化工原理知识点整理
化工原理知识点总结笔记
化工原理知识点总结笔记一、化工原理概述化工原理是化学工程学的基础和核心分支,是研究化工过程基本原理和规律的一门学科。
在化工生产中,化工原理被广泛应用于控制反应过程、设计分离装置、优化工艺条件等方面。
化工原理主要包括热力学、化学动力学、传质传热、流体力学等方面的知识。
二、化工热力学热力学是研究能量转化和宏观物质运动规律的学科,化工热力学是将热力学原理应用于化工过程的一种方法。
化工热力学主要包括热力学基本原理、热力学性质、热力学循环等内容。
在化工过程中,热力学原理被用于计算反应热、确定工艺条件、分析热平衡等方面。
1. 热力学基本原理热力学基本原理包括能量守恒、熵增原理、热力学第一定律、热力学第二定律等。
能量守恒原理指出在封闭系统中,能量的总量是不变的;熵增原理指出封闭系统中熵总是增加的;热力学第一定律指出能量既不会被创建,也不会被销毁,只会在不同形式之间转化;热力学第二定律规定了热能不可能自发地从低温物体传递给高温物体。
2. 热力学性质热力学性质包括物质的热力学性质和烃的三相平衡等内容。
物质的热力学性质是指物质在不同温度、压力下的性质表现,例如,比热容、热膨胀系数、热导率等;烃的三相平衡是指烃在气态、液态和固态之间的平衡关系,包括气液平衡、固液平衡、气固平衡等。
3. 热力学循环热力学循环是指利用热能转换成机械能的过程,如蒸汽轮机循环、汽轮机循环、空气循环等。
在化工领域,热力学循环常常用于设计和优化化工过程中的能量转化装置。
三、化学动力学化学动力学是研究化学反应速率和反应机理的学科,主要包括反应速率、反应动力学方程、反应机理等内容。
在化工生产中,化学动力学常用于优化反应条件、控制反应速率、提高产物收率等方面。
1. 反应速率反应速率是指单位时间内反应物的消耗量或产物的生成量,通常用化学反应方程式来表示,如:A + B → C + D,反应速率可表示为:-d[A]/dt = -d[B]/dt = d[C]/dt = d[D]/dt。
化工原理知识点总结期末
化工原理知识点总结期末一、化工原理的基础知识1. 化学反应原理化学反应是指原子或者分子之间的化学变化。
化学反应的类型包括合成反应、分解反应、置换反应和氧化还原反应等。
化学反应速率由浓度、温度、压力、催化剂等因素影响。
2. 化学平衡原理化学平衡是指反应物和生成物的浓度达到一定比例的状态。
根据化学平衡定律,反应物和生成物的浓度比例由反应的热力学性质决定,并受到温度、压力或者浓度的影响。
3. 化学动力学化学动力学研究化学反应速率和反应机理的关系。
根据化学反应速率公式可以推导出各种反应速率与浓度、温度、压力等因素的关系。
4. 化工流程图化工流程图是化工生产过程的图示表示,包括物料流程图、能量流程图和设备图等。
根据化工流程图可以设计化工生产过程,并进行操作控制。
5. 化工物性化工物性包括物质的物理性质和化学性质两个方面。
物质的物理性质包括密度、粘度、熔点和沸点等;物质的化学性质包括化学反应性、溶解度和稳定性等。
6. 化工热力学化工热力学研究能量转化和传递的原理。
根据热力学定律可以推导出系统的能量平衡和热效率等问题。
7. 化工传质学化工传质学研究物质的传输和分离原理。
根据传质学理论可以设计分离设备和传质设备,提高化工生产效率。
8. 化工反应工程化工反应工程研究化学反应的工程化原理。
根据反应工程理论可以设计反应器和催化剂,优化反应条件。
9. 化工系统控制化工系统控制研究化工生产过程的控制原理。
根据系统控制理论可以设计控制系统和自动化装置,提高化工生产的稳定性和可靠性。
10. 化工安全与环保化工安全与环保研究化工生产过程的安全和环保原理。
根据安全与环保理论可以设计安全设备和环保装置,保障化工生产的安全和环保。
二、化工原理的应用1. 化工生产过程化工生产过程包括化学反应、传质过程、分离过程和能量转化过程等。
根据化工原理可以设计化工生产装置和优化生产过程,提高产品质量和降低成本。
2. 化工产品制备化工产品制备包括化工原料的合成、加工和制备等。
化工原理知识点总结
化工原理知识点总结化工原理是研究化学工程中各种物质的性质、变化规律以及与工艺过程的关系的一门科学。
化工原理的研究内容包括:物质的量子力学理论、化学反应的热力学和动力学、流体力学、传热传质现象、质量守恒和能量守恒等基本原理。
下面将对化工原理的知识点进行总结。
1.化学反应热力学热力学是研究热现象和能量转换的科学。
化学反应热力学研究的是化学反应中各种物质的化学能、热、熵等能量转换。
常见的热力学参数有焓、熵、自由能等。
化学反应热力学中的重要定律有热力学第一定律和第二定律。
2.化学反应动力学动力学是研究化学反应速率的科学。
化学反应动力学研究的是反应速率与反应物浓度、温度、压力等因素之间的关系。
常见的动力学参数有反应速率常数、反应级数、反应活化能等。
化学反应动力学中的重要定律有速率方程和速率常数。
3.流体力学流体力学是研究流体运动的科学。
在化工工艺过程中,流体的运动对反应速率、传热传质等过程有重要影响。
流体力学的研究内容包括牛顿流体力学和非牛顿流体力学。
常见的流体力学参数有雷诺数、牛顿数、黏度等。
4.传热传质传热传质是研究热量和物质在不同相之间传递的科学。
在化工工艺中,传热传质对反应速率、反应平衡等过程有重要影响。
