第三章 二元合金相图和合金的凝固
第三章二元合金相图及应用
F
第三节
二元共晶相图
注意:在共晶线ECF上属于三相平衡区
该合金系有两类合金: 固溶体合金 共晶型合金
E点以左,F点以右的合金属于固溶体型合 金;EF 之间的合金为共晶型合金,其中, C点以左为亚共晶合金,C点以右为过共晶 合金,C点合金为共晶合金。
二、典型合金的结晶过程分析
第三节
二元共晶相图
共晶相图:共晶、亚共晶、 过共晶、固溶体合金
Cu-Ni合金枝晶偏析示意图
第二节
二元匀晶相图
Cu-Ni合金的平衡组织与枝晶偏析组织
平衡组织
枝晶偏析组织
第三节
二元共晶相图
当合金的二组元在液态时无限互溶, 在固态时有限互溶,且发生共晶反应, 此合金系的相图为二元共晶相图。 属于此类相图的合金系有: Pb-Sn, Al-Si, Al-Sn, Zn- Sn等。
1、配制不同成分的合金(选 择合金系中有代表性的成分) 2、分别测出美中合金的冷却 曲线,得到相变临界点 3、将临界点对应地绘在成分-
温度图上.
4、将同类临界点连接起来, 即可绘出该合金系的相图。
注意:利用热分析法测定相图时,冷却速度应 非常缓慢(平衡结晶)
第二节 一、相图分析
二元匀晶相图
当两组元在液相和固相均无限互溶时, 构成的合金系相图为二元匀晶相图。 属于此类的合金系有:Cu-Ni, Cu-Au, Au-Ag, Fe-Ni, W-Mo, Bi- Sb 等。
第二节
二元匀晶相图
三、固溶体合金中的偏析
合金相图中,合金的凝 固过程是在无限缓慢的冷 却条件下进行的,但实际 上合金不可能无限缓慢冷 却,一般冷却速度较快, 由于原子来不及充分扩散, 会出现先结晶出来的合金 含Ni量高的现象,对于一 个晶粒,心部含Ni量高, 表层含Ni量低。
第三章 合金的相结构和结晶
3.2 合金的相结构
固态合金中的相结构可分为固溶体和金属化 合物两大类。
3.2.1固溶体
合金的组元之间以不同比例相互混合后形 成的固相,其晶体结构与组成合金的某一组元 的相同,这种相称为固溶体。与固溶体结构相 同的组元为溶剂,另一组元为溶质。碳钢和合 金钢,均以固溶体为基体相。
一、固溶体的分类
1、按溶质原子在溶剂晶格中所占位置分类 置换固溶体和间隙固溶体
相图是表示在平衡条件下合金系中合金的状态与温 度、成分间关系的图解,也称为平衡图或状态图。 平衡是指在一定条件下合金系中参与相变过程的各 相的成分和质量分数不再变化所达到的一种状态。
一、二元相图的表示方法
合金存在的状态通常 由合金的成分、温度 和压力三个因素确定。 常压 表象点
二、二元合金相图的测定方法
第三章 二元合金的相结构与结晶
合金:指两种或两种以上的金属,或金属与非金属,经熔 炼或烧结,或用其他方法组合而成的具有金属特性的物质。 纯金属和合金的比较: 纯金属强度一般较低,不适合做结构材料 因此目前应用的金属材料绝大多数是合金,如应用最广泛的 碳钢和铸铁就是铁和碳的合金,黄铜就是铜和锌的合金。 合金性能优良的原因: 合金的相结构 合金的组织状态:合金相图
2、固溶体合金的结晶需要一定的温 度范围
固溶体合金的结晶需要在一定的温度范围内进行, 在此温度范围内的每一温度下,只能结晶出一定数 量的固相。随着温度的降低,固相的数量增加,同 时固相和液相的成分分别沿着固相线和液相线而连 续地改变,直至固相的成分与原合金的成分相同时, 才结晶完毕。这就意味着,固溶体合金在结晶时, 始终进行着溶质和溶剂原子的扩散过程,其中不但 包括液相和固相内部原子的扩散,而且包括固相与 液相通过界面进行原子的互扩散,这就需要足够长 的时间,才得以保证平衡结晶过程的进行。
Fe-C二元合金相图及钢铁材料的平衡凝固组织 合金相图与凝固
过共析钢组织:
晶界网状二次渗碳体+珠光体
过共析钢组织:
晶界网状二次渗碳体+珠光体
亚共晶白口铸铁凝固组织
初生奥氏体+莱氏体共晶
共晶白口铸铁凝固组织:片层状莱氏体共晶
Laser Melted Rapidly Solidified Irregular Fe3C/Fe Eutectic 不规则莱氏体
1. 铁素体:Ferrite
Fe3C
The Solid Solution of C in a-Fe (BCC) 0.0218%C
2. 奥氏体:Austenite
g
The Solid Solution of C in g-Fe (FCC) 2.11%C
a 3. 渗碳体:Cementite
The Iron Carbide Fe3C 6.69%C
液相面线投影图中各种四相平衡转变
L+S=(T + a-Al) L+Q=(S+T) L=(b+T+a-Al)
L+γ γ
①
L
②③
④
L+Mo2Ni3Si Mo2Ni3Si
γ+Mo2Ni3Si
Ni
Mo2Ni3Si
g-Mo2Ni3Si相区垂直截面图
液相线投影图与四相平衡反应类型
四相平衡面上相平衡关系
珠光体 OM 、
TEM
Fe-C合金的分类:
1. 纯铁Pure Iron:
2. 钢Steels: C% < 2.11%
亚共析钢:%C < 0.77%
共析钢: C%= 0.77%
过共析钢:0.77~2.11%C
低碳钢、中碳钢、高碳钢
3. 铸铁Cast Irons 亚共晶铸铁 共晶铸铁
