2018年广东专插本考试《高等数学》真题

合集下载

广东专插本高等数学试题与答案

广东专插本高等数学试题与答案

⼴东专插本⾼等数学试题与答案⼩编今天给⼤家的是⼴东专插本⾼等数学试题与答案的内容,专插本是⼴东专科⽣获取全⽇制本科学历和学⼠学位的*途径,备受⼴⼤⼤专⽣的喜爱。

专插本考试总共要考五个科⽬,三门统考科还有两门专业科科⽬。

理科的专插本考⽣们需要考政治、英语、⾼数三门统考科。

做专插本历年试题是专插本备考的⼀个重要⽅法。

这⾥就给⼤家分享⼴东专插本⾼等数学历年试题与答案。

⼴东专插本⾼数试题答案获取⽅法:这个⼴东专插本⾼数试题从2005到2017年的都有。

其中2005到2016年的都有答案。

2017年的暂时没有答案。

那么应该如何获取这些试题呢?关注公众号“帕思专插本”,直接在公众号消息框发送关键词“资料”即可获取⼴东专插本⾼等数学历年试题与答案。

专插本常见问题:⼴东专插本⾼等数学历年试题与答案:⼴东专插本考试科⽬?考试科⽬为五门,其中省统考三门,⾼校⾃主考试两门;省统考的三门为《政治理论》、《英语》和《专业基础课》。

考试各科满分为100分,五科总分为500分。

每科考试时间为120分钟。

注意:考“英语”专业本科插班⽣的考⽣,考试科⽬为五门,其中省统考《政治理论》和《⼤学语⽂》,及三门专业课。

⾼数作为⼀门⽐较难的科⽬,是⼤部分专插本考⽣的短板,甚⾄很多考⽣因为⾼数⽽放弃了⾃⼰原本喜欢的专业转⽽学习其他专业,在此⼩编想说如果你所选择的专业需要考⾼数这门科⽬,那么你就需要多做习题,*是可以找出以往的试题来练习。

哪些学校可以专插本,可以插什么专业?可以报考⼏个学校?答:(1)每年11-12⽉省考试院会公布下⼀年招⽣院校名单,未出之前⼤家可以先参考往年的学校和对应“招⽣简章”和“招⽣⽬录”查专业;(2)只能报⼀个学校,⼀个专业。

除了⾼数,还有⼴东专插本英语、政治、⼤学语⽂、艺术概论、管理学、民法、⽣态学基础等历年试题与答案。

⼤家直接关注公众号“帕思专插本”就有。

以上就是关于⼴东专插本⾼等数学试题与答案的相关内容,了解更多资讯请咨询帕思教育。

广东专插本高等数学-试卷50_真题-无答案

广东专插本高等数学-试卷50_真题-无答案

广东专插本(高等数学)-试卷50(总分44,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1. y=+lg(χ+2)的定义域为( )A. (-2,+∞)B. (1,+∞)C. (-2,-1]∪[1,+∞)D. (-2,-1)2. 若f′(χ0)=-3,则=( )A. -3B. -6C. -9D. -123. 设∫f(χ)dχ=χ2+C,则∫χf(1-χ2)dχ=( )A. -2(1-χ2)2+CB. 2(1-χ2)2+CC. -(1-χ2)2+CD. (1-χ2)2+C4. 设f(χ,y)在点(χ0,y0)处偏导数存在,=( )A. f′χ(χ0,y0)B. f′y(2χ0,y0)C. 2f′χ(χ0,y0)D. f′χ(χ0,y0)5. 如果=ρ(un>0,n=1,2,…),则级数un的收敛条件是( )A. ρ>1B. ρ≥1C. ρ<1D. ρ≤12. 填空题1. 函数f(χ)=的极值为_______.2. 已知f(χ)=χ2lnχ,χ=h(t)满足条件h(0)=3,h′(0)=7,则f[h(t)]|t=0=_______.3. 设f(χ)在[a,b]上满足f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(b)+f(a)](b-a),则S1,S2,S3的大小顺序为_______.4. 通解为y=C1cos2χ+C2sin2χ(C1,C2为任意常数)的二阶线性常系数齐次微分方程为_______.5. 设f(χ,y)=2χ+arcsin,则fχ(2,1)=_______.4. 解答题解答题解答时应写出推理、演算步骤。

1. 设f(χ)=试确定常数a,b的值,使f(χ)在点χ=处可导.2. 求极限3. 设z=uv+sint,而u=et,v=cost,求.4. 计算不定积分∫χe2χdχ.5. 平面图形D是由曲线y=eχ及直线y=e,χ=0所围成的,求平面图形D绕χ轴旋转一周所生成旋转体的体积.6. 计算dχdy,其中D是由y=1,y=χ,y=2,χ=0所围成的闭区域.7. 求微分方程y〞-2y′-3y=0的通解.8. 判定级数的敛散性.5. 综合题1. 过点P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形,求此图形绕χ轴旋转一周所成的旋转体的体积.2. 设函数y=f(χ)在区间[a,b]上连续,且f(χ)>0,F(χ)=∫aχf(t)dt+∫aχ,χ∈[a,b],证明:(1)F′(χ)≥2;(2)方程F(χ)=0在区间(a,b)内有且仅有一个实根.。