常见的传热传质方式有对流、传导、辐射等。
传热传质的研究内容包括热传导、质量传递、传热传质的机理和传递过程的数学模型。
5.质量守恒和能量守恒质量守恒是指在化工过程中,物质的质量不会凭空消失或增加。
能量守恒是指在化工过程中,能量的总量不会凭空消失或增加。
质量守恒和能量守恒是化工原理的基本原理,对于工艺过程的计算和分析非常重要。
6.化工原理应用化工原理的知识可以应用于化工工艺的设计、优化和控制。
通过对化学反应热力学、动力学的研究,可以确定最佳反应条件和反应器尺寸。
通过对流体力学、传热传质的研究,可以确定最佳流体的流动方式和传输参数。
通过对质量守恒和能量守恒的研究,可以设计高效的分离和净化过程。
综上所述,化工原理是化学工程中的基础学科,包括化学反应热力学、动力学、流体力学、传热传质、质量守恒和能量守恒等知识点。
化工原理知识点总结
化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。
化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。
2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。
(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。
在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。
(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。
化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。
(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。
(4)流体力学流体力学是研究流体运动规律和流体性质的科学。
在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。
这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。
二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。
因此,分析化学平衡是化工过程设计和运行中的重要内容。
2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。
热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。
3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。
热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。
三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。
化工原理知识点总结
化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。
- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。
- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。
2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。
- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。
- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。
- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。
3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。
- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。
- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。
- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。
4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。
- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。
- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。
- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。
5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。
- 质量传递原理:质量守恒、质量传递微分方程、边界条件。
- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。
- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。
6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。
- 控制器设计:PID控制器、串级控制系统、比值控制系统。
- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。
- 先进控制策略:模糊控制、自适应控制、预测控制。
7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。
- 热力学第二定律:熵的概念、熵增原理、卡诺循环。
化工原理上 知识点总结
化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。
化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。
化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。
2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。
其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。
3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。
在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。
二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。
物质平衡的基本概念包括输入、输出、积累和转化等概念。
输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。
2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。
物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。
物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。
3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。
例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。
化工原理知识点总结pdf
化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。
本章将针对化工原理的基础知识进行总结。
1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。
化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。
1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。
在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。
1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。
物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。
1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。
动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。
1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。
质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。
1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。
界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。
第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。
本章将总结化工反应原理的基本知识。
2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。
化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。
化工原理知识点总结详细
化工原理知识点总结详细第一章:化工原理基础知识1.1 化工原理的定义和基本概念化工原理是研究化学工程过程的基本原理、基本规律和数学模型的学科。
化工原理包括物理化学、热力学、传质与分离、反应工程等方面的知识,其中热力学和传质与分离是化工原理的两个重要组成部分。
1.2 化工原理的基本原理和基本规律化工原理涉及到许多基本原理和基本规律,其中包括质量守恒、能量守恒、热力学第一、第二定律、传热、传质、反应动力学等。
这些基本原理和基本规律是化工过程描述、分析和设计的基础。
1.3 化工原理的应用领域化工原理的应用领域非常广泛,包括化学工程、环境工程、生物工程、材料工程等方面。
化工原理在工业生产、环境保护、能源开发、新材料研发等领域都有重要的应用价值。
第二章:热力学2.1 热力学基本概念热力学是研究能量转化和能量传递规律的科学。
热力学基本概念包括系统、热平衡、热力学过程、熵等。
热力学基本原理包括能量守恒、熵增原理等。
2.2 理想气体状态方程理想气体状态方程描述了理想气体的压力、温度、体积之间的关系,可以表示为PV=nRT。
理想气体状态方程是描述气体性质的重要方程之一。
2.3 热力学循环热力学循环是指气体、水蒸汽等工质在一定压力和温度条件下发生各种物理或化学变化,最后又回到原来状态的过程。
常见的热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。
2.4 热力学第一、第二定律热力学第一定律:能量守恒,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。
热力学第二定律:熵增原理,自然界熵不减少的倾向。
第三章:传质与分离3.1 传质基本概念传质是指物质在不同相间传递的过程,包括扩散、对流、传热等。
传质的重要概念包括浓度、摩尔通量、传质系数等。
3.2 传质方程和传质过程传质方程描述了物质在不同相间传递的规律,传质过程包括扩散传质、对流传质等,传质方程是描述传质过程的基本数学模型。
3.3 分离技术化工生产中,常需要对混合物进行分离和纯化,分离技术包括蒸馏、结晶、游离、萃取等,这些技术都是基于传质原理。
化工原理基本知识点
化工原理基本知识点一、物质转化物质的转化是化工过程中最基本的环节之一、物质转化包括化学反应、分离提取以及催化等。
化学反应是指通过物质之间的化学反应,将原料转化为产物。
分离提取是将混合物中的各种组分分开或提取出所需的组分,常见的分离方法有蒸馏、结晶、吸附、萃取等。
催化是指通过催化剂的作用,促使反应速率提高或选择性改变。
二、能量转移能量转移是指在化工过程中,能量从一个系统传递到另一个系统的过程。
能量转移有传导、传热、传质、传动等形式。
传导是指热量、电流或质量在不同物体或介质之间由高温区向低温区传递的过程。
传热是指热量由高温物体通过传导、对流或辐射途径传递到低温物体的过程。
传质是指物质在不同浓度或温度条件下由高浓度或温度区向低浓度或温度区传递的过程。
传动是指物质在介质中的传递过程,包括传质、传热、传动等。
三、反应原理化学反应原理是研究化学反应中物质的物质转化或化学键的断裂与形成等过程的规律。
反应速率是反应条件下单位时间内反应物消失的量,影响反应速率的因素有温度、浓度、催化剂等。
反应平衡是指在一定温度下,反应物和生成物浓度达到一定比例时,反应物和生成物浓度不再发生变化的状态。
平衡常数是用来描述反应平衡程度的物理量。
四、化工工艺流程化工工艺流程是指将原料经过一系列的物质转化和能量转移的过程,得到所需产物的方法、步骤和设备。
化工工艺流程包括原料准备、反应过程、分离提取、能量转移和产品制备等。
原料准备是指将原料加工处理后,满足反应所需的要求。
反应过程是指根据反应条件,将原料转化为产物的过程。
分离提取是将反应生成物中得到所需产物并与其他组分分离的过程。
能量转移是热量、物质或动能在设备中的传递和转换过程。
产品制备是指根据产品的要求,经过加工、过滤、干燥等工艺,制得成品。
五、工艺控制工艺控制是指对化工工艺流程进行监测和调节,以保证工艺参数的稳定和产品质量的良好。
工艺控制包括温度、压力、流量、质量、液位等参数的调节和监测。
化工原理知识点总结复习重点
化工原理知识点总结复习重点化工原理是化学工程与工艺专业的一门基础课程,主要介绍化学工程与工艺中的物质平衡、能量平衡和动量平衡等基本原理及其应用。
下面是化工原理的知识点总结和复习重点的详细版:1.化学反应平衡-反应物与生成物的化学计量关系-反应的平衡常数与平衡常数表达式- Le Chatelier原理和平衡移动方向-改变反应条件对平衡的影响2.物质平衡-物质守恒定律-化学工程中常见的物质平衡问题-不可压缩流体的物质平衡-反应器中的物质平衡-非理想流动下的物质平衡3.能量平衡-能量的守恒定律-热力学一、二、三定律-热力学方程与热力学性质-各种热力学过程的分析-标准生成焓与反应焓-反应器中的能量平衡4.动量平衡-动量的守恒定律-流体的运动学性质-流体的连续性方程、动量方程和能量方程-流体的黏度、雷诺数与运动阻力-流体的流动模式与阻力系数5.质量传递-质量传递的基本概念和规律-质量传递过程中的浓度梯度-净质量流率和摩尔质量流率-质量传递的速率方程和传质系数-各种传质装置的设计和分析6.物料的流动-流体的本构关系和流变特性-流体的流变模型和流变学方程-各种物料的流动模式和流动参数-孔板、喷嘴、管道等流体动力装置的设计和分析7.反应工程学-反应器的分类与特性-反应速率方程和反应级数-决定反应速率的因素-等温、非等温反应的热力学分析-反应器的设计和分析8.分离工程学-分离过程的基本原理-平衡闪蒸和分馏过程-萃取、吸附和吸附过程-结晶和干燥过程-分离设备的设计和分析9.管道和设备-化工工艺流程图的绘制-管道的基本特性和设计原则-常见流体设备的结构和工作原理-设备的选择、设计和运行控制以上是化工原理的知识点总结和复习重点的详细版。