金属学及热处理课后习题答案第三章
⾦属学及热处理课后习题答案第三章第三章⼆元合⾦的相结构与结晶3-1 在正温度梯度下,为什么纯⾦属凝固时不能呈树枝状⽣长,⽽固溶体合⾦却能呈树枝状成长?答:原因:在纯⾦属的凝固过程中,在正温度梯度下,固液界⾯呈平⾯状⽣长;当温度梯度为负时,则固液界⾯呈树枝状⽣长。
固溶体合⾦在正温度梯度下凝固时,固液界⾯能呈树枝状⽣长的原因是固溶体合⾦在凝固时,由于异分结晶现象,溶质组元必然会重新分布,导致在固液界⾯前沿形成溶质的浓度梯度,造成固液界⾯前沿⼀定范围内的液相其实际温度低于平衡结晶温度,出现了⼀个由于成分差别引起的过冷区域。
所以,对于固溶体合⾦,结晶除了受固液界⾯温度梯度影响,更主要受成分过冷的影响,从⽽使固溶体合⾦在正温度梯度下也能按树枝状⽣长。
3-2 何谓合⾦平衡相图,相图能给出任⼀条件下合⾦的显微组织吗?答:合⾦平衡相图是指在平衡条件下合⾦系中合⾦的状态与温度、成分间关系的图解,⼜称为状态图或平衡图。
由上述定义可以看出相图并不能给出任⼀条件下合⾦的显微组织,相图只能反映平衡条件下相的平衡。
3-3 有两个形状、尺⼨均相同的Cu-Ni 合⾦铸件,其中⼀个铸件的W Ni =90%,另⼀个铸件的W Ni =50%,铸后⾃然冷却。
问凝固后哪⼀个铸件的偏析严重?为什么?找出消除偏析的措施。
答:W Ni =50%铸件凝固后偏析严重。
解答此题需找到Cu-Ni 合⾦的⼆元相图。
原因:固溶体合⾦结晶属于异分结晶,即所结晶出的固相化学成分与母相并不相同。
由Cu-Ni 合⾦相图可以看出W Ni =50%铸件的固相线和液相线之间的距离⼤于W Ni =90%铸件,也就是说W Ni =50%铸件溶质Ni 的k 0(溶质平衡分配系数)⾼,⽽且在相图中可以发现Cu-Ni 合⾦铸件Ni 的k 0是⼤于1,所以k 0越⼤,则代表先结晶出的固相成分与液相成分的差值越⼤,也就是偏析越严重。
消除措施:可以采⽤均匀化退⽕的⽅法,将铸件加热⾄低于固相线100-200℃的温度,进⾏长时间保温,使偏析元素充分扩散,可达到成分均匀化的⽬的。
第三章二元相图和合金的凝固
固溶体的平衡结晶过程: 固相成核
相内浓度梯度 相内扩散
界面浓度不平衡 晶体长大
重新建立平衡 固溶体的平衡结晶过程 原子的扩散过程 液相和固相均匀一致 原子的扩散进行完全 缓慢冷却 冷却速度大 相内成分不均匀 偏离平衡结晶条件(不平衡
结晶)
17
三、固溶体合金的不平衡结晶
条件:液相完全均匀化,而固相内却来不及进行扩散。
C1平衡重新建立→浓度梯度→原子
扩散→进一步长大
C1
→重复进行
溶 质
LC1
浓
k0C1
度
k 0C1
L
(a)
温
度
L
k0C1 T1
C1
k0C2 T2
C2
L+
C0
C0
溶
C0’
质
浓
k0C1
度
பைடு நூலகம்
L
C1
溶 C0’ 质
浓
k0C1
度
L
C1 溶
质
浓 度
k0C1
L
(b)
(c)
(d) 15
温度T2的结晶过程: LC 2 k 0C 2
§3.1 二元相图的建立
一、相图的表示方法 对二元合金来说,通常用横 坐标表示成分,纵坐标表示 温度。 坐标平面上的任一点称为表 象点,表示合金的成分和温度
1
二、相图的建立
通过实验测定:
先配制一系列成分不同的合金,然后测定这些合金的相变临 界点,最后把这些点标在温度—成分坐标图上,把各相同 意义的点连结成线,这些线就在坐标图上划分出一些区域, 即相区,将各相区所存在的相的名称标出,相图的建立工 作即告完成。
25
形成成分过冷临界条件:G mC 0 1 k0
第3章合金相图和合金的凝固
rb wL 100% ab
w
ar 100% ab
动画3-3 杠杆定律证明
3.3 匀晶相图及固溶体的结晶 匀晶相图:两组元在液态无限互溶、固态也无限互溶的二元合 金相图。 匀晶转变:从液相结晶出单相固溶体的结晶过程。
主要二元合金系:Cu-Ni、Ag-Au、Cr-Mo、Cd-Mg、Fe-Ni、 Mo-W等。
2)温度t3 温度到t3时,最后一滴液体结晶成固体,固溶体的成分完全与合 金成分一致,成为均匀(C0)的单相固溶体组织时。
固溶体结晶过程概述:
固溶体晶核的形成(或原晶体的长大),产生相内(液相或固相)的 浓度梯度,从而引起相内的扩散过程,这就破坏了相界面处的 平衡(造成不平衡),因此,晶体必须长大,才能使相界面处重新
不是3,与合金的成分C0不同, 因此,仍有一部分液体尚未结 晶,一直要到t4温度才能结晶 完毕。
晶内偏析:一个晶粒内部化学成分不均匀的现象 枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象
影响晶内偏析的因素: 1)分配系数k0 当k01时,k0值越小,则偏析越大; 当k01时,k0越大,偏析也越大。 2)溶质原子的扩散能力 结晶的温度较高,溶质原子扩散能力又大,则偏析程度较小;反之,则 偏析程度较大。 3)冷却速度 冷却速度越大,晶内偏析程度越严重。 削除晶内偏析的方法: 扩散退火或均勺化退火
两相。
对二元系来说,组元数c=2,当f=0时,P=2-0+1=3,说明 二元系中同时共存的平衡相数最多为3个。