广东省2018年普通高等学校本科插班生招生考试

广东省2018年普通高等学校本科插班生招生考试

广东省2018年普通高等学校本科插班生招生考试《高等数学》(公共课)试题题号一二三四总分题分15154822得分总分合计人(签名)总分复核人(签名)复查总分复核人(签名)一、单项选择题(本大题共5小题,每小题3分,共15分.每小题给出的四个选项,只有一项符合题目要求的)1.=⎪⎭⎫ ⎝⎛+→x x x x x sin 1sin 3lim 0()A.0B.1C.3D.4解答:由极限的性质可知x x x x x x x x x x x sin lim 1sin lim 3sin 1sin 3lim 000→→→+=⎪⎭⎫ ⎝⎛+又由于有界函数×无穷小=无穷小,其中11sin≤x,0lim 0=→x x ,故01sinlim 30=→xx x 而又由于第一重要极限可知1sin lim 0=→xxx 因此110sin lim 1sin lim 3sin 1sin 3lim 000=+=+=⎪⎭⎫ ⎝⎛+→→→x x x x x x x x x x x 故选B.2.设函数()x f 具有二阶导数,且()10-='f ,()01='f ,()10-=''f ,()31-=''f ,则下列说法正确的是()得分评卷人A.点0=x 是函数()x f 的极小值点B.点0=x 是函数()x f 的极大值点C.点1=x 是函数()x f 的极小值点D.点1=x 是函数()x f 的极大值点解答:极值存在的第二充分条件:设函数()x f 在点0x 处具有二阶导数,且()00='x f ,()00≠''x f ,则(1)当()00<''x f 时,函数()x f 在点0x 处取得极大值;(2)当()00>''x f 时,函数()x f 在点0x 处取得极小值;(3)当()00=''x f 时,无法判别.因此根据题目条件()01='f ,()031<-=''f ,故由定理可知:点1=x 是函数()x f 的极大值点,故选D.3.已知()C x dx x f +=⎰2,其中C 为任意常数,则()=⎰dx x f 2()A.Cx +5 B.Cx +4 C.C x +421 D.C x +332解答:由积分与微分的关系可知:()[]()x f dx x f ='⎰,因此()()()()xC x dx x f x f 22='+='=⎰故()222x x f =,即()Cx C x dx x dx x dx x f +=+⨯===⎰⎰⎰332223231222故选D.4.级数()=-+∑∞=1312n nn()A.2B.1C.43D.21解答:由于级数可写为()()∑∑∑∞=∞=∞=-+=-+1113132312n n nn n n nn又因为∑∞=132n n ,()∑∞=-131n n n均为等比级数(几何级数),因此使用等比求和公式()qq a S n--=11其中a 为首项,q 为公比,故可得1311lim 311311311323232323221=⎪⎭⎫ ⎝⎛-⇒⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++++==∞→∞=∑n n n nn n n n S ()41311lim 413114131131131313111-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛---⇒⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛---=+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛---=⎪⎭⎫⎝⎛-=-=∞→∞=∞=∑∑n n n nn nn nnn S 因此()434113121=⎪⎭⎫ ⎝⎛-+=-+∑∞=n nn故选C.5.已知(){}94|,22≤+≤=y x y x D ,则⎰⎰=+Dd yx σ221()A.π2B.π10C.23ln2π D.23ln4π解答:此题应使用二重积分在极坐标系中的累次积分法。

