五年级奥数流水行程问题
五年级奥数流水行船问题讲解及练习答案
流水行船问题讲座流水问题是探讨船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个根本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运输河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时 25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4.5(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的间隔 ?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的间隔为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度一样,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的间隔相差多少千米?解析:在两船的船速一样的状况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的间隔差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。
五年级奥数学第10讲行程问题
A.1/7
B.1/6
C.3/4 D.2/5
3.流水问题
我们知道,船顺水航行时,船一方面按自己本身 的速度即船速在水面上行进,同时整个水面又按 水的流动速度在前进,因此船顺水航行的实际速 度〔简称顺水速度就等于船速与水速的和,即
顺水速度=船速+水速 逆水速度=船速-水速 可推知 船速=〔顺水速度+逆水速度÷2 水速=〔顺水速度-逆水速度÷2
所以,正确答案为C.
例2 甲、乙两人从400米的环形跑道的一点A背 向同时出发,8分钟后两人第三次相遇.已知甲每 秒钟比乙每秒钟多行0.1米,那么,两人第三次相 遇的地点与A点沿跑道上的最短距离是
A.166米 B.176米 C.224米 D.234米
解析:此题为典型的速度和问题,为方便理解可 设甲的速度为X米/分,乙的速度为Y米/分,则依 题意可列方程 8X+8Y=400×3
例题2:小王从甲地到乙地,因有风,所以去时用 了2个小时,回来时用了3个小时.已知甲乙两地 的距离是60公里,求风速是多少?
A.5km/h B.10km/h C. 15km/h D. 20km/h
解析:此题可采用代入法.也可设小王的速度为 X,风速为Y,则可列如下方程:
X+Y=60÷2 X-Y=60÷3 解得X=25,Y=5. 所以风速为5,答案为A.
1000÷〔120+80=5〔分 500×5=2500〔米 答:小狗共走了2500米.
例题:两列对开的列车相遇,第一列车的车速为 10米/秒,第二列车的车速为12.5米/秒,第二列车 上的旅客发现第一列车在旁边开过时共用了6 秒,则第一列车的长度为多少米?
A.60米 B.75米 C.80米 D.135米
则甲乙两地相距:1.4*3-0.6=3.6千米〔?
2024年小学五年级行程问题奥数题及答案
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案
五年级高斯奥数之行程问题四含答案
第5讲行程问题四内容概述流水行船问题与环形问题.流水行船问题中,注意水速对实际速度酌影响,初步了解速度酌相对性;环形问题中,注意相遇和逼及酌同期性.典型问题兴趣篇1.一条船顺流行驶40千米需要2小时.水流速度为每小时2千米.这条船逆流行驶40千米需要多少小时?2.7两地相距480千米,一艘轮船在两地之间往返航行,顺流行驶一次需要16小时,逆流返回需要20小时,该轮船在静水中的速度是多少?水流速度是多少?3.A、B两港相距560千米,甲船在两港间往返一次需105小时,其中逆流航行比顺流航行多用了35小时,乙船的静水速度是甲船静水速度的2倍,乙船在两港间往返一次需要多少小时?4.A、B两个码头间的水路为90千米,其中A码头在上游,B码头在下游,第一天,水速为每小时3千米,甲、乙两船分别从A、B两码头同时起航同向而行,3小时后乙船追上甲船,已知甲船的静水速度为每小时18千米,乙船的静水速度是多少?第二天由于涨水,水速变为每小时5千米,甲、乙两船分别从A、B两码头同时起航相向而行,出发多长时间后相遇?5.一条小河流过A、B、C三镇,其中A、B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米;B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3:5千米.已知A、C两镇水路相距45千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用了7小时.请问:A、B两镇间的距离是多少于米?6.甲、乙两人骑自行车从环形公路上同一地点同时出发,背向而行,这条公路长2400米,甲骑一圈需要10分钟.如果第一次相遇时甲骑了1440米,请问:乙骑一圈需要多少分钟?再过多久他们第二次相遇?7.甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出.1分钟后,乙从起点同向跑出.又过了5分钟,甲追上乙.请问:乙每分钟跑多少米?如果他们的速度保持不变,甲还需要再过多少分钟才能第二次追上乙?8.甲、乙两人在环形跑道上训练,他们从同一地点同时出发,背向而行.两人相遇后立即调头,继续前进,一开始甲的速度是每分钟160米,乙的速度是每分钟120米,调头后甲的速度提高了一半,乙的速度提高了三分之一.若跑道长500米,甲、乙两人第一次相遇地点与第二次相遇地点相距多远?(环形路线上两点的距离指沿跑道的最短距离)9.如图7-1,四边形ABCD是一个边长为100米的正方形,甲、乙两人同时从A点出发,甲沿逆时针方向每分钟行75米,乙沿顺时针方向每分钟行45米.请问:两人第一次在CD 边(不包括C、D两点)上相遇,是出发以后的第几次相遇?10.如图7-2,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重,甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?