(2)利用相律可以解释纯金属与二元合金结晶时的一些差别。 纯金属结晶时存在液、固两相,其自由度为零,说明纯金属 在结晶时只能在恒温下进行。 二元合金结晶时,在两相平衡条件下,其自由度f=2-2+1, 说明此时还有一个可变因素(温度),因此,二元合金将在一定
最全二元相图及其合金凝固知识点总结
最全二元相图及其合金凝固知识点总结匀晶相图与固溶体凝固匀晶相图两组元在液态、固态均能无限互溶的二元系所组成的相图称为匀晶相图。
匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。
匀晶转变是变温转变。
以w(N i)为30%C u-N i二元合金相图为例说明匀晶相图。
点:T C u、T N i分别为C u、N i熔点。
线:TCuBTNi 为液相线。
TCuCTNi 为固相线。
区: L、L+α、α固溶体的平衡凝固平衡结晶:在极缓慢冷却条件下进行的结晶。
以w(N i)为30%C u-N i二元合金为例分析结晶过程:t1温度以上为L;t1温度时,L→α,成分为:B、C。
固溶体平衡冷却结晶过程归纳总结:冷却时遇到液相线开始结晶,遇到固相线结晶终止,形成单相均匀固溶体。
在结晶过程中每一温度,其液相、固相成分和相对量可由该温度下做水平线与液相线、固相线的交点及杠杆定理得出随温度下降,固相成分沿固相线变化,液相成分沿液相线变化,且液相成分减少,固相成分增加,直至结晶完毕。
固溶体合金的结晶特点:1.异分结晶:结晶出的晶体与母相化学成分不同。
2.结晶需要一定的温度范围。
固溶体非平衡凝固非平衡凝固:偏离平衡条件的结晶。
在实际生产中,由于冷却速度较快,内部原子的扩散过程落后于结晶过程,使合金的成分均匀化来不及进行,使凝固偏离了平衡条件,这称为非平衡凝固。
非平衡凝固导致先结晶部分与后结晶部分成分不同,这种一个晶粒内部或者一个枝晶间的化学成分不同的现象,叫做枝晶偏析或晶内偏析。
各个晶粒之间化学成分不均匀的现象叫做晶间偏析。
枝晶偏析是非平衡凝固的产物,在热力学上是不稳定的,可以通过均匀化退火消除。
1.液相线与固相线间的水平距离(成分间距)↑,先后结晶的成分差别↑,偏析严重。
2.溶质原子的扩散能力↑,偏析↓。
3.冷却速度↑,偏析↑。
共晶相图与合金凝固共晶相图组成共晶的两组元液态时无限互溶,固态时有限固溶或完全不溶,且发生共晶转变,形成共晶组织的二元系相图。
三、二元合金相图和合金的凝固
2018/3/29
金属学与热处理
14
二、固溶体的平衡结晶过程
2018/3/29
金属学与热处理
15
在1点温度以上, 合金为液相L。 缓慢冷却至1~2温度之间时, 合金发生匀晶反应: L→α , 从液相中逐 在1~2点之间任意温度都可以用杠杆定理确定液相L和固相α 的相对
渐结晶出α 固溶体。
含量和成分。
2018/3/29
金属学与热处理
5
2018/3/29
金属学与热处理
6
三、相律及杠杆定理
1.相律及其应用
f c p 2
f —自由度数 c—系统的组元数 p—平衡条件下系统的相数 当系统的压力为常数时
f c p 1
2018/3/29 金属学与热处理 7
自由度是指在保持合金系中相的数目不变的条件下,合 金系中可以独立改变的影响合金状态的内部和外部因素 的数目。 影响合金状态的因素有合金的成分、温度和压力,当压 力不变时,则合金的状态由成分和温度两个因素确定。 纯金属的自由度最多只有一个; 二元系合金的自由度最多为2个; 三元系合金的自由度最多为3个。
的成份是不同的,它应按固相 线变化。如果冷却速度较快,
固体中原子难以通过扩散满足
相图中的平衡成份,则就产生 了不平衡凝固过程。此时,通 常先结晶的固溶体内部含高熔 点组元,而后结晶的外部则富 含低熔点组元。 这种在晶粒内部出现的成份
下图是在金相显微镜下观察 到的Cu-Ni合金不平衡凝固的 铸态组织,Ni熔点高,先结晶 出的枝干富含Ni,耐浸蚀,呈 白亮色枝间后结晶含Cu多,易 受浸蚀,呈黑色。 扩散退火的方法可消除晶内 偏析。
成全部共晶组织的成分和 温度范围称为伪共晶区。
第03章 结晶相图
第二节 纯金属的结晶
八、铸件晶粒大小的控制
决定晶粒尺寸的要素: 从液体凝固后,每个晶核生长成一个晶 粒,晶核多晶粒的尺寸自然就小。凝固理论分析表明晶粒尺寸决 定于N/G,即形核率高晶粒细小,而长大速度快,晶粒尺寸增大。 控制原理与方法:生产过程通常希望材料得到细小的尺寸,为此 控制晶粒尺寸的方法有:第一,降低浇注温度和加快冷却速度, 如金属模、或加快散热,尽管形核率和长大速度都提高,但形核 率的提高快得多,所得到的晶粒将细化,可是快冷却速度会增加 零件的内应力有时甚至可能造成开裂,有时因生产环境和零件尺 寸达不到快速冷却。第二,加变质剂即人为加入帮助形核的其它 高熔点细粉末,如在铜中加少量铁粉或铝中加Al2O3粉等,以非 均匀方式形核并阻碍长大。第三,铸件凝固中用机械或超声波震 动等也可细化晶粒尺寸。若希望晶粒粗大,如用于高温的材料, 对这些因素进行相反的操作。
组织:人们用肉眼或借助某种工具(放大镜、光学显微镜、电子 显微镜等)所观察到的材料形貌。它决定于组成相的类型、 形状、大小、数量、分布等。 组织组成物:组织中形貌相同的组成部分。
第三节
材料的相结构