在复习时,需要重点掌握每个知识点的基本概念、原理和公式,并通过习题和实例进行巩固和应用。
同时,建议结合实际工程问题,加深对知识点的理解和运用能力。
化工原理各章节知识点总结
化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。
下面是化工原理各章节知识点的总结。
第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。
这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。
化工原理复习总结考点
化工原理复习总结考点化工原理是化学工程专业的一门重要基础课程,主要介绍化学工程的基本原理和应用。
它涵盖了化学反应工程、流体力学、传热传质、化工过程控制等内容。
下面是对化工原理复习的总结和重点考点的介绍。
一、化学反应工程1.化学反应动力学:理解反应速率、反应动力学方程、活化能、指前因子等概念,并能利用反应动力学方程进行计算;2.化学平衡:掌握平衡常数的概念与计算方法,理解平衡常数与温度的关系,并能应用到化学反应平衡的计算;3.反应器的设计与操作:了解不同类型的反应器,如连续流动反应器、批式反应器等,掌握反应器设计和操作的基本原理。
二、流体力学1.流体静力学:熟悉流体静力学的基本概念,包括流体的压力、密度、体积等,并能应用到液柱压强、浮力等问题的计算;2.流体动力学:理解流体的运动规律,包括连续性方程、动量方程和能量方程,并能应用到流体流动和传动的计算;3.流态转换:了解流体流动的各种流态,如层流与紊流、临界流速等,并能应用到实际问题的分析。
三、传热传质1.热传导:了解热传导的基本原理和计算方法,掌握导热系数、热阻、热传导方程等概念;2.对流传热:熟悉对流传热的基本原理和换热系数的计算方法,理解纳塞数和普朗特数的概念;3.辐射传热:了解辐射传热的基本原理和计算方法,并理解黑体辐射和灰体辐射的特性;4.传质过程:了解传质的基本原理和计算方法,掌握质量传递系数、浓度梯度等概念,并能应用到传质过程的计算。
四、化工过程控制1.控制系统基础:理解控制系统的基本概念,包括反馈控制、前馈控制、比例、积分和微分控制等,并能应用到控制系统的分析;2.过程变量与控制策略:了解过程变量的基本概念,包括流量、浓度、温度等,并掌握常见的控制策略,如比例控制、比例积分控制、比例积分微分控制等;3.控制器与控制回路:熟悉PID控制器的构造和调节方法,理解控制回路的稳定性和动态响应,并能应用到控制回路的设计与优化。
综上所述,化工原理的复习重点包括化学反应工程、流体力学、传热传质和化工过程控制等内容。
化工原理知识点总结复习重点完美版
化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。
一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。
祝你取得好成绩!。
(完整版)化工原理知识点总结整理
一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理复习重点
化工原理复习重点化工原理是化学工程学科中的基础课程,是学习和应用化学工程的基础。
下面是化工原理的复习重点:1.化工原理的基本概念:(1)化学工程的定义和发展历史;(2)化学工程的特点和基本任务;(3)化工反应过程的基本特点;(4)化工原理的特点和基本内容。
2.物料平衡:(1)物料平衡的基本原理;(2)闭合系统和开放系统的物料平衡表达式;(3)平行反应体系的物料平衡;(4)反应器的物料平衡;(5)多组分混合物的物料平衡。
3.能量平衡:(1)热力学基础和热力学平衡;(2)封闭系统的能量平衡表达式;(3)开放系统的能量平衡表达式;(4)反应器的能量平衡。
4.流程模拟与优化:(1)流程模拟、优化和控制的基本概念;(2)传质过程的模拟与优化;(3)反应过程的模拟与优化;(4)传热过程的模拟与优化。
5.化工热力学:(1)热力学基础知识回顾;(2)理想气体热力学模型;(3)混合物的热力学性质;(4)化学反应的热力学计算。
6.化工流体力学:(1)流体性质和流体静力学;(2)流体动力学基本方程;(3)流体的流动特性和流动模式;(4)流体工程中的摩擦、阻力和流量计算。
7.化工反应工程:(1)化学反应动力学基本概念;(2)反应速率方程和反应级数;(3)反应器的选择和设计;(4)反应器的理论和实际操作。
8.分离操作:(1)传递过程基本概念;(2)传递过程的质量和能量平衡;(3)分离塔的基本结构和操作原理;(4)萃取、吸附、蒸馏等分离操作的基本原理。
以上是化工原理的复习重点,通过对这些内容的复习,可以对化工原理的基本理论和应用技术有全面的了解,为进一步学习和实践打下坚实的基础。
化工原理知识点总结
化工原理知识点总结1. 化工原理简介:化工原理是研究化学反应过程及其工艺条件、能量传递和物料传递等基本规律的学科,为化学工艺的设计、改进和优化提供理论基础。