拓展篇1.甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水7小时后到达乙河,共航行133千米.这艘船在乙河逆水航行84千米,需要花多少小时?2.一艘飞艇,顺风6小时行驶了900公里;在同样的风速下,逆风行驶600公里,也用了6小时.那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?3.甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达廖港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?4.轮船从A城行驶到B城需要3天,而从B城回到A城需要4天.请问:在A城放出一个无动力的木筏,它漂到B城需多少天?5.一艘游艇装满油,能够航行180个小时.已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且中途没有油料补给.请问:这艘游艇最多能够开出多远?6.某人在河里游泳,逆流而上.他在A处丢失一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.7.黑、白两只小猫在周长为300米的湖边赛跑,黑猫的速度为每秒5米,白猫的速度为每秒7米,若两只小猫同时从同一地点出发,背向而行.多少秒后两只小猫第一次相遇?如果它们继续不停跑下去,2分钟内一共相遇多少次?8.在400米长的环形跑道上,甲、乙两人分别从A、B两地同时出发,同向而行.4分钟后,甲第一次追上乙,又经过10分钟甲第二次追上乙.已知甲的速度是每秒3米,那么乙的速度是多少?A、B两地相距多少米?9.有一个周长40米的圆形水池.甲沿着水池边散步,每秒钟走1米;乙沿着水池边跑步,每秒跑3.5米.甲、乙两人从同一地点同时出发,同向而行,当乙第8次追上甲时,他还需要跑多少米才能回到出发点?10.甲、乙两人在一条圆形跑道上锻炼,他们分别从跑道某条直径的两端同时出发,相向而行,当乙走了100米时,他们第一次相遇.相遇后两人继续前进,在甲走完一周前60米处第二次相遇,求这条圆形跑道的周长.11.如图7-3,甲、乙两辆汽车在周长为360米的圆形道上行驶,甲车每分钟行驶20米.它们分别从相距90米的A、B两点同时出发,背向而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车经过B点后恰好又回到A点,此时甲车立即调头前进,乙车经过B点继续行驶,请问:再过多少分钟甲车与乙车再次相遇?12.如图7-4,一个正方形房屋的边长为10米,甲、乙两人分别从房屋的两个墙角同时出发,沿顺时针方向前进.甲每秒行5米,乙每秒行3米.问:出发后经过多长时间甲第一次看见乙?超越篇1.甲、乙两艘游船顺水航行的速度均是每小时7千米,逆水航行的速度均是每小时5千米.现在甲、乙两船从某地同时出发,甲先逆流而上再顺流而下,乙先顺流而下再逆流而上,1小时后它们都回到了出发点.请问:在这1小时内有多少分钟两船的行进方向相同?2.甲、乙两船分别在一条河的A、B两地同时相向而行,甲船顺流而下,乙船逆流而上.相遇时,甲、乙两船的航程是相等的,相遇后两船继续前进.甲船到达B地、乙船到达A地后,都立即按原来的路线返航,两船第二次相遇时,甲船比乙船少行1000米,如果从两船第一次相遇到第二次相遇间隔1小时20分,那么河水的流速为每小时多少千米?3.一条河上有甲、乙两个码头,甲码头在乙码头的上游50千米处,一艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同,客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米,客船在行驶20千米后掉头追赶此物品,追上时恰好和货船相遇,求水流的速度.4.在一条圆形跑道上,甲、乙两人分别从A、B两点同时出发,反向而行.6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇,甲、乙两人绕跑道环行一周各需要多少分钟?5.有一条长度为4200米的环形车道,甲车从A点出发35秒后,乙车从A点反向出发,两车在B点第一次迎面相遇,如果乙车出发的时候变换方向,即出发的时候和甲车保持同向,那么乙车将行驶完一圈之前追上甲车,并且追上甲车的地点恰好还在B点.乙车追上甲车之后立刻折返,甲车继续前进,那么两车会在距离A点300米的地方迎面相遇.求乙车的速度.6.如图7-5,8时10分,甲、乙两人分别从相距60米的A、B两地出发,按顺时针方向沿长方形ABCD的边走向D点,甲、乙两人的速度相同.甲8时20分到D点后,丙、丁两人立即从D点出发.丙由D向A走去,8时24分与乙在E点相遇;丁由D向C走去,8时30分在F点被乙追上.丙、丁两人的速度也相同.问:三角形BEF的面积是多少平方米?7.A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行,从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍.试问:今天两船的相遇地点与12月2号相比,将变化多少千米?8.有甲、乙两名选手在一条河中进行划船比赛.如图7-6,赛道是在河中央的长方形ABCD,其中,AD=100米,AB= 80米.已知水流从左到右,速度为每秒l米.甲、乙两名选手从A处同时出发,甲沿A→B→C→D→A的方向划行,乙沿A→D→C→B→A的方向划行,若已知甲船在静水中的速度比乙船在静水中的速度每秒快1米(注:两船在AB1和CD上的划行速度视为静水速度),且两人第一次相遇在图中CD的P处,且CP=4 CD.问:在比赛开始5分钟内两人一共相遇多少次?第7讲行程问题四内容概述流水行船问题与环形问题.流水行船问题中,注意水速对实际速度的影响,初步了解速度的相对性;环形问题中,注意相遇和追及的周期性.典型问题兴趣篇1.一条船顺流行驶40千米需要2小时.水流速度为每小时2千米.这条船逆流行驶40千米需要多少小时?解:顺=40÷2=20(千米/小时)船顺水=20–2=18(千米/小时)逆=40÷(18-2)=2.5(小时)2.两地相距480千米,一艘轮船在两地之间往返航行,顺流行驶一次需要16小时,逆流返回需要20小时,该轮船在静水中的速度是多少?