大学物理A2总复习资料(修改版)(DOC)
12-13(1)大学物理A2期末复习提纲
12-13(1)大学物理A2期末复习提纲2012-2013(1)大学物理AII期末考试考纲一、题目类型1.选择题:20分(每题4分、5题)2.填空题:20分(每题4分、5题)3.计算题:60分(每题10分、6题)(1)、机械振动有关计算(2)、波方程的建立(3)、薄膜干涉有关计算(4)、光的衍射有关计算(5)、光的偏振有关计算(6)、时间的膨胀(或长度的收缩)有关计算二、考点1、振动方程与振动曲线2、旋转矢量法3、同方向同频率振动的合成4、波的一般概念5、波方程的建立6、光程、光程差与相位差7、双缝干涉(明暗条纹的条件、相邻条纹间距、介质对条纹的影响)8、等倾薄膜干涉(明暗条纹的条件、膜厚)9、单缝衍射(明暗条纹的条件、条纹位置、中央明纹的宽度、条纹重叠)10、光栅衍射(光栅方程、条纹的位置、条纹的宽度、条纹重叠)11、自然光与偏振光12、马吕斯定律及应用13、布儒斯特定律及应用14、狭义相对论的两个基本假设、时间的膨胀以及长度的收缩15、量子物理:光电效应及康普顿效应三、复习参考题(课本同步训练):第10章机械振动:12、15、17、18、19、22、24、29第11章机械波: 11、16、20、23、24、26、27、33、34、36 第12章光的干涉:3、4、5、9、10、11、12、16、18第13章光的衍射:6、9、10、14、15、17、第14章光的偏振:5、7、8、9、12、13、15、16第15章狭义相对论:7、8、11、12、14、第16章量子物理:19、20、27、28复习参考题(课本同步训练)1(10.12)一质点作简谐振动,周期为T .质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T /4. (B) T /12(C) T /8 (D) T /62(10.15)一简谐振动曲线如图所示.则振动周期是(A) 2.62 s . (B) 2.40 s . (C) 2.20 s .(D) 2.00 s .3(10.17)一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为(A)1 s . (B) (2/3) s .(C) (4/3) s. (D) 2 s .4(10.18)一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时, (1) 振子在负的最大位移处,则初相为___________;(2)振子在平衡位置向正方向运动,则初相为_________;(3) 振子在位移为A /2处,且向负方向运动,则初相为___. 5(10.19则此简谐振动的三个特征量为A =_____;ω =__________;φ =________.6(10.22)一简谐振动的旋转矢量图如图所示,振幅矢量长2 cm ,则该简谐振动的初相为________.振动方程为__________.7(10.24)两个同方向的简谐振动曲线如图所示.合振动的振幅为_______,合振动的振动方程为_________. 8(10.29)一简谐振动的振动曲线如图所示.求振动方程.9(11.11)机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31. (C)其波速为10 m/s . (D)波沿x 轴正向传播.10(11.16)一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则(A) O 点的初相为00=φ(B) 1点的初相为π-=211φ.· -A - -(C) 2点的初相为π=2φ. (D) 3点的初相为π-=213φ.11(11.20)在波长为λ 的驻波中两个相邻波节之间的距离为 (A) λ .(B)3λ /4.(C) λ /2.(D) λ /4.12(11.23)平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ________;振幅A = ______;频率ν = ____________. 13(11.24)频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.14(11.26)频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为______.15(11.27)图为t = T / 4 时一平面简谐波的波形曲线,则其波的表达式为________________________.16(11.33)一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示求(1) x = 0处质点振动方程 (2) 该波的表达式.17(11.34)已知一平面简谐波的表达式为)37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差.18(11.36)一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.写出此波的表达式.19(12.3)在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 (C) 传播的路程不相等,走过的光程相等.20(12.4)如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. 21(12.5)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(B) 使两缝的间距变小.22(12.9)用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为n 的透明薄膜,两束反射光的光程差δ =________.)-y (m )-x u Ot =t ′yxu O yn 1 3λ23(12.10)若一双缝装置的两个缝分别被折射率为n1和n2的两块厚度均为e的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ.24(12.11)一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm.若整个装置放在水中,干涉条纹的间距将为_______mm.(设水的折射率为4/3)25(12.12)一束波长为λ=600 nm (1 nm=10-9 m)的平行单色光垂直入射到折射率为n=1.33的透明薄膜上,该薄膜是放在空气中的.要使反射光得到最大限度的加强,薄膜最小厚度应为_________nm.26((12.16)在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D=300 mm.测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm,求双缝间的距离.27(12.18)在折射率为1.52的玻璃表面镀一层MgF2(n= 1.38)透明薄膜作为增透膜.欲使它对波长为λ = 500 nm的单色光在正入射时尽量少反射,则薄膜的厚度最小应是多少?28(13.6)在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(B) 4 个29(13.9)对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大欲使屏幕上出现更高级次的主极大应该(B) 换一个光栅常数较大的光栅.30(13.10)一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.31(13.14)波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程出现主极大的衍射角?