2. 化学反应动力学:研究化学反应速率与反应物浓度、温度、压力等因素的关系。
常用动力学模型有零级、一级和二级反应动力学模型。
3. 热力学:研究物质在不同条件下的热力学性质,如焓、熵、自由能等。
常用的热力学模型有理想气体模型、理想溶液模型等。
4. 质量守恒:化工过程中,物料的质量总量在任何情况下都是保持不变的。
质量守恒方程可以用来描述物料在化工过程中的流动和转化。
5. 能量守恒:能量守恒是指在化工过程中能量的总量保持不变。
能量守恒方程可以用来描述能量的传递和转化。
6. 流体力学:研究流体的性质和流动规律。
常用的流体力学方程有连续性方程、动量方程和能量方程。
7. 反应器设计:根据反应动力学和热力学的知识,设计和选择适当的反应器,以实现期望的反应效果。
8. 分离工艺:将化工过程中的混合物分离成纯净的组分。
常用的分离方法包括蒸馏、萃取、吸附、结晶、膜分离等。
9. 催化剂:催化剂能够加速化学反应速率,同时不参与反应本身。
催化剂通常提供合适的活化能降低剂量。
10. 传热:研究热量在物体之间传导、对流和辐射的过程。
传热过程是化工过程中能量交换的重要方面。
11. 反应平衡:当化学反应达到一种稳定状态时,正向反应与反向反应的速率相等。
反应平衡可以根据平衡常数来描述。
12. 操作过程安全:化工过程中需要注意操作过程的安全,如避免爆炸、毒性物质的泄露等。
合理设计和控制工艺参数是保证操作过程安全的关键。
13. 环境保护:化工过程中需要注意减少对环境的污染和危害。
合理的废物处理和资源利用是环境保护的重要内容。
14. 化工装置:化工装置是指用来进行化工过程的设备和设施,例如反应器、分离设备、传热设备等。
15. 工艺流程图:用图形和符号表示化工过程的流程、设备和物料流动方式,便于理解和分析工艺过程。
(完整版)化工原理基本知识点
第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理知识点
化工原理知识点化工原理知识点概述1. 化工过程与操作- 连续流程与间歇流程- 反应器类型:批式反应器、连续搅拌槽反应器(CSTR)、管式反应器- 分离过程:蒸馏、萃取、结晶、过滤2. 物料与能量平衡- 物料守恒定律- 能量守恒定律- 稳态操作与非稳态操作- 能量效率与能量分析3. 流体力学- 流体静力学- 流体动力学基础- 流体流动类型:层流与湍流- 流量测量与流量控制4. 传热学- 热传导、对流与辐射- 热交换器设计:平板式、管式、螺旋板式- 热交换器网络分析与优化5. 传质学- 质量守恒定律- 扩散与迁移现象- 吸收器与脱吸器操作- 膜分离技术6. 化学反应工程- 化学反应动力学- 反应器设计与分析- 催化剂与催化作用- 反应过程的优化与控制7. 过程控制- 控制系统的组成与工作原理- 传感器与执行器- 控制策略:开环控制、闭环控制、前馈控制- 过程自动化与仪表8. 过程设计与经济性- 工艺流程设计- 经济性分析:成本估算、投资回报率- 环境影响与可持续发展- 安全性分析与风险评估9. 化工热力学- 相平衡与化学平衡- 热力学性质的估算- 状态方程:理想气体状态方程、真实气体状态方程 - 热力学循环分析10. 化工实验技术- 实验设计与数据分析- 常见化工实验设备与操作- 实验室安全与环保- 化工实验数据处理软件应用以上是化工原理的主要知识点概述,每个部分都包含了该领域的核心概念和应用。
在实际的化工教育和工程实践中,这些知识点是相互关联和相互支持的。
掌握这些基础知识对于理解和解决化工过程中的问题至关重要。
化工原理的知识点总结
化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。
在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。
常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。
2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。
反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。
通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。
3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。
反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。
通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。
二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。
传热原理主要包括热传导、对流传热和辐射传热三种方式。
热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。
2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。
传质原理主要包括扩散、对流传质和表面传质。
扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。
三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。
在化工过程中,流体的性质对设备设计和流体流动有重要影响。
流体的主要性质包括黏度、密度、表观黏度、流变性等。
2. 流体流动流体流动是指流体在管道或设备内部的运动过程。
流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。
化工原理重要知识点总结(五篇)
化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。
(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相平衡方程 ()11y xα=+- 全塔物料衡算 W D F += W D F Wx Dx Fx +=塔顶产品采出率 W D W F x x x x F D --= 塔釜产品采出率 D F D Wx x W F x x -=- 易挥发组分回收率 D F Dx Fx η= 难挥发组分回收率 (1)w F Wx F x η=- 精馏段物料衡算 11D D 1+++=+=+R x x R R x V D x V L y n n n /R L D = ()1V R D =+=L+D提馏段物料衡算 qF L L += F q V V )1(--=1(1)(1)(1)(1)n n W n W L W RD qF F D y x x x x V V R D q F R D q F++-=-=-+--+-- 进料线方程(q 线方程) 11F ---=q x x q q y 理想溶液最小回流比的计算De min min D e 1x y R R x x -=+- 对于不同的进料热状况,x q 、y q 与x F 的L 与L , V 与V 的关系为(1)冷液进料:x q >x F ,y q >x F ,q>1,L >L+F, V <V ;(2)饱和液体进料(泡点进料):x q =x F ,y q >x F ; q =1, e F x x = L =L+F, V=V ;(3)气液混合物进料:x q <x F ,y q >x F 0<q<1, L >L, V >V ;(4)饱和蒸汽进料(露点进料):x q <x F ,y q =x F ; q=0, F e y x = L =L, V=V +F ;(5)过热蒸汽进料:x q <x F ,y q <x F ; q<0, L <L, V >V +F ;绝对湿度(湿度) 0.622p H p p =-水汽水汽不饱和湿空气:()d W as t t t t >> 饱和湿空气:()d W as t t t t ==p ϕ=水汽一定温度、压力下空气中水汽分压可能达到的最大值s ()p p ≤s /p p 水汽s ()p p >/p p 水汽=湿空气的比热容(湿比热容) pH 1.01 1.88c H =+ 单位 kJ/(kg ∙℃)湿空气的焓(1.01 1.88) 2 500I H t H =++ 单位m 3/kg 干气湿空气的比体积)273)(1056.41083.2(33H +⨯+⨯=--t H v 单位m 3/kg 干气 恒速段 11()c c A C G X X A N τ-=⋅ 降速段的近似计算法c c 2X 2ln G X AK X τ= A X c()C N K X = 绝干物料量 c 1122(1)(1)G G w G w =-=- ww X -=1 蒸发水分量 c 12112212()W G X X G w G w G G =-=-=-2120()()W V H H V H H =-=- 预热器的热量衡算 1P 10pH 10()()Q V I I Vc t t =-=-干燥器的热量衡算 121p,1D 2c ,2c X p X L VI G c Q VI G c Q θθ++=++c p,X ——湿物料的比热容,kJ/(kg 干物料.℃) p,X p,s p,L c c c X =+,水c p,L =4.18 kJ/(kg.℃)常用干燥器: 厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等几种干燥器的特点:① 喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。
② 气流干燥器:颗粒在管内的停留时间很短,一般仅2s 左右。
在加料口以上1m 左右,物料被加速,气固相对速度最大,给热系数和干燥速率也最大,是整个干燥管最有效的部分。
③ 流化床干燥器:气速较气流干燥器低,停留时间长(停留时间可由出料口控制)。
筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触塔板类型有泡罩塔板、浮阀塔板、筛孔塔板、舌形塔板、网孔塔板、垂直筛板、多降液管塔板等。
填料的类型:①散装填料 如拉西环填料、鲍尔环填料、球形填料、阶梯环填料、弧鞍填料、矩鞍填料、金属环矩鞍填料等。
②规整填料 如格栅填料、波纹填料、脉冲填料。
填料的性能评价指标:① 压降 ② 通量 ③ 效率恒沸精馏是在A 、B 双组分恒沸溶液或相对挥发度很小的双组分溶液中加入第三组分C(称为挟带剂)。
