经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。

1.合成氨的工艺流程(1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。

对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

① 一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。

合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。

变换反应如下:CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。

第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。

因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

合成氨生产工艺简介

合成氨生产工艺简介

合成氨生产工艺简介目前国内生产合成氨的工艺大同小异,忽略各自的设备差异和工艺上的微小不同,我们可以将氨的生产过程,粗略的讲可分成一下几步:造气;脱硫;变换;变换后脱硫;铜洗;氨合成几个步骤,如下是此类流程的一个极简示意图:图1合成氨的极简化流程1造气工段造气实质上是碳与氧气和蒸汽的反应,原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。

所制的半水煤气(主要成分为CO 和H 2,另有其他杂质气体)进入洗涤塔进行除尘降温,最后送入半水煤气气柜。

造气工段脱硫工段变换工段煤块 水蒸汽CO, N 2, H 2 H 2S 等其他杂质 CO, N 2, H 2变换气脱硫工段CO 2, N 2, H 2H 2S 等其他杂质 甲醇合成工段少量CO, CO 2, N 2, H 2精炼工段N 2, H 2 极少量CO X 等其他杂质 氨合成工段N 2, H 2冷冻工段NH 3 液氨图2 造气工艺流程示意图2脱硫工段煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。

气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。

脱硫液再生后循环使用。

图3 脱硫工艺流程图3变换工段气体从脱硫工艺中处理过后,已不含H2S等有毒气体。

变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。

经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

说明:合成气的中的CO(一氧化碳)经蒸汽转换成CO2(二氧化碳)与H2,转换后气体称为“变换气”。

合成氨各工序工艺详细流程

合成氨各工序工艺详细流程

一、合成氨装置工艺流程说明合成氨装置由一氧化碳变换、酸性气体脱除、硫回收、气体精制、合成气压缩、氨合成、冷冻工序共7个工序组成。

1.一氧化碳变换工序工艺流程说明来自煤气化装置的粗煤气(242.25℃ 6。

25MPag)进入变换原料气分离器(S04101),分离夹带的水分,再进入煤气过滤器(S04102),除去煤气中的其他杂质。

净化后的煤气经煤气换热器(E04101)加热到280℃左右,后进第一变换炉(R04101)进行变换反应,出第一变换炉的高温变换气进煤气换热器(R04101)换热,在煤气换热器(E04101)中加热煤气化装置来的粗煤气,换热后的变换器进入中压废热锅炉(E04103)中,在此,副产2。

6MPa(G)的中压饱和蒸汽,然后在265℃左右进入第二变换炉(R04102)。

第二变换炉(R04103)出来的变换气经过中压废锅II(E04102)调温至260℃左右后进第三变换炉(R04103)继续进行反应。

出第三变换炉(R04103)的变换气进低压废热锅炉(E04105)副产0.6MPa(G)的低压饱和蒸汽,此时变换气温度降至202℃左右,进入1#变换气分离器(S04104)分离出冷凝液后,变换气继续进入锅炉给水预热器(E04113)降温,在2#变换气分离器(S04104)分离冷凝液后进入除盐水预热器II(E04107),在5#变换分离器(S04110)中分离出冷凝液后继续进入除盐水预热器(E04114)中,此时温度降至70℃,经3#变换气分离器(S04105)后分离冷凝液,而后再进入变换气水冷器(E04108),冷却至40℃后进入酸性气体脱除工序。

从1#、2#和5#分离器(S04103、S04104、S04110)出来的高温冷凝液经冷凝液闪蒸槽(S04109)汇合并闪蒸后,液相经冷凝液泵II(P04103A/B)加压后,直接送往煤气化装置。

一氧化碳变换工序的低温工艺冷凝液、低温甲醇洗来的洗氨水以及塔顶回流液进入冷凝液汽提塔上部(冷凝液汽提塔操作压力0.4MPaa),在冷凝液汽提塔中用来自管网的低压蒸汽汽提,从冷凝液汽提塔底部出来的汽提后工艺冷凝液NH3含量小于10ppm,从冷凝液汽提塔顶部出来的气体尾气在汽提气水冷器(E04109)中用循环水冷却到40℃后进尾气分离器(S04107),尾气分离器(S04107)分离出来的冷凝液一部分送到冷凝液汽提塔顶部作为回流液,约有33-55%的冷凝液送氨法脱硫装置,出汽尾气分离器(S04107)的汽提尾气送火炬焚烧处理。