二、固溶体
1. 固溶体:
当材料由液态结晶为固态时,组成元素间会象溶液那样 互相溶解,形成一种在某种元素的晶格结构中包含有其它元 素原子的新相,称为固溶体。与固溶体的晶格相同的组成元 素称为溶剂,在固溶体中一般都占有较大的含量;其它的组 成元素称为溶质,其含量与溶剂相比为较少。固溶体即一些 元素进入某一组元的晶格中,不改变其晶体结构,形成的均 匀相。
凝结-蒸发 凝固-熔化 凝华-升华
意义:材料中使用较广泛的有金属材料,金属材料绝大多数用 冶炼来方法生产出来,即首先得到的是液态,经过冷却后才 得到固态,固态下材料的组织结构与从液态转变为固态的过 程有关,从而也影响材料的性能。
北航物理冶金原理3-合金相图与凝固(1)
B%
B
A
T, oC
Liquid: L
L + a
Solid: a
Co
CL
CS
Cs= k CL
Wa
WL
Co
CL
Ca
Ts
TL
二、单相合金的平衡凝固:Equilibrium Solidification 2. 两相平衡的基本规则:杠杆规则 Lever Rule 平衡相之成分点:连接线-tie-line or Conode 平衡相之相对重量百分数:杠杆定律Lever Rule
相平衡规律:相律
体系自由度 f=n – p + 2 f=n – p + 1(常压条件)
常见基本相图类型
1、匀晶相图(无限互溶单相固溶体)Isomorphous +L
L
a
(f=2-1+1=2)
(f=2-1+1=2)
(f=2-2+1=1)
2、共晶相图:Eutectic Phase Diagram LE (a+b) 三相平衡 f=2-3+1=0
单相二元合金的凝固 Solidification of Single-Phase Binary Alloys
一、相图分析: 液相线-Liquidus; 固相线-Solidus; 液相区; 固相区; 两相区. 自由度
DT
DGv
Tm
T
G
GL
Gs
Spontaneous Nucleation 自发形核(均匀形核)
Spontaneous Nucleation 自发形核(均匀形核)
Spontaneous Nucleation 自发形核(均匀形核)
r
临界形核功: Critical Energy of Nucleation
第三章 二元合金相图和合金的凝固
第三章二元合金相图和合金的凝固一.名词解释相图、相律、匀晶转变、共晶转变、包晶转变、共析转变、包析转变、异晶转变、平衡结晶、不平衡结晶、异分结晶、平衡分配系数、晶内偏析、显微偏析、区域偏析、区域提纯、成份过冷、胞状组织、共晶组织、亚共晶组织、过共晶组织、伪共晶、离异共晶、二.填空题1.相图可用于表征合金体系中合金状态与和之间的关系。
2.最基本的二元合金相图有、、。
3.根据相律,对于给定的金属或合金体系,可独立改变的影响合金状态的内部因素和外部因素的数目,称为,对于纯金属该数值最多为,而对于二元合金该数值最多为。
4.典型的二元合金匀晶相图,如Cu-Ni二元合金相图,包含、两条相线,、、三个相区。
5.同纯金属结晶过程类似,固溶体合金的结晶包括和两个基本过程。
6.勻晶反应的特征为_____________,其反应式可描述为________ 。
7.共晶反应的特征为_____________,其反应式可描述为___________ _。
8.共析反应的特征为_____________,其反应式可描述为_____________。
9.金属或合金在极缓慢冷却条件下进行的结晶过程称为。
纯金属结晶时所结晶出的固相成分与液相成分,称为;而固溶体合金结晶时所结晶出的固相成分与液相成分,称为。
10.固溶体合金经不平衡结晶所产生的两类成分偏析为、。
11.固溶体合金产生晶内偏析的程度受到溶质原子扩散能力的影响,若结晶温度较高,溶质原子的扩散能力小,则偏析程度。
如磷在钢中的扩散能力较硅小,所以磷在钢中的晶内偏析程度较,而硅的偏析较。
12.固溶体合金结晶后出现枝晶偏析时,结晶树枝主轴含有较多的________组元。
严重的晶内偏析降低合金的,为消除枝晶偏析,工业生产中广泛采用的方法。
13.根据区域偏析原理,人们开发了,除广泛用于提纯金属、金属化合物外,还应用于半导体材料及有机物的提纯。
通常,熔化区的长度,液体的成分,提纯效果越好。
第三章 金属的结晶与二元合金相图
液相区L 双相区L+α 固相区α 液相线 固相线
固相区
匀 晶 相 图 合 金 的 结 晶 过 程 (P33)
☆在不同温度下刚刚结晶出来的固相的化学成分是 不相同的,其变化规律是沿着固相线变化.与此同 时剩余液相的化学成分也相应地沿着液相线变化.
2,晶内偏析——枝晶偏析 (P33)
晶内偏析: 晶内偏析: 在一个晶粒内,各处 成分的不均匀现象. 因为金属通常以枝晶 方式结晶,先形成的 主干和后形成的支干 就会有化学成分之差, 枝晶偏析. 所以也称枝晶偏析 枝晶偏析
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 3,过冷度(△T):理论结晶温度与实际结 过冷度( 晶温度之差.对于纯金属: △T= T0- Tn 4,金属的结晶都 是在一定的过冷 度下进行的,这 种现象称过冷现 过冷现 象.