水流速度是多少?解:顺=480÷16=30(千米/小时)逆=480÷20=24(千米/小时)船=(顺+逆)÷2=(30+24)÷2 =27(千米/小时)水=(顺-逆)÷2=(30-24)÷2=3(千米/小时)3.A、B两港相距560千米,甲船在两港间往返一次需105小时,其中逆流航行比顺流航行多用了35小时,乙船的静水速度是甲船静水速度的2倍,乙船在两港间往返一次需要多少小时?解:甲顺+甲逆=105甲逆甲顺=35有:甲逆=70(小时),甲顺=35(小时)甲逆=560÷70=8(千米/小时),甲顺=560÷35=16(千米/小时)甲=(16+8)÷2=12(千米/小时),水=(16-8)÷2=4(千米/小时)乙=12×2=24(千米/小时)乙逆=24-4=20(千米/小时),乙顺=24+4=28(千米/小时)乙=560÷20+560÷28=48(小时)4.A、B两个码头间的水路为90千米,其中A码头在上游,B码头在下游,第一天,水速为每小时3千米,甲、乙两船分别从A、B两码头同时起航同向而行,3小时后乙船追上甲船,已知甲船的静水速度为每小时18千米,乙船的静水速度是多少?第二天由于涨水,水速变为每小时5千米,甲、乙两船分别从A、B两码头同时起航相向而行,出发多长时间后相遇?解:易知,流水行船中的追及与相遇问题,速度差与速度和都与水速无关。
五年级流水行船奥数题及答案【三篇】
五年级流水行船奥数题及答案【三篇】【第一篇】一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
解:设静水速度为x。
总路程是相同的。
6×(x+2.5)=8×(x-2.5)6x+15=8x-20x=17.5答:静水速度为17.5千米/小时。
【第二篇】两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。
【第三篇】已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.。
小学奥数流水行船问题
流水行船问题知识要点船在江河里航行时,除了自己的前进速度外,还碰到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的行程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、行程)的关系在这里将要屡次用到。
其他,流水行船问题还有以下两个基本公式:顺水速度 =船速 +水速⑴逆水速度 =船速 - 水速⑵由公式⑴能够获取:水速=顺水速度 - 船速,船速 =顺水速度 - 水速。
由公式⑵能够获取:水速=船速 - 逆水速度,船速 =逆水速度 +水速。
依照公式⑴和公式⑵,相加和相减就可以获取:船速 =(顺水速度 +逆水速度) 2 ,水速=(顺水速度-逆水速度) 2 。
两只船在河流中相遇问题:当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的行程等于甲、乙两船速度和。
这是因为:甲船顺水速度乙船逆水速度=(甲船速 +水速)(乙船速-水速)=甲船船速+乙船船速。
常有流水行船问题1.乙船顺水航行 2 小时,行了120千米,返回原地用了 4 小时。
甲船顺水航行同一段水道,用了 3 小时。
甲船返回原地比去时多用了几小时甲乙两港相距120km ,一艘船 A 往返两港需要10h ,顺水航行比逆流航行少花了2h ,现有另一船 B 顺水航行同一段行程,用了3h ,求此船返回原地比去时多用了多少小时3. 甲乙两港相距120km ,一艘船A往返两港需要10h ,顺水航行比逆流航行少花了2h ,现有另一船 B 静水速度是 35km/ h ,求船B往返两港需要的时间是多少4.甲、乙两船在静水中速度分别为每小时24千米和每小时32 千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇假好像向而行,甲船在前,乙船在后,几小时后乙船追上甲船5.A, B 两码头间河流长为90 千米,甲、乙两船分别从A, B 码头同时开航。
若是相向而行 3 小时相遇,如果同向而行 15 小时甲船追上乙船,求两船在静水中的速度。
小学五年级奥数行程问题应用题及答案
【导语】⾏程问题是⼩学奥数中的⼀⼤基本问题。
⾏程问题有相遇问题、追及问题等近⼗种,是问题类型较多的题型之⼀。
⾏程问题包含多⼈⾏程、⼆次相遇、多次相遇、⽕车过桥、流⽔⾏船、环形跑道、钟⾯⾏程、⾛⾛停停、接送问题等。
以下是整理的《⼩学五年级奥数⾏程问题应⽤题及答案》相关资料,希望帮助到您。
1.⼩学五年级奥数⾏程问题应⽤题及答案 1、甲、⼄两地相距100千⽶,张⼭骑摩托车从甲地出发,1⼩时后李强驾驶汽车也从甲地出发,⼆⼈同时到达⼄地。
已知摩托车开始的速度是每⼩时50千⽶,中途减为每⼩时40千⽶;汽车的速度是每⼩时80千⽶,并在途中停留10分钟。
那么,张⼭骑摩托车在出发分钟后减速。
答案与解析: 汽车⾏驶了100÷80×60=75(分) 摩托车⾏驶了75+60+10=145(分) 设摩托车减速前⾏驶了x分,则减速后⾏驶了(145-x)分。
5x+580-4x=600 x=20(分) 2、甲、⼄两车分别从a b两地开出甲车每⼩时⾏50千⽶⼄车每⼩时⾏40千⽶甲车⽐⼄车早1⼩时到两地相距多少? 解:甲车到达终点时,⼄车距离终点40×1=40千⽶ 甲车⽐⼄车多⾏40千⽶ 那么甲车到达终点⽤的时间=40/(50-40)=4⼩时 两地距离=40×5=200千⽶ 2.⼩学五年级奥数⾏程问题应⽤题及答案 1、汽车往返于A,B两地,去时速度为40千⽶/时,要想来回的平均速度为48千⽶/时,回来时的。
速度应为多少? 解答:假设AB两地之间的距离为480÷2=240(千⽶),那么总时间=480÷48=10(⼩时),回来时的速度为240÷(10-240÷4)=60(千⽶/时). 2、赵伯伯为锻炼⾝体,每天步⾏3⼩时,他先⾛平路,然后上⼭,最后⼜沿原路返回.假设赵伯伯在平路上每⼩时⾏4千⽶,上⼭每⼩时⾏3千⽶,下⼭每⼩时⾏6千⽶,在每天锻炼中,他共⾏⾛多少⽶? 解答:设赵伯伯每天上⼭的路程为12千⽶,那么下⼭⾛的路程也是12千⽶,上⼭时间为12÷3=4⼩时,下⼭时间为12÷6=2⼩时,上⼭、下⼭的平均速度为:12×2÷(4+2)=4(千⽶/时),由于赵伯伯在平路上的速度也是4千⽶/时,所以,在每天锻炼中,赵伯伯的平均速度为4千⽶/时,每天锻炼3⼩时,共⾏⾛了4×3=12(千⽶)=12000(⽶).3.⼩学五年级奥数⾏程问题应⽤题及答案 1、A、B两地之间是⼭路,相距60千⽶,其中⼀部分是上坡路,其余是下坡路,某⼈骑电动车从A地到B地,再沿原路返回,去时⽤了4.5⼩时,返回时⽤了3.5⼩时。