合成氨的工艺流程

合成氨的工艺流程

合成氨的工艺流程概述合成氨是一种重要的化学品,广泛应用于农业、化工和制药等领域。

合成氨的工艺流程是通过合成气(氮气和氢气)在催化剂的作用下进行反应,生成氨气。

本文将介绍合成氨的工艺流程,包括催化剂的选择、反应器的设计以及废气处理等内容。

催化剂的选择合成氨的工艺中使用的催化剂主要有铁催化剂和铑催化剂两种。

铁催化剂具有较低的成本和良好的稳定性,在工业生产中应用广泛。

而铑催化剂具有较高的活性和选择性,但成本较高,主要应用于高纯度氨的生产过程。

根据具体的生产要求和经济考虑,选择合适的催化剂对于合成氨的工艺流程至关重要。

工艺流程步骤合成氨的工艺流程包括氮气和氢气的净化、减压、混合、催化反应、分离和废气处理等步骤。

氮气和氢气的净化氮气和氢气都需要经过净化处理,去除其中的杂质和有害物质。

净化过程主要包括压力摇吸附(PSA)等方法,将氮气和氢气中的氧气、水分和其他杂质去除,以保证反应的纯度和催化剂的稳定性。

氮气和氢气的减压经过净化处理后的氮气和氢气需要经过减压装置,将其压力降低到合适的反应工艺要求。

减压过程既可以减少能耗,又可以确保反应器内部的稳定工作条件。

氮气和氢气的混合减压后的氮气和氢气需要被精确地混合在一起,以确保反应的顺利进行。

混合的比例关系是合成氨工艺中的关键参数,需要根据具体的催化剂和工艺要求进行调整。

催化反应混合后的氮气和氢气进入催化器中进行反应。

催化剂的作用下,氮气和氢气发生氨合成反应,生成氨气。

反应温度和压力是催化反应中的重要参数,需要根据具体工艺要求进行控制。

分离催化反应生成的氨气需要与未反应的氮气和氢气进行分离。

分离过程通常采用吸附分离和洗涤分离等方法,将氨气从混合气体中分离出来,以获得纯度较高的氨气。

废气处理合成氨工艺中产生大量的废气,其中包括未反应的氮气、氢气和其他副产物。

废气处理是合成氨工艺中的重要环节,需要对废气进行处理,以减少对环境的污染。

常见的废气处理方法包括吸收、压缩等,将废气中的污染物去除或压缩成液体状态,以便储存和处理。

合成氨合成工段年产万吨工艺设计毕业设计

合成氨合成工段年产万吨工艺设计毕业设计

合成氨合成工段年产万吨工艺设计毕业设计合成氨是工业生产中的重要化学物品之一,被广泛应用于肥料、塑料、药物等多个领域。

本文将以合成氨合成工段年产万吨工艺设计为主题,为大家介绍合成氨合成过程以及其关键工艺参数的设计要点。

一、合成氨合成过程合成氨的制备主要通过哈伯-卡尔斯过程实现,其反应方程式为:N2 + 3H2 → 2NH3该过程需要高压和高温条件下的催化反应,通常以铁和钼等金属为催化剂。