《高等数学》专插本2005-2019年历年试卷

《高等数学》专插本2005-2019年历年试卷

广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共5小题,每小题3分,共15分。

每小题只有一个选项符合题目要求)1.函数22()2x xf x x x -=+-的间断点是A .2x =- 和0x =B .2x =- 和1x =C .1x =- 和2x =D .0x = 和1x =2.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → A .等于1 B .等于2 C .等于1 或2 D .不存在 3. 已知()tan ,()2xf x dx x Cg x dx C=+=+⎰⎰C 为任意常数,则下列等式正确的是A .[()()]2tan x f x g x dx x C +=+⎰B .()2tan ()x f x dx x C g x -=++⎰C .[()]tan(2)x f g x dx C =+⎰D .[()()]tan 2x f x g x dx x C +=++⎰4.下列级数收敛的是A .11nn e ∞=∑ B .13()2nn ∞=∑C .3121()3n n n ∞=-∑ D .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑.5.已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件 A .0,0a b b -=< B .0,0a b b -=> C .0,0a b b +=< D .0,0a b b +=> 二、填空题(本大题共5小题,每小题3分,共15分)6.曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =7.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =8.若二元函数(,)z f x y =的全微分sin cos ,x xdz e ydx e ydy =+ ,则2zy x∂=∂∂ 9.设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰10.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共8小题,每小题6分,共48分)11.求20sin 1lim x x e x x→-- 12.设(0)21x x y x x =>+,求dydx13.求不定积分221xdx x ++⎰14.计算定积分012-⎰15.设xyz x z e -=,求z x ∂∂和z y∂∂ 16.计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ 17.已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1n n a ∞=∑的收敛性18.设函数()f x 满足(),xdf x x de -=求曲线()y f x =的凹凸区间 四、综合题(大题共2小题,第19小题12分,第20小题10分,共22分) 19.已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰(1)求()x ϕ;(2)求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积20.设函数()ln(1)(1)ln f x x x x x =+-+(1)证明:()f x 在区间(0,) 内单调减少;(2)比较数值20192018与20182019的大小,并说明理由;2019年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共5小题,每小题3分,共15分) 1.B 2.A 3.D 4.C 5.B二、填空题(本大题共5小题,每个空3分,共15分) 6.13x 7.2x 8.cos x e y 9.1310.π 三、计算题(本大题共8小题,每小题6分,共48分)11.原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 12.解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++Q13.解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰14.,t =则211,22x t dx tdt =-=20121214215311,,2211()221()2111()253115t x t dx tdtt t tdt t t dtt t-==-==-=-=-=-⎰⎰⎰g15.解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyzxxyzyxyzzxyz xyzxyz xyzf x y z yzef x y z xzef x y z xyez yze z xzex xye y xye∴=-=-=--∂-∂∴==-∂+∂+16.解:由题意得12,0rθπ≤≤≤≤2222ln()3(4ln2)23(4ln2)|2(8ln23)Dx y ddππσθθπ∴+==-=-=-⎰⎰⎰17.解:由题意得414(1),321nnb nb n n++=+-414(1)1lim lim1,3213nx xnb nb n n+→∞→∞+∴==<+-由比值判别法可知1nnb∞=∑收敛0,n n a b ≤≤Q 由比较判别法可知1n n a ∞=∑也收敛18.解()()()()(1)xx x x df x x dedf x xde f x xe f x e x ----=∴='∴=-''∴=-Q()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞19.(1)由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+Q(2)由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰20.证明(1)()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++Q 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =Q 在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+Q 11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x ∴+--+<+()f x ∴在(0,)+∞单调递减(2)设2019,2018a b ==则201820192019,2018ba ab ==比较,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x Q 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省2018年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共5小题,每小题3分,共15分。

广东专插本18版—高数习题解析

广东专插本18版—高数习题解析

!
槡 精 析 !/'7 槡 -% 3
槡-# '!'槡5-2 '-# %!
$/'7 -% 3
!'-!# '! $ 3!
! -
'-!#
%
! -
8!答 案 !"
精析! 一个收敛的数列其任意子列均收敛且收敛于同一极限!
9!答 案 !"
精 析 !"# $
&'(# #
在#
$
4 处 无 定 义 但/'7 &'(# # #%4
$/'7
!'
! #
#%3.# '/'
1 #
$!%故
. $4%/$!%1为任意常数%- 项正确!
!6!!答 案 "!0
!
精 析 !



%/'7 #% 3
.##
'/# !
'1
$
/#'%73 .###''/#!'1
$
4%则
0项正确!
#'!
!8!!答 案 "!$
精 析 !/'7 #%4!%
##
槡!%###
/#'%7#%##%%##
$%!/'7 #%#'
,# #
%#, %#
$
/'7
#%#'
# #
%# %#
$!左



不 等 故 极 限 不 存 在 !
!!!答 案 !0

析 /#'%7# ####'%.##%'#/

最新-2018年普通高等学校招生全国统一考试数学理试题广东卷含答案 精品003

最新-2018年普通高等学校招生全国统一考试数学理试题广东卷含答案 精品003

2018年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yx y b xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++ (2)1n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

广东专插本(高等数学)-试卷44

广东专插本(高等数学)-试卷44

广东专插本(高等数学)-试卷44(总分:44.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题在每小题给出的四个选项中,只有一项是符合要求的。