五年级奥数-环形道路上的行程问题
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
小学奥数讲义5年级-3-流水行船问题-难版
当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。
当顺风时,借着风力,相对而言用里较少。
在你的生活中是否也遇到过类似的如流水行船问题。
解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。
划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。
船速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=船速+水速;逆流船速=船速—水速;顺流船速=逆流船速+水速×2;逆流船速=逆流船速—水速×2。
【例1】★一条轮船往返于A 、B 两地之间,由A 地到B 地是顺水航行,由B 地到A 地是逆水航行。
已知船在静水中的速度是每小时20千米,由A 地到B 地用了6小时,由B 地到A 地所用的时间是由A 地到B 地所用时间的1.5倍,求水流速度。
【解析】设水流速度为每小时x 千米,则船由A 地到B 地行驶的路程为[(20+x )×6]千米,船由B 地到A 地行驶的路程为[(20—x )×6×1.5]千米。
列方程为(20+x )×6=(20—x )×6×1.5x=4【小试牛刀】水流速度是每小时15千米。
现在有船顺水而行,8小时行320千米。
若逆水行320千米需几小时?典型例题知识梳理【解析】32小时【例2】★有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。
【解析】这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。
列式为逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)【小试牛刀】有只大木船在长江中航行。
五年级《行程问题(四)流水》奥数教案
(五年级)备课教员:第二讲行程问题(四)流水一、教学目标:知识目标1.理解顺水速度、逆水速度、静水速度及水流速度等量的含义,掌握各量间的关系。
2.准确运用公式解流水行船问题。
能力目标初步养成独立思考、自主探究、合作交流的学习方式。
情感目标感受数学的趣味性,从情境中感悟数学的美。
二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法三、教学难点:准确理清顺水速度、逆水速度、静水速度及水速等数量间的关系。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:让学生了解流水行船问题的概念,从具体情境中掌握,理解并区分什么是顺水速度、逆水速度、静水速度、水流速度等。
】师:同学们,你们观察过水面吗?当一片叶子掉进水里,叶子会漂得越来越远,而且是顺着一个方向一直飘走,为什么呢?生:因为水在流动。
师:是的,水自己在流动,是有一定的速度,这是水自己的速度,我们把它叫做水流速度。
记住了吗?生:记住了。
师:船如果在静止的水中航行,这个时候船航行的速度我们把它叫做静水速度,也可以叫做船速,明白吗?生:……师:现在老师给你们看一个小动画(点击PPT),这是一艘小船,蓝色部分代表的是水,从左往右代表顺水的方向。
我们先看第一个动画。
(播放PPT)师:我们看到小船从左往右走,是顺着水流动的方向的,我们叫做顺水航行,速度叫做顺水速度,船的速度与水的速度是同一个方向,那么顺水速度就等于静水速度加水流速度。
能理解吗?生:……师:那我们再来看另一个动画,(播放PPT)从右往左逆着水流航行,船的行驶速度会不会变慢?生:……师:所以逆水速度=静水速度-水流速度。
那么通过这个公式我们还可以引申出更多的公式,这就是我们这节课要学习的。
【探究新知,引入新课:我们已经学过了追及相遇问题,了解路程=速度×时间这个公式,也学会运用它的变式,这节课我们要深入学习行程问题中的另一个题型:流水行船问题。
(完整版)五年级奥数流水行船问题
流水行船问题:顺水速度=静水速度(船速)+水速逆水速度=静水速度(船速)-水速静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、两个码头相距352千米,一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河的水流速度和船的静水速度。
2、长江沿岸甲乙两城的水路距离为240千米,一条船从甲城开往乙城,顺水10小时可以到达,从乙城返回甲城,逆水则需要15小时才能到达,求船速和水速。
3、两个港口相距528千米,一艘轮船顺水航行要24小时走完全程,已知这条河的水速是每小时3千米,那么它返回逆流航行时要多少小时?4、两个港口相距480千米,一艘轮船顺水航行要24小时走完全程,已知这条河流的水速是每小时4千米,那么它返回逆流航行要多少小时?5、甲乙两地相距234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?6、一只船在长江里航行,顺流每小时20千米,已知这艘船顺流4小时恰好与逆流5小时的路程相等,求船速与水速?7、船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速和船速各是多少千米?8、一只船逆流而上,水速2千米,船速32千米,4小时行多少千米?9、甲乙两地之间的距离是140千米,一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港,逆水10小时到达,这艘轮船在静水中的速度和水流速度各是多少?10、一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米?11、两码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河流的水流速度为每小时4千米,求逆水行完全程需要多少小时?12、甲、乙两船分别从A港出发逆流而上行驶向B港,甲船的顺水速度是每小时30千米,静水中乙船每小时航行20千米,水流的速度是每小时5千米,乙船出发后4小时,甲船才出发,当甲船追上乙船的时候,甲船已经离开A港多少千米?13、甲乙两船分别从A港顺流而下至B港,甲船的逆水速度为每小时30千米,静水中乙船的速度为每小时25千米,水速为每小时5千米,乙船出发后3小时甲船才出发,当甲船追上乙船的时候甲船离开A港多少千米?14、已知一艘轮船顺水行48千米需要4小时,逆水行48千米需要6小时,现在轮船从上游的A城驶向下游的B城,已知两城的水路长72千米,开船时一位旅客站在船边看风景,不小心把一只鞋掉进水里,问:船到B城时这只鞋距离B 