合成氨合成工段的设计需要精确控制反应条件和原料的配比,以确保高效的氨气生成和产品质量的稳定输出。

二、合成氨合成工段年产万吨工艺设计要点1.反应压力控制反应压力是直接影响哈伯-卡尔斯过程反应速率和氨生成量的重要参数。

在设计合成氨合成工段时,需要通过合理的变量控制方案,确保反应压力的平稳控制。

例如,采用压力传感器和配套控制设备等技术手段,可以根据反应情况及时调整反应压力,以达到最佳工艺效果。

2.反应温度控制反应温度是影响哈伯-卡尔斯过程反应速率和氨生成量的另一个重要参数。

在合成氨合成工段设计中,需要精确控制反应温度,以在确保催化剂稳定性的情况下,使反应率达到最大值。

常见的反应温度控制手段包括热传导油式加热器、蒸汽加热器等。

3.催化剂的选择及生命周期控制在哈伯-卡尔斯过程中,催化剂的选择及其生命周期对合成氨合成工段的效率和质量具有重要影响。

通常采用铁-钼催化剂,具有较高的催化活性和稳定性。

催化剂衰减是一个不可避免的问题,通常采取“烧结-还原”等手段进行再生,以保证催化剂的长期稳定使用。

4.废气净化合成氨合成工段会产生大量的废气,其中含有大量的氮气和氢气等有害气体。

因此,在设计合成氨合成工段时,需要加强废气处理,以防止的环境污染和危害工作人员身体健康。

综上所述,合成氨合成工段的年产万吨工艺设计需要有序、合理地规划反应压力、温度、催化剂及废气净化等关键工艺参数,以确保高效的氨气生成和产品质量的稳定输出。

未来,随着科学技术的不断发展,合成氨合成工段的工艺设计将得到更完善和优化,提高其在工业生产中的重要性和市场竞争力。

产五万吨合成氨合成工段工艺设计方案

产五万吨合成氨合成工段工艺设计方案

产五万吨合成氨合成工段工艺设计方案合成氨是一种重要的化工原料,广泛应用于农业、化肥、制药等领域。

在合成氨的工艺设计方案中,需要考虑到原料选择、反应条件、反应器类型、废气处理等方面。

以下是一种可能的合成氨工艺设计方案:1.原料选择:合成氨的主要原料为氮气和氢气,可以通过液化天然气蒸馏得到纯净氢气,通过空气分离装置分离得到高纯度氮气。

2.反应条件:合成氨的反应通常在高温高压下进行,最常用的反应条件是200-300摄氏度,20-50兆帕的压力。

这种条件能够提高反应速度和产率。

3.反应器类型:合成氨的反应器有多种类型,常用的是催化剂床层反应器。

床层反应器中催化剂填充在固定床层中,氮气和氢气通过床层与催化剂接触反应生成氨气。

4.反应步骤:合成氨的反应是一个复杂的多步骤反应过程,其中包括氮气与氢气的吸附、表面反应和脱附步骤。

其中最关键的步骤是氮气和氢气通过催化剂表面的化学反应生成氨气。

5.废气处理:在合成氨的过程中,会产生大量的废气,其中含有未反应的氮气和氢气,还有其他杂质气体。

为了环境保护和资源利用,需要对废气进行处理。

一种常用的废气处理方法是通过吸收剂吸收废气中的氨气,再经过一系列的处理步骤,使其达到环保标准。

总结:合成氨的工艺设计方案需要考虑到原料选择、反应条件、反应器类型以及废气处理等方面。

通过合理的设计可以提高合成氨的产率和纯度,同时减少对环境的影响。

同时,必须对工艺流程进行严格的控制和监测,确保安全和稳定性。

这只是一个可能的合成氨工艺设计方案,实际的工艺设计还需要根据具体的情况进行调整和优化。

合成氨生产工艺流程演示文稿

合成氨生产工艺流程演示文稿

合成氨生产工艺流程演示文稿合成氨是一种用于生产肥料、塑料、药品等的重要化学物质。

下面是合成氨生产工艺流程的演示文稿,详细介绍了合成氨的生产过程。

一、引言大家好!我今天将为大家介绍合成氨的生产工艺流程。

合成氨是一种重要的化学原料,广泛应用于农业、化工、制药等领域。

通过合成氨工艺,我们能够高效地生产出大量的氨气。

二、生产工艺流程1.原料准备合成氨的主要原料是氢气和氮气。

氢气通常由天然气蒸气重整或煤气化等方法获得,氮气则可以通过空分设备进行分离。