(分数:2.00)__________________________________________________________________________________________ 解析:2.已知函数f(2χ-1)的定义域为[0,1],则函数f(χ)的定义域为 ( )(分数:2.00)1]B.[-1,1] √C.[0,1]D.[-1,2]解析:解析:由f(2χ-1)的定义域为[0,1],可知-1≤2χ-1≤1,所以f(χ)的定义域为[-1,1],故选B.3.若函数f(χ)χ=0处连续,则a= ( ).(分数:2.00)A.0B.1C.-1√解析:解析:由f(χ)在χ=0处连续可知f(χ)=f(0),于是有a=f(0)D.4.f(χ)=(χ-χ0 ).φ(χ),其中φ(χ)可导,则f′(χ0 )= ( )(分数:2.00)A.0B.φ(χ0 ) √C.φ′(χ0 )D.∞解析:解析:f′(χ)=φ(χ)+(χ-χ0 )φ′(χ),则f′(χ0 )=φ(χ0 ),故选B.5.已知d[e -χ f(χ)]=e χ dχ,且f(0)=0,则f(χ)= ( )(分数:2.00)A.e 2χ+e χB.e 2χ-e χ√C.e 2χ+e -χD.e 2χ-e -χ解析:解析:由d[e -χf(χ)]=e χdχ可得[e -χf(χ)]′=e χ,两边同时积分刮∫[e -χf(χ)]′dχ=∫e χ dχ,即有e -χ f(χ)=e χ+C,两边同时乘以e χ,即得f(χ)=e 2χ+Ce χ,又f(0)=1+C=0.即得C=-1.于是f(χ)=e 2χ-e χ.故诜B.6. ( )(分数:2.00)√解析:解析:根据级数的性质有收敛级数加括号后所成的级数仍收敛,故选D.二、填空题(总题数:5,分数:10.00)7.曲线y=χarctanχ)的水平渐近线是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:y=-1)解析:解析:又y=-1.8.设f(χ)在χ=02,则f′(0)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4)f′(0)=4.1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:3)=3.10.微分方程y〞-4y′-5y=0的通解为 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:y=C 1 e -χ C 2 e 5χ)解析:解析:微分方程的特征方程为λ2-4λ-5=0,则λ1=-1,λ2=5,则微分方程通解为y =C 1 e -χ+C 2 e 5χ (C 1,C 2为任意常数).11.设函数f(χ)在点χ0处可导,且f′(χ0)≠0, 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])三、解答题(总题数:9,分数:18.00)12.解答题解答时应写出推理、演算步骤。

2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2018年成人高考专升本《高等数学(一)》考试及参考答案(共三套)

2018年成人高等学校专升本招生全国统一考试高等数学(一)。

答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010年普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数()y f x =的定义域为(,)-∞+∞,则函数1[()()]2y f x f x =--在其定义域上是()A .偶函数B .奇函数C .周期函数D .有界函数2.0x =是函数1,0()0,0x e x f x x ⎧⎪<=⎨≥⎪⎩的()A .连续点B .第一类可去间断点C .第一类跳跃间断点D .第二类间断点3.当0x →时,下列无穷小量中,与x 等价的是()A .1cos x-B .211x +-C .2ln(1)x x ++D .21x e -4.若函数()f x 在区间[,]a b 上连续,则下列结论中正确的是()A .在区间(,)a b 内至少存在一点ξ,使得()0f ξ=B .在区间(,)a b 内至少存在一点ξ,使得()0f ξ'=C .在区间(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ-'=-D .在区间(,)a b 内至少存在一点ξ,使得()()()b af x dx f b a ξ=-⎰5.设22(,)f x y xy x y xy +=+-,则(,)f x y y∂∂=()A .2y x-B .-1C .2x y-D .-3二、填空题(本大题共5小题,每小题3分,共15分)6.设a ,b 为常数,若2lim()21x ax bx x →∞+=+,则a b +=.7.圆²²x y x y =++在0,0()点处的切线方程是.8.由曲线1y x=是和直线1x =,2x =及0y =围成的平面图形绕x 轴旋转一周所构成的几何体的体积V =.9.微分方程5140y y y '--'='的通解是y =.10.设平面区域22{(,)|1}D x y x y =+≤D={x ,y )x ²+y'≤1},则二重积分222()Dx y d σ+=⎰⎰.三、计算题(本大题共8小题,每小题6分,共48分)11.计算22ln sin lim(2)x xx ππ→-.12.设函数22sin sin 2,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩,用导数定义计算(0)f '.13.已知点1,1()是曲线12xy ae bx =+的拐点,求常数a ,b 的值.14.计算不定积分cos 1cos xdx x -⎰.15.计算不定积分ln 51x e dx -⎰.16.求微分方程sin dy yx dx x+=的通解.17.已知隐函数(,)z f x y =由方程231x xy z -+=所确定,求z x ∂∂和z y∂∂.18.计算二重积分2Dxydxdy ⎰⎰,其中D 是由抛物线²1y x =+和直线2y x =及0x =围成的区域.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.求函数0Φ()(1)xx t t dt =-⎰的单调增减区间和极值。