第一节 金属结晶的基础知识
(二)共晶相图 1,相图分析 (P35)
7)α固溶体溶解度变化曲线——cf 8) β固溶体溶解度变化曲线——eg 9)三个单相区:L,α,β
10)液相线——adb 11)固相线——acdeb 12)共晶线——cde
(二)共晶相图 1,相图分析 (P35)
13)三个两相区:L+α,L+β,α+β 14)一个三相区:L+α+β,在共晶转变过程中三相同时存在.
第一节 金属结晶的基础知识
一,金属结晶的温度与过冷现象(P26) 金属结晶的温度与过冷现象 1,理论结晶温度 0: 又称平衡结晶温度. 理论结晶温度T 理论结晶温度 (冷速极慢)也就是金属的熔点Tm. 2,实际结晶温度 n:在某一实际冷却速度下 实际结晶温度T 实际结晶温度 的结晶温度.
二元系相图及其合金的凝固
图7.5 具有极小点与极大点的相图 (a)具有极小点 (b) 具有极大点
2.固溶体的平衡凝固
平衡凝固是指凝固过程中的每个阶段都能 达到平衡,即在相变过程中有充分时间进行组 元间的扩散,以达到平衡相的成分。 固溶体的凝固过程与纯金属一样,也包括 形核与长大两个阶段,但由于合金中存在第二 组元,使其凝固过程较纯金属复杂。例如合金 结晶出的固相成分与液态合金不同,所以形核 时除需要能量起伏外还需要一定的成分起伏。 另外,固溶体的凝固在一个温度区间内进行, 这时液、固两相的成分随温度下降不断地发生 变化,因此,这种凝固过程必然依赖于两组元 原子的扩散。
c.亚共晶合金
在图7.6中,成分位于M,E两点之间的 合金称为亚共晶合金,因为它的成分低于 共晶成分而只有部分液相可结晶成共晶体。 室温组织通常可写为 α初+(α+β)+βII,甚至 可写为α初+(α+β)。
d.过共晶合金
成分位于E,N两点之间的合金称为过 共晶合金。其平衡凝固过程及平 衡组织与亚共晶合金相似,只是初生相为β 固溶体而不是α固溶体。室温时的组织为β 初+(α+β)。
合金III在包晶反应前的结晶情况与上述 情况相似。包晶转变前合金中a相相对量大 于包晶反应所需的量,所以包晶反应后, 除了新形成的b相外,还有剩余的a相存在。 包晶温度以下,b相中将析出aII,而a相中 析出bII,因此该合金金的室温平衡组织为 a+b+aII+bII,
3.包晶合金的非平衡凝固
如前所述,包晶转变的产物b相包围着 初生相a,使液相与a相隔开,阻止了液相 和a相中原子之间直接地相互扩散,而必须 通过b相,这就导致了包晶转变的速度往往 是极缓慢的. 显然,影响包晶转变能否进行 完全的主要矛盾是所形成新相b内的扩散速 率。
3.1 合金中的相及相结构
当电子浓度为21/14时,电子化合物(一般称为β相)多
数是体心立方结构。
当电子浓度为21/13时的电子化合物具有复杂立方结构。 当电子浓度为21/12时,形成具有密排六方结构的电子
化合物,称为ε相。
30
某 些 铜 合 金 银 合 金 的 相 区
β
31
间隙相与间隙化合物
过渡族金属能与原子半径比较小的非金属元素C、
38
金属间化合物的性质和应用
பைடு நூலகம்
具有超导性质的金属间化合物,如Nb3Ge,Nb3Al,Nh3Sn, V3Si,NbN等;
具有特殊电学性质的金属间化合物,如InTe-PbSe, GaAs-ZnSe等在半导体材料用;
具有强磁性的金属间化合物,如稀土元素(Ce,La,Sm, Y等)和Co的化合物,具有特别优异的永磁性能;
金属特性的物质。
4
工业纯Fe、Al、Cu合金化前后σ b的变化
5
两种或两种以上金属元素,或金属元素与
合金
非金属元素,经熔炼、烧结或其它方法组
合而成并具有金属特性的物质。
组成合金最基本的独立的物质,通常组元 就是组成合金的元素。 是合金中具有同一聚集状态、相同晶体结
组元
相
构,成分和性能均一,并以界面相互分开
具有奇特吸释氢本领的金属间化合物(常称为贮氢材料), 如 LaNi5,FeTi,R2Mg17和R2Ni2Mg15。(R等仅代表稀土 La,Ce,Pr,Nd或混合稀土)是一种很有前途的储能和 换能材料;
39
金属间化合物的性质和应用
具有耐热特性的金属间化合物,如Ni3Al,NiAl, TiAl,Ti3Al,FeAl,Fe3Al,MoSi2,NbBe12,ZrBe12 等不仅具有很好的高温强度,并且,在高温下具有比 较好的塑性;
3.二元相图及合金的凝固
第三章二元相图及合金的凝固第三章二元相图及合金的凝固相图:phase diagram 描述系统的状态、温度、压力及成分之间关系的图解。
又称状态图(state diagram)或平衡图(equilibrium diagram)。
¾二元系相图是研究二元体系在热力学平衡条件下,相与温度、成分之间关系的有力工具。
¾根据相图可确定不同成分的材料在不同温度下组成相的种类、各相的相对量、成分及温度变化时可能发生的变化。
¾仅在热力学平衡条件下成立,不能确定相结构、分布状态和具体形貌。
3.1 相图的基本知识3.1.1 合金与相的概念(1)合金合金(alloy)组元(component)(元)二元合金三元合金多元合金合金系(alloy system)二元系三元系多元系(2)相相(phase)单相合金多相合金(3)相律(phase rule)相律:热力学平衡条件下,系统的组元数、相数和自由度数之间的关系。
吉布斯相律(Gibbs phase rule):F=C一P十2式中,C:系统的组元数P:平衡共存的相的数目F:自由度。