这两种原料首先需要进行净化和压缩,以满足反应装置的要求。

2.合成反应合成氨工艺的核心是合成反应。

合成反应通常在高温(400-500℃)和高压(20-30MPa)下进行。

反应需要一个催化剂,常用的催化剂是铁-铬体系。

催化剂的作用是降低反应的活化能,促进氨气的生成。

在反应过程中,氢气和氮气以一定的比例进入催化剂床层。

催化剂床层中的铁-铬催化剂将氢气和氮气转化为氨气。

反应产物经过冷却、净化和压缩处理后,得到高纯度的合成氨。

3.副反应控制在合成氨反应中,除了产生氨气外,还会产生一些副产物,如一氧化碳、二氧化碳和甲烷等。

这些副产物会降低氨气的产量和质量,因此需要采取相应的措施进行控制。

一种常用的副反应控制方法是增加氮气的用量。

通过提高氮气的进料比例,可以降低副产物的生成,同时提高氨气的选择性。

此外,也可以通过改进催化剂的配方和反应条件等手段,进一步减少副产物的生成。

4.废气处理合成氨工艺中产生的废气中含有一定量的副产物,如一氧化碳、二氧化碳和氮氧化物等。

这些副产物对环境具有一定的污染作用,因此需要进行处理。

常用的废气处理方法是采用催化燃烧技术。

废气被引入燃烧室,与催化剂进行混合并加热,使副产物发生氧化反应。

经过处理后,废气中的有害物质被还原为无害的二氧化碳和水。

三、总结通过合成氨生产工艺流程,我们可以高效地生产出大量的合成氨。

生产过程中,需要准备原料、进行合成反应、控制副反应和处理废气等环节。

合成氨 合成工段

合成氨 合成工段


单管并流式
优点:塔内部件紧凑,催化剂筐与换 热器间距小,塔有效利用率高。缺点:结构不够牢固,升 气管、冷管焊缝易裂开。
外 冷 管 内 冷 管 催 化 剂 分气盒 冷 管
催 化 剂 升 气 管
并流三套管示意图
单管并流示意图
冷激式氨合成塔


1、立式轴向四段冷激式氨合成塔(凯洛格型)
内件包括:四层催化剂、层间气体混合装臵、裂管式换 热器。 优点:用冷激式调节反应温度、操作压力方便,结构简 单,内件可靠性好,装卸催化剂方便。缺点:瓶式结构, 内件先装入再焊瓶嘴。检修、损坏更换不方便。
28

空气
8 .5 8
锅炉
10 K J
6
煤处理
3 3 .6
气化
10 K J
O2
6
M P a
洗涤冷却 变换
空气分离
3
500 NM
H 2S
3680 NM
甲醇洗 液氨洗涤
3
CO2
废气
N2
750 NM 2 0 .2 7 M P a
3
3
0 .1 M P a 350 NM
lgKf = 2250.322/T-0.85340-1.51049lgT-25.8987× -5T+14.8961× -8T2 10 10
计算出Kf和Kγ即可求出Kp, 进而可计算不同温度和压力下的氨平衡含量。
平衡氨含量计算实例
已知Kp,计算平衡氨含量x*NH3
设惰气含量xi, 氢氮比H2/N2=r, 则有 N2/(N2+H2)=1/(1+r) H2/(N2+H2)=r/(1+r) 平衡时各组分分压如下: NH3 N2 PNH3=Px*NH3 PN2=P[1/(1+r)](1-x*NH3-xi)

年产20万吨合成氨合成工段工艺设计

年产20万吨合成氨合成工段工艺设计

太原理工大学课程设计题目:年产20万吨合成氨合成工段工艺设计课程设计要求:设计采用中压两级分氨流程,年产20万吨合成氨合成工段的工艺设计。

设计配有设计说明书一份,图纸二张。

说明书内容:原料气来源、流程方案的确定、物料衡算、热量衡算、设备选型及设计计算、车间布置、三废”治理及综合利用。

二张图纸:1.带控制点的合成工段物料流程图; 2.中压合成塔的工艺装配图。

学生应交出的设计文件(纸质及电子版):1.设计说明书(首页附设计任务书)2.工程设计图(CAD版)(1)主要设备图(2)工艺流程图主要参考资料(电子版):一.手册1. 小合成氨厂工艺技术与设计手册(上册),化学工业出版社,1994。