此挟带剂C 与原溶液中一个或两个组分形成具有最低恒沸点的恒沸物(AC或ABC)。
该恒沸物的挥发度与B 或A 产生了明显的差异,使溶液变成“恒沸物—纯组分”的精馏。
萃取精馏则是向原料液中加入第三组分(称为萃取剂或溶剂),以改变原有组分间的相对挥发度而得到分离。
但要求萃取剂的沸点较原料液中各组分的沸点高得多,且不与组分形成恒沸液。
相平衡方程 ()11y xα=+- 全塔物料衡算 W D F += W D F Wx Dx Fx +=塔顶产品采出率 W D W F x x x x F D --= 塔釜产品采出率 D F D Wx x W F x x -=- 易挥发组分回收率 D F Dx Fx η= 难挥发组分回收率 (1)w F Wx F x η=- 精馏段物料衡算 11D D 1+++=+=+R x x R R x V D x V L y n n n /R L D = ()1V R D =+=L+D提馏段物料衡算 qF L L += F q V V )1(--=1(1)(1)(1)(1)n n W n W L W RD qF F D y x x x x V V R D q F R D q F++-=-=-+--+-- 进料线方程(q 线方程) 11F ---=q x x q q y 理想溶液最小回流比的计算De min min D e 1x y R R x x -=+- 对于不同的进料热状况,x q 、y q 与x F 的L 与L , V 与V 的关系为(1)冷液进料:x q >x F ,y q >x F ,q>1,L >L+F, V <V ;(2)饱和液体进料(泡点进料):x q =x F ,y q >x F ; q =1, e F x x = L =L+F, V=V ;(3)气液混合物进料:x q <x F ,y q >x F 0<q<1, L >L, V >V ;(4)饱和蒸汽进料(露点进料):x q <x F ,y q =x F ; q=0, F e y x = L =L, V=V +F ;(5)过热蒸汽进料:x q <x F ,y q <x F ; q<0, L <L, V >V +F ;绝对湿度(湿度) 0.622p H p p =-水汽水汽不饱和湿空气:()d W as t t t t >> 饱和湿空气:()d W as t t t t ==p ϕ=水汽一定温度、压力下空气中水汽分压可能达到的最大值s ()p p ≤s /p p 水汽s ()p p >/p p 水汽= 湿空气的比热容(湿比热容) pH 1.01 1.88c H =+ 单位 kJ/(kg ∙℃)湿空气的焓(1.01 1.88) 2 500I H t H =++ 单位m 3/kg 干气湿空气的比体积)273)(1056.41083.2(33H +⨯+⨯=--t H v 单位m 3/kg 干气 恒速段 11()c c A C G X X A N τ-=⋅ 降速段的近似计算法c c 2X 2ln G X AK X τ= A X c()C N K X = 绝干物料量 c 1122(1)(1)G G w G w =-=- ww X -=1 蒸发水分量 c 12112212()W G X X G w G w G G =-=-=-2120()()W V H H V H H =-=- 预热器的热量衡算 1P 10pH 10()()Q V I I Vc t t =-=-干燥器的热量衡算 121p,1D 2c ,2c X p X L VI G c Q VI G c Q θθ++=++c p,X ——湿物料的比热容,kJ/(kg 干物料.℃) p,X p,s p,L c c c X =+,水c p,L =4.18 kJ/(kg.℃) 常用干燥器: 厢式干燥器、喷雾干燥器、流化床干燥器、气流干燥器等几种干燥器的特点:① 喷雾干燥器:干燥速率快,干燥时间短(仅5~30s),特别适用于热敏性物料的干燥;能处理低浓度溶液,且可由料液直接得到干燥产品。
② 气流干燥器:颗粒在管内的停留时间很短,一般仅2s 左右。
在加料口以上1m 左右,物料被加速,气固相对速度最大,给热系数和干燥速率也最大,是整个干燥管最有效的部分。
③ 流化床干燥器:气速较气流干燥器低,停留时间长(停留时间可由出料口控制)。
筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触塔板类型有泡罩塔板、浮阀塔板、筛孔塔板、舌形塔板、网孔塔板、垂直筛板、多降液管塔板等。
填料的类型:①散装填料 如拉西环填料、鲍尔环填料、球形填料、阶梯环填料、弧鞍填料、矩鞍填料、金属环矩鞍填料等。
②规整填料 如格栅填料、波纹填料、脉冲填料。
填料的性能评价指标:① 压降 ② 通量 ③ 效率恒沸精馏是在A 、B 双组分恒沸溶液或相对挥发度很小的双组分溶液中加入第三组分C(称为挟带剂)。
此挟带剂C 与原溶液中一个或两个组分形成具有最低恒沸点的恒沸物(AC 或ABC)。
该恒沸物的挥发度与B 或A 产生了明显的差异,使溶液变成“恒沸物—纯组分”的精馏。
萃取精馏则是向原料液中加入第三组分(称为萃取剂或溶剂),以改变原有组分间的相对挥发度而得到分离。
但要求萃取剂的沸点较原料液中各组分的沸点高得多,且不与组分形成恒沸液。