城有多远?15、某人顺水游360米需要12分钟,逆水游360米需要15分钟,此人现在从河的下游A处游向上游的B处,A、B两地相距480千米,他从A处刚开始游的时候向水里放了一块木板,当游到B处的时候,木板距离他多少米?16、一条船顺水航行60千米需要3小时,水流速度为每小时5千米,这条船逆流行驶60千米需要多少小时?17、一条船在河流中顺水航行的速度是每小时40千米,逆水速度是每小时32千米,这条河流的水速每小时多少千米?18、甲乙两地相距180千米,一只船从甲地开往乙地,顺水9小时到达,从乙地开往甲地,逆水15小时到达,求水流的速度。
小学五年级奥数第7课行程问题试题附答案-精品
小学五年级上册数学奥数知识点讲解第7课《行程问题》试题附答案笫七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程二速度X时间;总路程二速度和义时间;路程差二速度差X追及时间。
例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A1也乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:甲、乙用遇于C点.此时丙在D点甲、丙相遇于E例3甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?例4甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?例5甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又己知乙每分钟行50米,求A、B两地的距离。
例6一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的 3 倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例7甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?答案第七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下己学过的基本数量关系:路程二速度X时间;总路程二速度和X时间;路程差二速度差X追及时间。
小学五年级奥数流水行船问题
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是®⽆忧考⽹整理的《⼩学五年级奥数流⽔⾏船问题》相关资料,希望帮助到您。
1.⼩学五年级奥数流⽔⾏船问题 公式定律: 顺⽔速度=船速+⽔速 逆⽔速度=船速-⽔速 船速=(顺⽔速度+逆⽔速度)÷2 ⽔速=(顺⽔速度-逆⽔速度)÷2 公式说明: (1)船在⽔中航⾏,⽐⼀般的⾏程问题⼜有了⼀个⽔流的影响,研究路程、速度与时间之间的数量关系称为流⽔⾏船问题。
(2)船顺⽔航⾏时,⼀⽅⾯按照船本⾝的速度即船速(船在静⽔中的速度)在⽔⾯⾏驶,同时⽔⾯⼜有⽔流动的速度在前⾏,⽔也带着船⾏进,因此顺⽔速度是船速与⽔速的和,即顺⽔速度=船速+⽔速。
船逆⽔航⾏时,⽔流⽅向与船航⾏的⽅向相反,所以逆⽔速度是船速与⽔速的差,即逆⽔速度=船速-⽔速。
顺⽔速度与逆⽔速度相差2个⽔速,所以⽔速=(顺⽔速度-逆⽔速度)÷2,船速⼆(顺⽔速度+逆⽔速度)÷2。
流⽔⾏船应⽤题: [例1]⼀条船在河中⾏驶,顺⽔每⼩时⾏16千⽶,逆⽔每⼩时⾏10千⽶,求船在静⽔中的速度和⽔流速度各是多少千⽶。
分析:船顺⽔速度是每⼩时16千⽶,是船速与⽔速的和,逆⽔速度是每⼩时10千⽶,是船速与⽔速的差。
16+10=26(千⽶/时)正好是2个船速,由此可以求出船速是26÷2=13(千⽶/时)。
再求出顺⽔速度减去船速16-13=3(千⽶/时),就是⽔速,或者(顺⽔速度-逆⽔速度)÷2,即(16-10)+2=3(千⽶/时)。
解船速:(16+10)÷2=13(千⽶/时) ⽔速:16-13=3(千⽶/时) 或(16-10)÷2=3(千⽶/时) 答:船在静⽔中的速度是每⼩时13千⽶,⽔速是每⼩时3千⽶。
五年级奥数第3讲:行程问题(四)流水(2)-课件
192÷8=24(千米/小时)
逆水速度=静水速度-水流速度 静水速度=顺水速度-水流速度
24-2×4=16(千米/小时)
逆水速度=顺水速度-2×水流速度 192÷16=12(小时)
答:逆水行完全程要12小时。
练习二
甲、乙两码头相距560千米,一只船从甲码头顺水航行20小时 到达乙码头,已知船在静水中每小时航行24千米,问船返回甲码头 要几小时?
75÷5=15(千米/小时) 15×15=225(千米)
答:A、B两地相距225千米。
总结
顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度 静水速度(船速)=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
逆水速度=顺水速度-2×水流速度 逆水速度=2×静水速度-顺水速度
例题三
某船在静水中每小时行18千米,水流速度是每小时2千米。此船 从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千 米?此船从乙地回到甲地需要多少小时?
逆水速度=静水速度-水流速度
18-2=16(千米/小时) 16×15=240(千米)
顺水速度=静水速度+水流速度
18+2=20(千米/小时) 240÷20=12(小时)