2. 小合成氨厂工艺技术与设计手册(下册) 梅安华主编,化学工业出版社,1994。

3. 氮肥工艺设计手册气体压缩氨合成甲醇合成,化学工业出版社,1989。

4. 氮肥工艺设计手册理化数据分册,石油化学工业出版社,1977。

二.参考文献1中国环球化学工程公司编. 氮肥工艺设计手册[M].19852郝晓刚等编著. 化工原理课程设计. 北京:化学工业出版社,20093陈甘棠主编.化学反应工程[M]. 第三版.北京:化学工业出版社.1990(11)4黄璐. 化工设计. 北京:化学工业出版社,20005陈五平主编.无机化工工艺学.第三版. 北京:化学工业出版社,19856姜胜阶.合成氨工学【J】.石油化学工业出版社,1978(7)7湖北华工设计院.氨合成塔【J】.石油化学工业出版社,1977(12)8化学工业出版社组织编写.中国化工产品大全[M].第二版上卷.9司航主编.化工产品手册[M].第三版.北京:化学工业出版社.10李祥君著.新编精细化工产品手册[M].北京:化学工业出版社.1996.11万家亮曾胜年主编.分析化学[M].第三版. 北京:高等教育出版社.2001(6).12天津化工研究院编.无机与工业手册【M】.北京:化学工业出版,1988(2)13江寿建. 化工厂共用设施设计手册. 北京:化工工业出版社,200014时均等. 化学工程手册. 北京:化学工业出版社,199615赵国方. 化工工艺设计概论. 北京:原子能出版社,199016化工工程师手册编辑委员会. 化学工程师手册. 北京:机械工业出版社,2000 17陈敏恒等. 化工原理,上下册. 北京:化学工业出版社,198518吴志泉等. 化工工艺计算,物料、能量衡算. 上海:华东理工大学出版社,1992 18倪进方. 化工过程设计. 北京:化学工业出版社,1999专业班级化学工程与工艺0802班学生李林豪组别第四组组员李林豪李旭连文豪马楠宋路华要求设计工作起止日期2011.11.21~2011.12.16指导教师签字日期系主任批准签字日期前言《化工设计》课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、各类塔结构等图形。

年产11000吨合成氨合成工段工艺设计

年产11000吨合成氨合成工段工艺设计

摘要本文介绍了合成氨生产的用途及年产一万一千吨合成氨系统流程,介绍了氨的性质及其用途,介绍了合成氨的工艺流程论述,工艺合成的方法及计算,并对氨冷器、合成塔进行热量衡算和系统的物料衡算,对合成塔内件的强化措施以及设备的工艺计算。

关键词:合成,工艺,方法,计算一、氨的性质及用途(一)氨的物理化学性质1.物理性质氨是一种无色有刺激性气味的气体,对人的神经也有刺激作用,吸多了就会中毒。

常温下-34℃即可融化,氨的沸点为-33.35℃,凝固点为-77.7℃,氨极易溶于水,溶解时放出大量的热,可生产含3NH 15﹪—30﹪的氨水,氨水是碱性,易挥发,液氨或干燥的氨气对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等金属有腐蚀作用。