取最小值F=0,得出:P=C十2若压力给定,应去掉一个自由度,P=C十1公式表明:在压力给定的情况下,系统中可能出现的最多平衡相数比组元数多一个。
例如:一元系:C=1,P=2,即最多可以两相平衡共存。
如纯金属结晶时,其温度固定不变,同时共存的平衡相为液相和固相。
二元系:C=2,P=3,最多三相平衡共存;三元系:C=3,P=4,最多四相平衡共存;依此类推,n元系,最多n十1相平衡共存。
¾确定系统中可能存在的最多平衡相数。
应用:¾解释纯金属与合金的结晶差别。
应当注意,相律的限制性:1)相律只适用于热力学平衡状态。
平衡状态下各相的温度应相等(热量平衡);各相的压力应相等(机械平衡);每一组元在各相中的化学位必须相同(化学平衡);2)相律只能表示体系中组元和相的数目,不能指明组元或相的类型和含量;3)相律不能预告反应动力学(速度);4)自由度F不得小于零。
二元合金相图
相:凡成分相同、结构相同并与其它部分有界面分开的物质均匀 组成部分,称之为相。
相图:相图又称为状态图,它是表示体系的成分、外界环境和组 成相与相之间的平衡关系的几何图形。它是研究材料组织变 化规律的重要参考工具。外界环境主要是温度和压力,例如 物理学中已经介绍的纯水和纯铁的相图。
二元合金相图
二元合金相图
组织特点
当两个固相都是金属性较强相时,共晶体一般生长成层片 状。当两相的相对数量比相差悬殊时,在界面能的作用下,数 量较小的相将收缩为条、棒状,更少时为纤维状,甚至为点 (球)状。
当有一相或两相都具有较强的非金属性时,它们表现出较强 的各向异性,不同方向的生长速度不同,并且有特定的角度关 系,同时生长过程要求的动态过冷度也有差异,往往有一个相 在生长中起主导作用,决定了两相的分布,共晶体的形态也具 有独特性,这时常见的形态有针状、骨肋状(鱼骨状)、蜘蛛网状、 螺旋状等。
L → L+α → α初+(L+α+β)→ (α初+ βII)+(α+β)共
二元合金相图
相对量的计算
组织组成物
wa
2C EC
100%, wa b
E2 EC
100%
相组成物
wa
2F EF
100%, wb
E2 EF
100%
二元合金相图
二元合金相图
四、共晶合金非平衡凝固
1、伪共晶 在共晶点附近非共 晶成分的合金在快速冷却时,少 量初生相的析出未进行就被冷却 到共晶温度以下,直接发生共晶 转变,可以得到全部的共晶体组 织,这种组织称为伪共晶。它们 的形貌和共晶体没有明显的差别, 仅内部两相的数量比有觉察不到 差别。
3第三章--材料的凝固ppt课件(全)
溶体转变线
温N
度
J A+
L D
相区标注
L+A AE
C L+ Fe3C F
组织组成物标注 G
A+ Fe3C
A+
Le
复相组织组成物:
F
珠光体P(F+ Fe3C)
A+F S Fe3CⅡ A+ Fe3CⅡ+Le Le+ Fe3CⅠ K
P P
F+ Fe3C
P+
Le’
莱氏体Le(A+ Fe3C)
QP+F Fe3CⅡ P+ Fe3CⅡ+Le’ Le’+ Fe3CⅠ
混合物,称作莱氏体,用Le 表示。为蜂窝状。以Fe3C为 基,性能硬而脆。
莱氏体
PSK:共析线
S ⇄FP+ Fe3C 共析转变的产物是与
Fe3C的机械混合物, 称 作珠光体,用P表示。
L+δ
δ+
L+
+
L+ Fe3C + Fe3C
F+ Fe3C
扫描电镜形貌 珠光体(光镜)
珠光体的组织特点是 两相呈片层相间分布, 性能介于两相之间。 PSK线又称A1线 。
Q
不易分辨。室温组织为P.
珠光体
共析钢的结晶过程
㈢ 亚共析钢的结晶过程 0.09~0.53%C亚共析钢
冷却时发生包晶反应。
Ⅲ
A
H
B
J
以0.45%C的钢为例 合金在 4 点以前通过匀
晶→包晶→匀晶反应全
部转变为。到4点,由
G S
P
+Fe3C
第3章 二元相图(匀晶,共晶)
1400
1400 1300
L
(L+ )
T
1200
T 1200
1100
1000
1000 900
0 20 40 40 60 80 80 100 100
800
800
t
WCu(%)
Cu-Ni合金相图的建立
二、热分析法ቤተ መጻሕፍቲ ባይዱ绘二元相图
液相线 液相区
T,C
1500 1400 1300 1200 1100 1000
匀晶相图的其它类型
有些合金的匀晶相图还有极点: 在Au-Cu、Fe-Co、Ti-Zr等合金 的相图上有极小点;
在Pb-Tl、Al-Mn等合金的相图上 有极大点。
二)固溶体的平衡凝固
平衡凝固:从液态无限缓慢冷却,在相变过程中充分进行组元间互相 扩散,达到平衡相的均匀成分,这种凝固过程叫平衡凝固。
三、杠杆定律
与力学中的杠杆定律相似,因而亦被称为杠杆定律
三、杠杆定律
运用:确定两平衡相的成分(浓度);确定两平衡相的相对量。 注意:只适用于两相区,并且只能在平衡状态下使用; 三点(支点和端点)要选准。
H
Ag-Cu共晶相图及合金的凝固
五、二元相图的几何规律
① 相图中所有的线条都代表发生相转变的温度和平衡相的 成分,所以相界线是相平衡的体现, 平衡相的成分必须 沿着相界线随温度而变化。 ② 两个单相区之间必定有一个由该两相组成的两相区分 开,而不能以一条线接界(即两个单相区只能交于一点而 不能交于一条线)。两个两相区必须以单相区或三相水平 线分开。即:在二元相图中,相邻相区的相数差为1,这 个规则为相区接触法则。
四、杠杆定律