答:甲、乙两地的路程是240千米。 此船从乙地回到甲地需要12小时。
练习三
已知一条河的水流速度是每小时6千米,一艘船在静水中3小时 航行48千米。这艘船从甲地顺水航行到乙地需要10小时。求甲、乙 两地的路程是多少千米?此船从乙地回到甲地需要几小时?
小学五年级-奥数--行程问题
--第二十四讲行程问题---相遇问题例1:甲乙两人分别从相距27.3千米的两地同时出发相向而行,甲每小时走6.2千米,乙每小时走4.3千米。
两人几小时后相遇?练习1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18.5千米,乙船每小时行驶15.6千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?3、一列快车和一列慢车分别从甲乙两地同时相向而行。
快车10小时可以到达乙地,慢车15小时可以到达甲地。
快车每小时比慢车多行20千米,两车出发后几小时相遇?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56.4千米,乙车每小时行48.6千米。
两车在距中点42.9千米处相遇,东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行52.6千米,乙汽车每小时行55.4千米,两车在距中点16.8千米处相遇。
求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行62.5千米,摩托车每小时行70千米,当摩托车行到两地中点处时,与汽车还相距30千米。
求A、B两城之间的距离?3.甲乙两地相距60千米,甲乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?- - word.zl-例3 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习1、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?3、甲乙两车同时从A、B两地相对开出,4小时后相遇,甲车再开3小时到达B地。
五年级奥数专题--行程问题
五年级奥数专题-行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位.行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等.每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度× 时间2. 相遇问题:路程和 = 速度和× 时间3. 追击问题:路程差 = 速度差× 时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的.①追击及遇问题一、例题与方法指导例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花圃的周长是多少米?思路导航:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间.第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰.例2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米.乙车每小时行多少千米?思路导航:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间.解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米.例3.兄妹二人同时从家里出发到学校去,家与学校相距1400米.哥哥骑自行车每分钟行200米,妹妹每分钟走80米.哥哥刚到学校就立即返回来在途中与妹妹相遇.从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?思路导航:从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍.因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了.解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米.二、巩固训练1.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行.甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?分析:如果乙在中途不停车,那么甲、乙两人从出发到相遇共行路程的和:328+22×1=350(千米),两车的速度和:28+22=50(千米/小时),然后根据相遇问题“路程和÷速度和=相遇时间”得350÷50=7(小时)解:(328+22×1)÷(28+22)=350÷50=7(小时)解法2:(328-22×1)÷(28+22)=300÷50=6(小时)6+1=7(小时)答:从出发到相遇经过了7小时.2.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?分析:从图中可知:快车3小时行的路程40×3=120千米,比全程的一半多12千米,全程的一半是120-12=108千米.而慢车3小时行的路程比全程的一半还少12千米,所以慢车3小时行的路程是108-12=96千米,由此可以求出慢车的速度.解:①甲乙两地路程的一半:40×3-12=108(千米)②慢车3小时行的路程:108-12=96(千米)③慢车的速度:96÷3=32(千米)答:慢车每小时行32千米.3.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?分析:从图上可以看出,小华和小明两人第一次相遇时,行了一个全程,小华行了85千米.当小华和小明第二次相遇时,共行了3个全程,这时小华共行了3个85千米,如果再加上35千米,相当于小华行了2个全程,甲乙两地全长也就可以求出来了.解:(1)甲乙出发到第二次相遇时,小华共行了多少千米?85×3=255(千米)(2)甲乙两城相距多少千米?