2.化学性质氨在常压时相对稳定,在高温,电火花或紫外光的作用下可分解为氢和氮,其分解速度在很大程度上与气体接触的表面性质有关。

氨是一种可燃性物质,自燃点为630℃,一般较难点燃。

氨与空气或氧气的混合物在一定范围内能够发生爆炸,常温常压下的爆炸范围为15.5﹪—28﹪(空气)和13.5﹪—82﹪(氧气)。

氨易与许多物质发生反应,例如在铂催化剂作用下能与氧气发生反应生成NO 。

氨的性质比较活泼,能与各种有机酸反应生成盐,能和二氧化碳反应生成氨基甲酸铵,脱水成尿素利用氨与各种有机酸反应制取磷酸铵,与二氧化碳和水反应生成碳酸氢铵。

(二)氨的用途氨是一种重要的无机化学工艺产品之一,主要用于化学肥料的生产。

除液氨可直接作为肥料外,农业上使用的氨肥,例如尿素、硝酸铵、氯化铵以及各种含氨复合肥,都是以氨为原料的。

1909年德国化学家哈伯提出了工业氨的合成方法即“循环法”,这是工业上目前普遍采用的直接合成法。

反应过程中为解决氢气和氨气合成转变率低的问题,将氨产品从合成反应后的气体中分解出来。

为反应氢气和氨气混合重新参与合成反应,合成氨反应式如下:22332N H NH +=合成氨指由氮气和氢气在高压催化剂存在下直接合成的氨,别名:氨气。

合成氨合成工段生产工艺操作指导书

合成氨合成工段生产工艺操作指导书

合成氨合ΛX‰⅛J te工艺操作指⅛⅛1岗位职责 (2)2工艺设备的维护和管理 (4)3生产工艺与设备 (5)4正常操作要点 (10)5开停车操作 (13)6岗位事故原因及处理 (23)7应急事故处理 (28)8合成岗位安全操作规程 (31)9液氨质量控制点及操作控制程序 (34)1岗位职责、工作联系、操作范围、巡回检查制交接班制1.1岗位职责1)自觉遵守厂规厂纪,严格遵守各级安全规章制度。

2)上岗必须按规定着装,并持证上岗,遵守劳动纪律,不串岗、脱岗、睡岗,不做与本职工作无关的事。

3)严格遵守工艺操作规程和安全技术规程,认真学习操作及安全知识,增强自我保护能力。

4)精心操作,并认真填写操作记录,保证数据准确、可靠、字迹正规、表面整洁。

5)正确分析、判断和处理各种事故,发现异常情况及时处理,并向上级报告。

6)不违章操作,并有权拒绝违章作业的指令。

7)严格遵守工艺纪律,认真进行交接班,坚决杜绝破坏生产的事情发生。

8)加强设备的维护保养,并加强巡回检查,发现异常现象及时处理。

9)熟悉本岗位有毒有害物质,熟悉急救方法,消防知识,气体防护知识等,遇到危急情况,迅速处理并自救。

10)增强节能、减排意识,在自己所做的本职工作中做到节能降耗,并保持现场清洁,保持本岗位外排指标合格。

11)爱护公共设备、工具,保护公共财产,维护公司利益。

12)加强团结、密切协作,搞好工作之间的联系。

13)积极参加各种劳动竞赛。

1.2工作联系D与分析岗位的联系了解入口气体成分,掌握变化情况,控制好循环氢在指标之内。

2)与提氢岗位的联系控制好循环气甲烷在指标之内。

3)与双甲岗位的联系注意出口微量变化,注意压差变化,保护好提温换热器。

4)与冷冻岗位联系控制好放氨压力,气氨总管压力,防止冰机带氨。

5)与车间的联系加强与车间联系,生产如有异常马上通知车间并及时解决。

6)与熟酸厂液氨岗位联系控制好氨中间槽液位、压力、供氨流量。

7)与当班调度及值班长的联系及时与调度及值班长联系,生产出现异常时立即处理,并马上与上级联系,保证生产的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文(设计)2012 届题目合成氨合成工段工艺专业学生学号小组成员指导教师完成日期 2012-04-10毕业论文(设计)任务书班级日期2012-04-101、论文(设计)题目:合成氨合成工段工艺2、论文(设计)要求:(1)学生应在教师指导下按时完成所规定的容和工作量,最好是独立完成。

(2)选题有一定的理论意义与实践价值,必须与所学专业相关。

(3)主题明确,思路清晰。

(4)文献工作扎实,能够较为全面地反映论文研究领域的成果及其最新进展。

(5)格式规,严格按系部制定的论文格式模板调整格式。

(6)所有学生必须在月日之前交论文初稿。

3、论文(设计)日期:任务下达日期2011年12月10日完成日期 2012 年 4 月 10日4、指导教师签字:毕业论文(设计)成绩评定报告毕业论文答辩及综合成绩合成氨合成工段工艺摘要:在氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。

氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,这部分约占30 %的比例,称之为“工业氨”。

世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。

根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发。

合成氨生产过程中,换热器应用十分广泛,主要用于热量的交换和回收。

变换工段中主要涉及一氧化碳的转化和能量的回收利用,列管换热器在传热效率,紧凑性和金属耗量不及某些换热器,但它具有结构简单,坚固耐用,适用性强,制造材料广泛等独特优点,因而,在合成氨变换工段选择列管式换热器,而本设计主要对该换热器进行相关选计算。