《高等数学》专插本年历年试卷

《高等数学》专插本年历年试卷

X 省202X 年一般高等学校本科插班生招生考试高等数学一、单项选择题〔本在题共5小题,每题3分,共15分。

每题只有一个选项符合题目要求〕1.函数22()2x x f x x x -=+-的间断点是A .2x =- 和0x =B .2x =- 和1x =C .1x =- 和2x =D .0x = 和1x =2.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → A .等于1 B .等于2 C .等于1 或2 D .不存在 3. 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则以下等式正确的选项是A .[()()]2tan x f x g x dx x C +=+⎰B .()2tan ()x f x dx x C g x -=++⎰C .[()]tan(2)x f g x dx C =+⎰D .[()()]tan 2x f x g x dx x C +=++⎰4.以下级数收敛的是A .11nn e ∞=∑ B .13()2nn ∞=∑C .3121()3n n n ∞=-∑ D .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑.5.已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件 A .0,0a b b -=< B .0,0a b b -=> C .0,0a b b +=< D .0,0a b b +=> 二、填空题〔本大题共5小题,每题3分,共15分〕6.曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =7.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =8.假设二元函数(,)z f x y =的全微分sin cos ,x xdz e ydx e ydy =+ ,则 9.设平面地域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰10.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题〔本大题共8小题,每题6分,共48分〕11.求20sin 1lim x x e x x →--12.设(0)21x x y x x =>+,求dydx13.求不定积分221xdx x ++⎰14.计算定积分012-⎰15.设xyzx z e-=,求z x ∂∂和z y∂∂ 16.计算二重积分22ln()Dx y d σ+⎰⎰,其中平面地域22{(,)|14}D x y x y =≤+≤ 17.已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+-判定级数1n n a ∞=∑的收敛性18.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间 四、综合题〔大题共2小题,第19小题12分,第20小题10分,共22分〕 19.已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰〔1〕求()x ϕ;〔2〕求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积20.设函数()ln(1)(1)ln f x x x x x =+-+ 〔1〕证明:()f x 在区间(0,)+∞内单调减少; 〔2〕比拟数值20192018与20182019的大小,并说明理由;202X 年X 省一般高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题〔本大题共5小题,每题3分,共15分〕 1.B 2.A 3.D 4.C 5.B二、填空题〔本大题共5小题,每个空3分,共15分〕 6.13x 7.2x 8.cos x e y 9.1310.π 三、计算题〔本大题共8小题,每题6分,共48分〕11.原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 12.解: 13.解:14.,t =则211,22x t dx tdt =-= 15.解:设(,,)xyzf x y z x z e=--16.解:由题意得12,0r θπ≤≤≤≤17.解:由题意得414(1),321n n b n b n n ++=+-由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比拟判别法可知1n n a ∞=∑也收敛18.解()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞19.〔1〕由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(2)由题意得 20.证明〔1〕 证明11ln(1)ln ()01x x x x+--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 11ln(1)ln ()1x x x x ∴+-<++成立()f x ∴在(0,)+∞单调递减〔2〕设2019,2018a b ==则201820192019,2018ba ab ==比拟,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>X 省202X 年一般高等学校本科插班生招生考试高等数学一、单项选择题〔本在题共5小题,每题3分,共15分。

广东省专插本-高等数学-2004-2010年-历年题集(含答案)

广东省专插本-高等数学-2004-2010年-历年题集(含答案)
4、下列函数中,不是 的原函数的是
A. B. C. D.
5、已知函数 ,则dz=
A. B.ydx+xdyC. D.
二、填空题(本大题共5小题,每小题3分,共15分)
6、极限 =。
7、曲线y=xlnx在点(1,0)处的切线方程是=。
8、积分 =。
9、设 ,则 =。
10、微分方程 的通解是。
三、计算题(本大题共8小题,每小题6分,共48分)
5、设 则
A.等于1 B.等于-1 C.等于0 D.不存在
二、填空题(本大题共5小题,每小题3分,共15分)
6、极限 。
7、设 ,要使 在 处连续,应补充定义 =。
8、设函数 ,则其函数图像的水平渐近线方程是。
9、微分方程 的通解是y=。
10、设 ,则全微分du=。
三、计算题(本大题共8小题,每小题6分,共48分)
11、求极限 。
12、计算不定积分 。
13、设函数 。
14、函数y = y(x)是由方程 所确定的隐函数,求 在点(1,0)处的值。
15、计算定积分 。
16、求二重积分 ,其中积分区域 。
17、设函数 ,求 。
18、求微分方程 满足初始条件 的特解。
四、综合题(本大题共2小题,第19小题14分,第20小题8分,共22分)
1、函数 的定义域是
A.( ,0) (0, )B.( ,0)
C.(0, )D.Ø
2、极限
A.等于-1 B.等于0 C.等于1 D.不存在
3、设 是 在(0, )内的一个原函数,下列等式不成立的
A. B.
C. D.
4、设函数 ,则下列结论正确的是
A. 的极大值为1 B. 的极小值为1

广东省专插本04-10年-高数真题(无水印)

广东省专插本04-10年-高数真题(无水印)