(255+35)÷2=290÷2=145(千米)答:两城相距145千米.三、拓展提升1.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米.求甲乙两站相距多少千米?分析如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离.解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)②从出发到第一次相遇所用的时间:36÷3=12(小时)③甲乙两站的距离:(54+48)×12=1224(千米)答:求甲乙两站相距1224千米.2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇.求丙车的速度.分析:解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度.再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度.解:(1)卡车的速度:(60×6-48×7)÷(7-6)=24÷1=24(千米)(2)AB两地之间的距离:(60+24)×6=504(千米)(3)丙车与卡车的速度和:504÷8=64(千米)(4)丙车的速度:64-24=40(千米/小时)答:丙车的速度每小时40千米.3.两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?②火车过桥过桥问题也是行程问题的一种.首先要弄清列车通过一座桥是指从车头上桥到车尾离桥.列车过桥的总路程是桥长加车长,这是解决过桥问题的关键.过桥问题也要用到一般行程问题的基本数量关系:过桥问题的一般数量关系是:因为:过桥的路程= 桥长+ 车长所以有:通过桥的时间=(桥长+ 车长)÷车速车速= (桥长+ 车长)÷过桥时间公式的变形:桥长= 车速×过桥时间—车长车长= 车速×过桥时间—桥长后三个都是根据第二个关系式逆推出的.火车通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决.一、例题与方法指导例1.一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?思路导航:从火车头上桥,到火车尾离桥,这之间是火车通过这座大桥的过程,也就是过桥的路程是桥长+ 车长.通过“过桥的路程”和“车速”就可以求出火车过桥的时间.(1)过桥路程:6700 + 100 = 6800(米)(2)过桥时间:6800÷400 = 17(分)答:这列客车通过南京长江大桥需要17分钟.例2.一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?思路导航:要想求火车过桥的速度,就要知道“过桥的路程”和过桥的时间.(1)过桥的路程:160 + 440 = 600(米)(2)火车的速度:600÷30 = 20(米)答:这列火车每秒行20米.例3.某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?思路导航:火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢?原因是第一个隧道比第二个隧道长360—216 = 144(米),这144米正好和8秒相对应,这样可以求出车速.火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长.(1)第一个隧道比第二个长多少米?360—216 = 144(米)(2)火车通过第一个隧道比第二个多用几秒?24—16 = 8(秒)(3)火车每秒行多少米?144÷8 = 18(米)(4)火车24秒行多少米?18×24 = 432(米)(5)火车长多少米?432—360 = 72(米)答:这列火车长72米.二、巩固训练1.某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?思路导航:通过前两个已知条件,我们可以求出火车的车速和火车的车身长.(342—234)÷(23—17)= 18(米)……车速18×23—342 = 72(米)……………………车身长两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程÷速度和= 相遇时间”,可以求出两车错车需要的时间.(72 + 88)÷(18 + 22)= 4(秒)答:两车错车而过,需要4秒钟.2.一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?(265 + 985)÷25 = 50(秒)答:需要50秒钟.3.一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?(200 + 50)÷25 = 10(米)答:这列火车每秒行10米.三、拓展提升1.一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?1分= 60秒30×60—240 = 1560(米)答:这座桥长1560米.2.一列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,问这条隧道长多少米?15×40—240—150 = 210(米)答:这条隧道长210米.3.一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?1200÷(75—15)= 20(米)20×15 = 300(米)答:火车长300米.4.在上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?(18 + 17)×10—182 = 168(米)答:另一列火车长168米.。
奥数行程问题归纳总结及部分例题及答案
奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提醒:
亲爱的孩子:过了这条河我们就可以抵达花的海洋;爬过这
座山我们就可以到达山的顶峰;战胜这个困难我们就可以来到梦
想的地方!相信自己!
流水问题
想一想:从南京长江逆流而上去长江三峡,与从长江三峡顺水而下回南京,哪个花的时间少?哪个花的时间多?为什么?