关键词:氨,合成氨,反应热,氢气目录1绪论 (1)1.1怎样固氮 (1)1.2氨从实验室到工业生产 (1)1.2.1艰难的探索 (1)1.2.2哈伯终成正果 (1)1.3氨工业化后的发展 (2)2氨的合成 (3)2.1原料气来源 (3)2.1.1 煤气的生成 (3)2.1.2天然气制氨 (3)2.1.3重质油制氨 (4)2.3氨合成反应的特点和催化剂 (4)2.3.1氨合成反应的特点 (4)2.3.2氨合成铁系催化剂 (4)2.4最佳工艺条件的选择 (5)2.4.1压力 (6)2.4.2温度 (6)2.4.3空间速度 (6)2.4.4合成塔入口气体组成 (6)2.5合成氨工艺流程 (6)3工艺过程设计 (8)3.1估算传热面积 (8)3.1.1查取物行数据 (8)3.1.2 热量衡算 (8)3.1.3 确定换热器的材料和压力等级 (8)3.1.4 流体通道的选择 (8)3.1.5 计算传热温差 (8)3.1.6 选K值,估算传热面积 (9)3.1.7 初选换热器型号 (9)3.2计算流体阻力 (10)3.2.1 管程流体阻力 (10)3.2.2 壳程流体阻力 (10)3.3计算传热系数,校正传热面积 (11)3.3.1 管程对流给热系数i (11)3.3.2 壳程对流传热系数α0 (11)3.3.3 计算传热系数 (11)3.3.4 计算传热面积 (12)4节能措施 (14)5世界合成氨工业近期进展及前景展望 (15)6总结 (17)参考文献 (18)致 (19)1绪论1.1怎样固氮氨(Ammonia),分子式NH3,1754 年由英国化学家普里斯特利(J.Joseph Priestley)加热氯化铵和石灰石时发现。

1784 年,法国化学家贝托雷(C.L.Berthollet)确定了氨是由氮和氢组成的。

从那以后很长一段时间,氨的主要来源是氮化物,而氮化物的主要来源是自然界中的硝石矿产。

19 世纪以来,人类步入了现代化的历程。

随着农业的发展,氮肥的需求量在不断提高;同时随着工业的突飞猛进,炸药的需求量也在迅速增长。

1809 年,在智利发现了一个很大的硝酸钠矿产地;但是面对人类不断膨胀的需求,自然界的生物和矿产资源毕竟有限。

然而全世界无论何处,大气的五分之四都是氮,如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。

因此将空气中丰富的氮固定下来并转化为可被利用的形式,成为一项受到众多科学家注目和关切的重大课题,而合成氨,作为固氮的一种重要形式,也变成了19 至20 世纪化学家们所面临的突出问题之一。

1.2氨从实验室到工业生产1.2.1艰难的探索氨的合成反应式:N2+3H2=2NH3合成氨的化学原理,写出来,不过这样一个方程式;但就是这样一个简单的化学方程式,从实验室研究到最终成功、实现工业生产,却经历了约150 年的艰难探索。

在此期间,曾有不少著名的化学家踏上了合成氨的研究之路,但他们的最终结局却都是无功而返。

1795 年,曾有人试图在常压下进行氨合成,后来又有人在50 个大气压下试验,结果都失败了。

19 世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可逆的,增加压力将使反应推向生成氨的方向,提高温度会将反应移向相反的方向,然而温度过低又使反应速度过小;催化剂对反应将产生重要影响。

这实际上就为合成氨的试验提供了理论指导。

1.2.2哈伯终成正果在合成氨研究屡屡受挫的情况下,德国物理化学家F·哈伯(Fritz Haber)知难而进,对合成氨进行了全面系统的研究和实验,攻克了这一令人生畏的难题。

由于哈伯和博施的突出贡献,他们分别获得1918、1931 年度诺贝尔化学奖金。

其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法(表1-1)。

名称合成压力(MPa) 年份开发国家哈伯-博施法20.3 1913 德国克劳德法100.3 1917 法国卡塞莱法70.9-80.1 1920 意大利佛瑟法30.4 1921 意大利蒙特·赛尼斯-伍德法10.1-15.2 1921 德国氮气工程公司法30.4 1921 美国表1-1 氨合成方法到20世纪30年代初,合成氨已经成为世界上广泛采用的制氨方法。