广东省本科插班生入学考试高等数学辅导资料2004年专升本插班考试《高等数学》试题一、填空题(每小题4分,共20分)1、函数211xx y --=的定义域是 。

2、=+→xx x x 52tan 3lim。

3、若=-=dxdy x x e y x则),cos (sin 。

4、若函数⎰+--=xdt t t t x f 02112)(,=)21(f 则 。

5、设23,32a i j k b i j k c i j =-+=-+=- 和, ()()a b b c +⨯+=则 。

二、单项选择题(每小题4分,共20分)6、若⎰=+=I dx x I 则,231( ) (A )C x ++23ln 21 (B )()C x ++23ln 21 (C )Cx ++23ln (D )()Cx ++23ln7、设)2ln(),(x yx y x f +=,=),f y 01('则( )(A )0, (B )1, (C)2, (D)218、曲线2,,1===x x y x y 所围成的图形面积为S ,则S=( ) (A )dx x x )1(21-⎰ (B )dx x x )1(21-⎰(C )dxy dx y)2()12(2121-+-⎰⎰(D )dxx dx x)2()12(2121-+-⎰⎰9、函数项级数∑∞=-1)2(n nx n的收敛区间是( )(A )1x > (B )1x < (C )13x x <>及 (D )13x << 10、⎰⎰=12),(xxdyy x f dx I 变换积分分次序后有I=( )(A )21(,)x xdx f x y dy⎰⎰ (B )⎰⎰1),(y ydxy x f dx(C )⎰⎰102),(yydxy x f dx (D )⎰⎰yydxy x f dx 1),(三、简单计算题(每题9分,共36分)11、求极限x x x e xx 3sin )2()2(lim++-→12、求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数22dx yd 。

2018年成人高等学校招生全国统一考试专升本《高等数学(二)》试题及答案解析

2018年成人高等学校招生全国统一考试专升本《高等数学(二)》试题及答案解析

2018年成人高等学校招生全国统一考试专升本高等数学(二)本试卷分第Ⅰ卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. lim x→0xcosx =( )A. eB.2C. 1D. 02. 若y =1+cosx ,则dy = ( )A. (1+ sinx)dxB. (1−sinx)dxC. sinxdxD.−sinxdx3. 若函数f(x)=5x ,则f′(x)= ( )A. 5x−1B. x5x−1C. 5x ln5D.5x4. 曲线y =x 3+2x 在点(1,3)处的法线方程是 ( )A. 5x +y −8=0B. 5x −y −2=0C. x +5y −16=0D. x −5y +14=05. ∫12−xdx =( )A. ln |2−x|+CB. −ln |2−x|+CC.−1(2−x)2+C D. 1(2−x )2+C6. ∫f′(2x)dx = ( )A. 12f(2x)+CB. f(2x)+CC. 2f(2x)+CD. 12f(x)+C7. 若f(x)为连续的奇函数,则∫f(x)1−1dx = ( )A. 0B. 2C. 2f(−1)D. 2f(1)8. 若二元函数z =x 2y +3x +2y ,则ðz ðx=( )A. 2xy +3+2yB. xy +3+2yC. 2xy +3D. xy +39. 设区域D ={(x ,y)|0≤y ≤x 2,0≤x ≤1},则D 绕x 轴旋转一周所得旋转体的体积为 ( )A. π5B. π3C. π2D. π10. 设A ,B 为两个随机事件,且相互独立,P(A)=0.6,P(B)=0.4,则P(A −B )=( )A. 0.24B. 0.36C. 0.4D. 0.6第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11. 曲线y =x 3−6x 2+3x +4的拐点为 . 12. lim x→0(1−3x )1x = .13.若函数f(x)=x −arctanx ,则f′(x)= . 14. 若y =e 2x 则dy = . 15. 设f(x)=x 2x ,则f′(x)= . 16. ∫(2x +3)dx = . 17. ∫(x 5+x 2)1−1dx = . 18. ∫sin x 2π0dx = . 19. ∫e−x +∞0dx = .20. 若二元函数:z =x 2y 2,则ð2z ðxðy= .三、解答题(21~28题,共70分。

2018年《高数》真题

2018年《高数》真题

2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.=→xxx cos lim 0()A.eB.2C.1D.02.设x y cos 1+=,则dy=()A.()dxx sin 1+ B.()dxx sin 1- C.xdxsin D.xdxsin -3.若函数()x x f 5=,则()='x f ()A.15-x B.15-x x C.5ln 5x D.x54.=-⎰dx x21()A.C x +-2ln B.Cx +--2ln C.()Cx +--221D.()Cx +-2215.()='⎰dx x f 2()A.()Cx f +221 B.()Cx f +2 C.()Cx f +22 D.()Cx f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11A.0B.2C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz()A.yxy 232++ B.yxy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是()A.柱面B.球面C.旋转抛物面D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ()A.0B.1C.2D.410.微分方程1='y y 的通解为()A.Cx y +=2 B.Cx y +=221 C.Cxy =2 D.Cx y +=22二、填空题:11~20小题,每小题4分,共40分11.曲线43623++-=x x x y 的拐点为___________12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________14.若x e y 2=,则=dy ___________15.()=+⎰dx x 32___________16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________18.=∑∞=031n n___________19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim2231---→x x x x 23.设函数()()23ln 2++=x x x f ,求()0f ''24.求23sin lim x tdt xx ⎰→25.求⎰xdxx cos 26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdyy x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】010cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -=3.【答案】C【解析】()()5ln 55x x x f ='='4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰221222126.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=22111.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6)12.【答案】3-e 【解析】()()[]()33311031lim 31lim --⋅-→→=-+=-e x x xx x x 13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111x x x x f +=+-='14.【答案】dxe x 22【解析】()x x e e y 222='=',则dx e dy x 22=15.【答案】C x x ++32【解析】()C x x dx x ++=+⎰332216.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x 17.【答案】2【解析】22cos 222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x 18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1【解析】10=-=∞+-+∞-⎰x x e dx e 20.【答案】xy4【解析】22y x z =,22xy x z =∂∂,xyyx z 42=∂∂∂21.【答案】()3sin 3limlim 00==--→→xxx f x x ()()aa x x f x x =+=++→→3lim lim 00且()af =0因为()0=x x f 在处连续所以()()()0lim lim 00f x f x f x x ==+-→→3=a 22.【答案】()1123lim1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim 11113lim2121=+++=+--++=→→x x x x x x x xx x 23.【答案】()()()22392332+-=''++='x x f x x f 故()490-=''f 24.【答案】202003cos 31lim 3sin lim xt x tdt x x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x 25.【答案】⎰⎰-=xdxx x xdx x sin sin cos Cx x x ++=cos sin 26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x ,当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数当1<x <0时,()0<x f ',此时()x f 为单调减少函数故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。