合金成分为C0,总重量为1, 在T 温度时,由液相和固相组成,液 相的成分为CL,重量为WL,固 相成份为Cα,重量为Wα。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章二元合金相图和合金的凝固一.名词解释相图、相律、匀晶转变、共晶转变、包晶转变、共析转变、包析转变、异晶转变、平衡结晶、不平衡结晶、异分结晶、平衡分配系数、晶内偏析、显微偏析、区域偏析、区域提纯、成份过冷、胞状组织、共晶组织、亚共晶组织、过共晶组织、伪共晶、离异共晶、二.填空题1.相图可用于表征合金体系中合金状态与和之间的关系。
2.最基本的二元合金相图有、、。
3.根据相律,对于给定的金属或合金体系,可独立改变的影响合金状态的内部因素和外部因素的数目,称为,对于纯金属该数值最多为,而对于二元合金该数值最多为。
4.典型的二元合金匀晶相图,如Cu-Ni二元合金相图,包含、两条相线,、、三个相区。
5.同纯金属结晶过程类似,固溶体合金的结晶包括和两个基本过程。
6.勻晶反应的特征为_____________,其反应式可描述为________ 。
7.共晶反应的特征为_____________,其反应式可描述为___________ _。
8.共析反应的特征为_____________,其反应式可描述为_____________。
9.金属或合金在极缓慢冷却条件下进行的结晶过程称为。
纯金属结晶时所结晶出的固相成分与液相成分,称为;而固溶体合金结晶时所结晶出的固相成分与液相成分,称为。
10.固溶体合金经不平衡结晶所产生的两类成分偏析为、。
11.固溶体合金产生晶内偏析的程度受到溶质原子扩散能力的影响,若结晶温度较高,溶质原子的扩散能力小,则偏析程度。
如磷在钢中的扩散能力较硅小,所以磷在钢中的晶内偏析程度较,而硅的偏析较。
12.固溶体合金结晶后出现枝晶偏析时,结晶树枝主轴含有较多的________组元。
严重的晶内偏析降低合金的,为消除枝晶偏析,工业生产中广泛采用的方法。
13.根据区域偏析原理,人们开发了,除广泛用于提纯金属、金属化合物外,还应用于半导体材料及有机物的提纯。
通常,熔化区的长度,液体的成分,提纯效果越好。
14.影响二元合金固溶体晶体生长形态的主要因素有、、。
15.在某些二元系合金中,当液体凝固完毕后继续冷却时,在固态下还会发生各种形式的相变,如、、。
三.选择题1.可用于测定二元合金临界点,建立相图的方法有_____________。
A、电阻法B、热分析法C、金相分析法D、X射线结构分析法2.二元合金固溶体的晶体结构为_____________。
A、溶剂的晶型B、溶质的晶型C、复杂晶型D、其它晶型3.固溶体合金在形核时,需要_____________。
A、成份起伏B、结构起伏C、成份过冷D、能量起伏4.匀晶合金在较快冷却条件下结晶时将产生_____________。
A、枝晶偏析B、宏观偏析C、晶内偏析D、区域偏析5.共晶反应是指_____________。
A、液相→固相Ⅰ+固相ⅡB、固相→固相Ⅰ+固相ⅡC、从一个固相内析出另一个固相D、从一个液相内析出另一个固相6.共析反应是指_____________。
A 、液相→固相Ⅰ+固相ⅡB 、固相→固相Ⅰ+固相ⅡC 、从一个固相内析出另一个固相D 、从一个液相内析出另一个固相7.当二元合金进行共晶反应时,其相组成是_____________。
A 、由单相组成B 、两相共存C 、三相共存D 、四相共存8.共晶成分的二元合金在刚完成共晶反应后的组织组成物为_____________。
A 、α+LB 、β+LC 、α+βD 、α+β+L9.共析成分的合金在共析反应γαβ→+刚结束时,其组成相为:A 、γαβ++B 、αβ+C 、()αβ+D 、αβ++()αβ+10.一个合金的组织为1()αβαβ+++,其组织组成物为: A 、α、βB 、α、β1、(α+β)C 、α、β、β1D 、α、β1、α、β11.具有匀晶相图的单相固溶体合金_____________。
A 、铸造性能好B 、锻压性能好C 、热处理性能好D 、切削性能好12.二元合金中,共晶成分的合金_____________。
A 、铸造性能好B、锻造性能好C、焊接性能好D、切削性能好13.正常凝固条件下,铸锭的宏观组织由_____________组成。
A、表层细晶区B、表层粗晶区C、柱状晶区D、等轴晶区14.实际生产中,影响铸锭铸态组织的因素有_____________。
A、融化温度B、铸模温度C、浇注速度D、铸锭形状15.常见铸锭或铸件缺陷包括_____________。
A、集中缩孔B、枝晶偏析C、比重偏析D、浇注冒口四.判断题1.二元系合金中,杠杆定律只能测定两相区中相的成分与相对含量。
()2.二元相图既可反映二元系合金相在平衡条件下的平衡关系,又可反映组织的平衡。
()3.根据相律计算,在匀晶相图中的两相区内,其自由度为2,即温度与成分这两个变量都可以独立改变。
()4.纯金属的结晶需在恒定温度下进行,固溶体合金的结晶则需在一定的温度范围内进行。
()5.二元合金固溶体在形核时,与纯金属相同,既需要能量起伏,又需要结构起伏和成分起伏。
()6.在共晶线上利用杠杆定律可以计算出共晶体的相对量,而共晶线属于三相区,所以杠杆定律不仅适用于两相区,也适用于三相区。
()7.为保证固溶体合金的平衡结晶,只需维持固相与液相通过界面进行的溶质原子及溶剂原子的扩散。