20 世纪70 年代以来,合成氨的生产不仅促进了如高压、低温、原料气制造、气体净化、特殊金属冶炼以及催化剂研制等方面的发展,还对一些化学合成工业,如尿素、甲醇和高级醇、石油加氢精制、高压聚合等起了巨大的推动作用。

表1-2 1931~1932年度世界氨产量(以N 计)来源产量(kt)比例(%)煤气副产氨水472 15.3氰化法10 0.3合成氨法2609 84.41.3氨工业化后的发展自从合成氨工业化后,原料构成经历了重大的变化。

煤造气时期第一次世界大战结束,很多国家建立了合成氨厂,开始以焦炭为原料。

20 年代,随着钢铁工业的兴起,出现了用焦炉气深冷分离制氢的方法。

焦炭、焦炉气都是煤的加工产物。

为了扩大原料来源,曾对煤的直接气化进行了研究。

1926 年,德国法本公司采用温克勒炉气化褐煤成功。

第二次世界大战结束,以焦炭、煤为原料生产的氨约占一半以上。

烃类燃料造气时期早在 20—30 年代,甲烷蒸汽转化制氢已研究成功。

50 年代,天然气、石油资源得到大量开采,由于以甲烷为主要组分的天然气便于输送,适于加压操作,能降低氨厂投资和制氨成本,在性能较好的转化催化剂、耐高温的合金钢管相继出现后,以天然气为原料的制氨方法得到广泛应用。

接着,抗积炭的石脑油蒸汽转化催化剂研制成功,缺乏天然气的国家采用了石脑油为原料。

60 年代以后,又开发了重质油部分氧化法制氢。

到1965 年,焦、煤在世界合成氨原料中的比例仅占5.8%。

从此,合成氨工业的原料构成由固体燃料转向以气、液态烃类燃料为主的时期。

由于高压设备尺寸的限制,50 年代以前,最大的氨合成塔能力不超过日产200t 氨,60年代初不超过日产400t 氨。

随着由汽轮机驱动的大型、高压离心式压缩机研制成功,为合成氨装置大型化提供了条件,大型合成氨厂的数目也逐年增多。

合成氨厂大型化通常指规模在日产540t 以上的单系列装置。

1963 和1966 年美国凯洛格公司先后建成世界上第一座日产540t 和900t 氨的单系列装置,显示出大型装置具有投资省、成本低、占地少和劳动生产率高等显著优点。

2氨的合成2.1原料气来源2.1.1 煤气的生成原料气主要有两部分:氮气、氢气。

氮气主要是从空气中提取。

氢气是从半水煤气中提取的,以煤为原料,在一定的高温条件下通入空气、水蒸气或富养空气-水蒸气混合气,经过一系列反应生成含有一氧化碳、二氧化碳、氢气、氮气、及甲烷等混合气体的过程。

在气化过程中所使用的空气、水蒸气或富养空气-水蒸气混合气等称为汽化剂。

这种生成的混合气称为煤气。

煤气的成分取决于燃料和汽化剂的种类以及进行汽化的条件。

根据所用汽化剂的不同,工业煤气可分为下列四种。

(1)空气煤气:以空气为汽化剂制取的煤气,又称为吹风气。

(2)水煤气:以水蒸气(或水蒸气与氧的混合气)为汽化剂制取的煤气。

(3)混合煤气:以空气和适量的水蒸气为汽化剂制取的煤气,一般作燃料用。

(4)半水煤气:是混合煤气中组成符合(H2+CO)/N2=3.1~3.2的一个特例。

可用蒸气与适量的空气或蒸气与适量的富养空气为汽化剂制得,也可用水煤气与吹风混合配制。

本设计采用半水煤气,半水煤气经过净化后得到纯净的氢气,再配制适量的氮气,成为合成氨的原料气。

2.1.2天然气制氨天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。

以石脑油为原料的合成氨生产流程与此流程相似。

2.1.3重质油制氨重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。

空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。

2.3氨合成反应的特点和催化剂2.3.1氨合成反应的特点氨的合成是氨厂最后一道工序,任务是在适当的温度、压力和有催化剂存在的条件下,将经过精制的氢氮混合气直接合成成氨。

然后将所产的气氨从未合成为氨的混合气体中冷凝分离出来,得到产品液氨,分离氨后的氢氮气体循环使用。

相关文档
最新文档