《高等数学》专插本2005-2019年历年试卷

《高等数学》专插本2005-2019年历年试卷

广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。

每小题只有一个选项符合题目要求).函数22()2x xf x x x -=+-的间断点是.2x =- 和0x = .2x =- 和1x = .1x =- 和2x = .0x = 和1x =.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → .等于1 .等于2 .等于1 或2 .不存在 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则下列等式正确的是.[()()]2tan x f x g x dx x C +=+⎰ .()2tan ()x f x dx x C g x -=++⎰.[()]tan(2)x f g x dx C =+⎰.[()()]tan 2x f x g x dx x C +=++⎰.下列级数收敛的是.11nn e ∞=∑ .13()2nn ∞=∑.3121()3n n n ∞=-∑ .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑..已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件.0,0a b b -=< .0,0a b b -=>.0,0a b b +=< .0,0a b b +=> 二、填空题(本大题共 小题,每小题 分,共 分).曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y = .若二元函数(,)z f x y =的全微分sin cos ,xxdz e ydx e ydy =+ 则2zy x∂=∂∂ .设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共 小题,每小题 分,共 分).求20sin 1lim x x e x x →--.设(0)21x x y x x =>+,求dydx.求不定积分221xdx x ++⎰.计算定积分012-⎰.设xyzx z e-=,求z x ∂∂和z y∂∂ .计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ .已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1nn a ∞=∑的收敛性.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间四、综合题(大题共 小题,第 小题 分,第 小题 分,共 分) .已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰( )求()x ϕ;( )求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积.设函数()ln(1)(1)ln f x x x x x =+-+ ( )证明:()f x 在区间(0,)+∞内单调减少; ( )比较数值20192018与20182019的大小,并说明理由;年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共 小题,每小题 分,共 分) 二、填空题(本大题共 小题,每个空 分,共 分)13x2x cos xe y 13π 三、计算题(本大题共 小题,每小题 分,共 分)原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰,t =则211,22x t dx tdt =-=20121021420153011,,2211()221()2111()253115t x t dx tdt t t tdtt t dtt t -==-==-=-=-=-⎰⎰⎰解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyz x xyz y xyzz xyz xyz xyz xyzf x y z yze f x y z xze f x y z xye z yze z xze x xye y xye ∴=-=-=--∂-∂∴==-∂+∂+解:由题意得12,0r θπ≤≤≤≤222020ln()3(4ln 2)23(4ln 2)|2(8ln 23)Dx y d d ππσθθπ∴+==-=-=-⎰⎰⎰ 解:由题意得414(1),321n n b n b n n ++=+-414(1)1lim lim 1,3213n x x nb n b n n +→∞→∞+∴==<+- 由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比较判别法可知1n n a ∞=∑也收敛.解()()()()(1)xx x x df x x de df x xde f x xe f x e x ----=∴='∴=-''∴=-()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞( )由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰证明( )()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++ 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x∴+--+<+()f x ∴在(0,)+∞单调递减( )设2019,2018a b ==则201820192019,2018b a a b ==比较,a b b a 即可,假设a bb a>即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省 年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。

2018年专升本高数真题答案

2018年专升本高数真题答案

2018年专升本高数真题答案1、下列有关《红楼梦》的说明,正确的一项是( ) [单选题] *A.《红楼梦》中长着“两弯似蹙非蹙罥烟眉,一双似喜非喜含情目”的是王熙凤,该人最擅弄权术,例如毒设相思局、弄权铁槛寺、逼死尤二姐、破坏宝黛婚姻,最后落了个“机关算尽太聪明,反误了卿卿性命”的悲剧下场。