()8. 固溶体合金无论在平衡或非平衡结晶过程中,液/固界面上液相成分沿着液相平均成分线变化;固相成分沿着固相平均成分线变化。
( )9. 尽管固溶体合金的结晶速度很快,但在凝固的某一瞬间,A 、B 组元在液相与固相内的化学位均是相等的。
( )10. 二元合金在结晶过程中析出的初生相和次生相具有不同的晶型和组织形态。
( )11. 某一二元合金的室温组织为1()αβαβ+++,表明该合金由三相组成。
( )12. 不平衡结晶条件下,靠近共晶线端点内侧的合金比外侧的合金易于形成离异共晶组织。
( )13. 具有包晶转变的合金,室温时的相组成物为αβ+,其中β相均是包晶转变产物。
14. 固溶体合金非平衡结晶时,只要液/固界面前沿液相中溶质原子分布均匀一致,就可以减小合金中的显微偏析。
( )15. 固溶体合金存在枝晶偏析时,因主轴成分与枝间成分不同,最终形成的树枝晶不应是一个相。
( )16. 将固溶体合金棒反复多次“熔化—凝固”,并采用定向快速凝固的方法,可以有效提纯金属。
( )17. Cu-Ni 合金不平衡结晶过程中,液/固界面推进速度越快,晶内偏析越严重。
( )18. 经平衡结晶获得的20%Ni 的Cu —Ni 合金比40%Ni 的Cu —Ni 合金的硬度和强度要高。
( )19. 厚薄不均匀的Cu —Ni 合金铸件,结晶后薄处易形成树枝状组织,而厚处易形成胞状组织。
( )20. 从产生成分过冷的条件可知,合金中溶质浓度越高,成分过冷区域小,越易形成胞状组织。
( )21. 具有共晶转变的二元合金,产生伪共晶的原因是因为合金凝固时的冷却速度太慢。
( )22. 在二元亚共晶或共晶合金的凝固过程中可采取降低冷却速度的方法防止或减轻比重偏析。
( )五.简答题1. 简述固溶体合金与纯金属平衡结晶过程的异同点。
2. 简述固溶体合金结晶形核条件。
3. 以二元合金相图为例,简述相图的分析步骤及用途。
4.比较共晶转变与共析转变的异同点5.请画出共晶反应的示意图,写出反应式,并试用相律说明相图上三相共存条件。
6.请画出包晶反应的示意图,写出反应式,并试用相律说明相图上三相共存条件。
7.如何形成成分过冷?影响因素有哪些?成分过冷对固溶体合金生长形态有何影响?8.如何根据相图大致判断合金的力学性能、物理性能和铸造性能?9.影响枝晶偏析的因素有哪些?枝晶偏析对金属的性能有何影响?如何消除?10.什么是区域偏析?如何利用区域熔炼法提纯金属?11.举例说明如何利用包晶转变细化固溶体合金的晶粒?12.伪共晶如何形成?伪共晶对固溶体合金的机械性能有何影响?13.什么是离异共晶?离异共晶对金属性能有何影响,如何消除?14.实际生产中,如何控制金属铸锭的宏观组织?15.如何防止或减轻金属铸锭与铸件的铸造缺陷?六. 综合论述题1.试述固溶体合金结晶相变的热力学条件、动力学条件、能量及结构条件。
2.为什么金属结晶时必须过冷?试从过冷度对金属结晶时基本过程的影响,分析细化晶粒、提高金属材料常温机械性能的措施。
3.根据Pb-Sn合金相图(图3-1),分别画出W Sn=28%的亚共晶合金和W Sn=70%的Pb-Sn共晶合金的冷却曲线,同时绘出曲线上各阶段合金的组织示意图(F 点成分为W Sn=2% ,G点成分为W Sn=99%),并求出在183℃共晶转变完毕时W Sn=28%亚共晶合金组织组成物和相组成物的相对含量。
L图3-1 Pb-Sn二元合金相图4.根据Pt-Ag相图(图3-2),画出W Ag=22%和W Ag=76%合金的冷却曲线,同时绘出曲线上各阶段合金的组织示意图(E点成分为W Ag=2% ,F点成分为W Ag=92%),并求出W Ag=22%的合金冷至室温时组织中有哪几个相及相的相对含量。
图3-2 Pt-Ag 二元合金相图5. 试画出由两个包晶反应,一个共晶反应和一个包析反应组成的二元合金相图。
6. 根据下列条件,请画出概略的C-D 二元相图:(1) L (W D =30%) + D C ︒⇔700β (W D =4%)(2) L (W D =5%) +β (W D =25%) C ︒⇔500α (W D =10%)(3) β (W D =45%) + D C ︒⇔600γ (W D =70%)(4) β (W D =30%) C ︒⇔400α (W D =5%) + γ (W D =50%)7. 某二元合金系中,组元A 的熔点为1000℃,组元B 的熔点为700℃,在800℃时存在包晶反应:α(5%B )+ L (50%B )⇔β(30%B );在600℃时存在共晶反应: L (80%B )⇔β(60%B )+γ(95%B ); 在400℃时发生共析反应:β(50%B )⇔ α(2%B )+ γ(97%B )。
试根据上述数据画出相图。
8. 已知某二元系合金的A 、B 组元在液态时无限互溶,在固态时可形成共晶,共晶成分为w(B)=35%。
A 组元在B 组元中有限互溶,溶解度在共晶温度时为10%,B 组元在A 组元中不能溶解,且B 组元比A 组元的硬度高。
请画出该二元合金相图的示意图,并标出各区域的相组成物和组织组成物,然后再根据相图画出合金的硬度与成分的关系曲线。
9. 在固态下互不溶解的某二元合金,从显微镜下观察得到初生组织w(A)=85%,已知共晶成分中w(A)=24%,求该合金的成分。
10. 已知A(熔点600℃)与B(熔点500℃)在液态无限互溶,固态时A 在B 中的最大固溶度(质量分数)为30A w =%,室温时为10A w =%;但B 在固态和室温时均不溶于A 。