原因很简单。
在长江行船与在一个平静的湖这行船是不一样的,因为长江的水是一直从西向东(也就是从上游向下游)流着的,船的速度会受到江水的影响。
而在平静的湖水中行船时,船的速度不会受到水流的影响。
考虑船在水流速度的情况下行驶的问题,就是我们这一讲要讲的流水问题。
船在顺水航行时(比方说,从长江三峡顺流而下到南京),船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶,同时整个水面又按照水的流动速度在前进,水推动着船向前,所以,船顺水时的航行速度应该等于船本身的速度与水流速度的和。
也就是
顺水速度=船速+水速
比方说,船在静水中行驶10千米,水流速度是每小时5千米,那么,船顺水航行的速度就是每小时10+5=15(千米)。
同学们可以想一想,上面的问题中,如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶,情况恰好相反。
本来船每小时行驶10千米,但由于水每小时又把它往回推了5千米,结果船每小时只向上游行驶了10—5=5(千米)。
也就是船在逆水中的速度等于船速度与水速之差。
即
逆水速度=船速—水速
专题简析:
当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。
当顺风时,借着风力,相对而言用里较少。
在你的生活中是否也遇到过类似的如流水行船问题。
解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。
划速相当于和差问题中
的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。
划速=(顺流船速+逆流船速)÷2;
水速=(顺流船速—逆流船速)÷2;
顺流船速=划速+水速;
逆流船速=划速—水速;
顺流船速=逆流船速+水速×2;
逆流船速=顺流船速—水速×2。
例题1:
一条轮船往返于A 、B 两地之间,由A 地到B 地是顺水航行,由B 地到A 地是逆水航行。
已知船在静水中的速度是每小时20千米,由A 地到B 地用了6小时,由B 地到A 地所用的时间是由A 地到B 地所用时间的1.5倍,求水流速度。
在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A 、B 两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。
练习1:
1、水流速度是每小时15千米。
现在有船顺水而行,8小时行320千米。
若逆水行320千米需几小时?
2、水流速度每小时5千米。
现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?
3、一船从A 地顺流到B 地,航行速度是每小时32千米,水流速度是每小时4千米,212
天可以到达。
次船从B 地返回到A 地需多少小时?
例题2:
有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。
这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。
列式为
练习2:
1、有只大木船在长江中航行。
逆流而上5小时行5千米,顺流而下1小时行5千米。
求这只木船每小时划船速度和河水的流速各是多少?
2、有一船完成360千米的水程运输任务。
顺流而下30小时到达,但逆流而上则需60小时。
求河水流速和静水中划行的速度?
3、一海轮在海中航行。
顺风每小时行45千米,逆风每小时行31千米。
求这艘海轮每小时的划速和风速各是多少?
例题3:
轮船以同一速度往返于两码头之间。
它顺流而下,行了8小时;逆流而上,行了10小时。
如果水流速度是每小时3千米,求两码头之间的距离。
在同一线段图上做下列游动性示意图36-1演示:
图36——1逆流顺流
10
练习3:
1、一走轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7小时,逆流而上行了10小时。
如果水流速度是每小时3.6千米,求甲、乙两个港口之间的距离。
2、一艘渔船顺水每小时行18千米,逆水每小时行15千米。
求船速和水速各是多少?
3、沿河有上、下两个市镇,相距85千米。
有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米。
求往返依次所需的时间。
例题4:
汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?
练习4:
1、当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。
返回时水流速度是逆流而上的2倍。
需几小时行195千米?
2、已知一船自上游向下游航行,经9小时后,已行673千米,此船每小时的划速是47千米。
求此河的水速是多少?
3、一只小船在河中逆流航行3小时行3千米,顺流航行1小时行3千米。
求这只船每小时的速度和河流的速度各是多少?
例题5:
有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。
甲船行4小时后与漂流物相距
100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米?
练习5:
1、有两只木排,甲木排和漂流物同时由A地向B地前行,乙木排也同时从B地向A地前行,甲木排5小时后与漂流物相距75千米,乙木排行15小时后与漂流物相遇,两木排的划速相同,A、B两地长多少千米?
2、有一条河在降雨后,每小时水的流速在中流和沿岸不同。
中流每小时59千米,沿岸每小时45千米。
有一汽船逆流而上,从沿岸航行15小时走完570千米的路程,回来时几小时走完中流的全程?
3、有一架飞机顺风而行4小时飞360千米。
今出发至某地顺风去,逆风会,返回的时间比去的时间多3小时。
已知逆风速为75千米/小时,求距目的地多少千米?
例1、一艘每小时行驶30千米的客轮,在一河水中顺水航行165千米,水速每小时3千米。
问:这艘客轮需要航行多少小时?
例2、一艘船顺水行320千米需要8小时,水流速度是每小时15千米,这艘船逆水每小时行多少千米?这艘船逆水行这段路程,需要多少小时?
例3、甲船逆水航行360千米需要18小时,返回原地需要10小时;乙船逆水航行同样的异端水路需要15小时,返回原地需要多少小时?
例4、练习与思考
(每题20分,共100分)
1.一只小船以每小时30千米的速度在176千米长的河中逆水而行,用了211小时。
这只小船返回原处需要用多少小时?
2.船在静水中的速度是每小时25千米,河水流速位每小时5千米,一只船往返甲、乙两港共花了9小时,两港相距多少千米?
3.两地距280千米,一艘轮船在期间航行,顺流用去14小时,逆流用去20小时。
求这艘轮船在静水中的速度和水流的速度。
4.一架飞机所带的燃料,最多可以用6小时,飞机去是顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米。
这架飞机最多飞出多少千米,就需要往回飞?
5.乙船顺水航行2小时,行了120千米,返回原地用了4小时。
甲船顺水航行同一段水路,用了3小时。
甲船返回原地比去时多用多少小时?。