B.《红楼梦》中贾府的“四春”分别是:孤独的贾元春、精明的贾迎春、懦弱的贾探春、孤僻的贾惜春,取“原应叹息”之意。

C.“花谢花飞飞满天,红消香断有谁怜?……一朝春尽红颜老,花落人亡两不知!”这首诗出自《红楼梦》中人物林黛玉之手。

(正确答案)D.《红楼梦》中表明贾府收入主要书回的情节在第二十五回“乌庄头交租”一事上,表明贾府“排场费用,又不肯讲究省俭”的主要情节是“可卿丧仪”和“元春省亲”两件事。

2、1《边城》是沈从文创作的一部中篇小说。

[判断题] *对错(正确答案)3、14.下面各组词语中加点字的注音,完全正确的一项是()[单选题] *A.渲染(xuàn)抽噎(yè)逞能(chěnɡ)自惭形秽(huì)B.迸溅(bènɡ)荣膺(yīnɡ)褶皱(zhě)气冲斗牛(dǒu)(正确答案)C.殷红(yīn)阔绰(chuò)惩戒(chéng)戛然而止(jiá)D.缄默(jiān)追溯(sù)栈桥(zhàn)鲜为人知(xiān)4、下列各句中加点词的解释,全部正确的一项是()[单选题] *A.虞常果引张胜引:招出会论虞常论:判罪(正确答案)B.欲信大义于天下信:通“伸”,伸张子为父死,亡所恨恨:怨恨C.自分己死久矣分:职责恐前语发发:暴露,泄露D.又非亲属,何谓相坐坐:定罪,治罪汉使张胜谋杀单于近臣,当死当:应当5、关联词选用:()怎么样,()让你觉得它们是泰山的天然的主人,好像少了谁都不应该似的。

[单选题] *只有才不仅还不但而且不管都(正确答案)6、下列关于名著的表述,不正确的一项是;( ) [单选题] *A.凤姐发现贾琏偷娶尤二姐,待贾琏外出办事,把尤二姐骗到家中,百般羞辱二姐,后又利用贾琏新妾秋桐羞辱折磨尤二姐,最后逼得尤二姐吞金自杀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广东省普通高校本科插班生招生考试
高等数学
一、单项选择题(本大题共5小题,每小题3分,共15分.每小题只有一项符合
题目要求) 1.=+→∆)sin 1sin
3(lim 0
x
x x x x A .0 B .1 C .3 D .4 2.设函数)(x f 具有二阶导数,且1)0(-='f ,0)1(='f ,1)0(-=''f ,
3)1(-=''f ,则下列说法正确的是
A .点0=x 是函数)(x f 的极小值点
B .点0=x 是函数)(x f 的极大值点
C .点1=x 是函数)(x f 的极小值点
D .点1=x 是函数)(x f 的极大值点
`
3.已知C x dx x f +=⎰2)(,其中C 为任意常数,则⎰=dx x f )(2
A .C x +5
B .
C x +4
C .C x +421
D .C x +33
2
4.级数∑∞
==-+1
3)1(2n n
n
A .2
B .1
C .43
D .21
5.已知{
}
94) , (2
2≤+≤=y x y x D ,则
=+⎰⎰
D
d y
x σ2
2
1
A .π2
B .π10
C .
23ln 2π D .2
3ln 4π 二、填空题(本大题共5小题,每小题3分,共15分)
6.已知⎩⎨⎧==
3log t
2y t x ,则==1
t dx dy 。

7.
=+⎰
-dx x x )sin (2
2。


8.
=⎰
+∞
-dx e x 0
21 。

9.二元函数1
+=y x z ,当e x =,0=y 时的全微分===e x y dz。

10.微分方程ydx dy x =2满足初始条件
1=x y 的特解为=y 。

三、计算题(本大题共8小题,每小题6分,共48分)
11.确定常数a ,b 的值,使函数⎪⎪⎩

⎪⎨⎧>+=<++= 0 )21(00 1)(2x x x b x x a
x x f x
,,,
在0=x 处连续。

12.求极限))
1ln(1(lim 20x
x x x +-→. 13.求由方程x
xe y y =+arctan )1(2
所确定的隐函数的导数dx
dy

14.已知)1ln(2x +是函数)(x f 的一个原函数,求⎰'dx x f )(. 15.求曲线x
x
y ++=11和直线0=y ,0=x 及1=x 围成的平面图形的面积A . 16.
17.已知二元函数2
1y xy
z +=,求y z ∂∂和x y z ∂∂∂2

18.计算二重积分⎰⎰-D d y x
σ1,其中D 是由直线x y =和1=y ,2=y 及0=x 围
成的闭区域. 19.判定级数


=+1
2sin n n
x n
的收敛性.
四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)
19.已知函数0)(4)(=-''x f x f ,0=+'+''y y y 且曲线)(x f y =在点)0 0(,
处的切线与直线12+=x y 平行
(1)求)(x f ;
(2)求曲线)(x f y =的凹凸区间及拐点.
20.已知dt t x f x
⎰=0
2
cos )(
(1)求)0(f '
(2)判断函数)(x f 的奇偶性,并说明理由; (3)0>x ,证明)0(31)(3
>+-
>λλ
λx x x f .。

相关文档
最新文档