应满足的条件)为__________________.32(13.15)波长为λ=550 nm(1nm=10-9m)的单色光垂直入射于光栅常数d=2×10-4 cm的平面衍射光栅上,可能观察到光谱线的最高级次为第________________级.33(13.17)单缝的宽度a =0.10 mm,在缝后放一焦距为50 cm的会聚透镜,用平行绿光(λ=546 nm)垂直照射到单缝上,试求位于透镜焦平面处的屏幕上中央明条纹宽度.(1nm=10-9m)34(14.5)两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零.35(14.7)一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2.(B) 1 / 3. (C) 1 / 4 (D) 1 / 5.36(14.8)一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面(D)是部分偏振光.37(14.9)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光则知折射光为 (D) 部分偏振光且折射角是30°.38(14.12)一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃板的折射率等于____________.39(14.13)假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.40(14.15)将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光换为强度相同的自然光,求透过每个偏振片后的光强.41(14.16)如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光判断在玻璃板下表面处的反射光是否也是线偏振光?42(15.7)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过?t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为(c 表示真空中光速)(A) c ·?t (B) v·?t(C) 2)/(1c tc v -?? (D) 2)/(1c t c v - []43(15.8)一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是:(c 表示真空中光速) (A)v = (1/2) c . (B) v = (3/5) c . (C) v = (4/5) c . (D) v = (9/10) c .44(15.11)狭义相对论确认,时间和空间的测量值都是______________,它们与观察者的______________密切相关.45(15.12)一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为0.8 m.则此米尺以速度v=__________________________m·s-1接近观察者.46(15.14)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,求乙相对于甲的运动速度是(c表示真空中光速)和乙测得两事件的空间距离.47(16.19)康普顿效应的主要特点是(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.48(16.20)光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,在以下几种理解中,正确的是(D) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程.49(16.27)康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ =______________ 时,散射光子的频率与入射光子相同.50(16.28)某一波长的X光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.。
浙江科技学院大学物理A2复习资料
大学物理A2复习资料电磁感应1. 如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. 5. 半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.BI O(D)I O(C)O (B)I6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. 8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法? (A) 把线圈在自身平面内绕圆心旋转一个小角度.(B) 把线圈绕通过其直径的OO ′轴转一个小角度.(C) 把线圈向上平移. (D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度 旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos t |. (B) abB (C)t abB cos 21. (D) abB | cos t |. (E) abB | sin t |.12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度 与Bb c d b c d bc d v v v ⅠⅢⅡ IO ′ SN O iBi IO B a bO O ′ B BA C同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin . (C) Bl v cos . (D) 0.14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度 转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B . (B) =0,U a – U c =221l B .(C) =2l B ,U a – U c =221l B .(D) =2l B ,U a – U c =221l B .15.圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度 绕通过其一端 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2 t B L . (B) t B L cos 212.(C) )cos(22 t B L . (D) B L 2.(F)B L 221.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.lba vBab clBOBL O b(C) 两线圈中电流方向相反.18. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. 19. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(E) 适用于自感系数L一定的任意线圈.20. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI . (B) 221LId π2])(2π2[2002r r r r d I r I I(C) ∞. (D)221LI 020ln 2r dI21. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI (B) 200)2(21a I (C) 20)2(21Ia (D) 200)2(21a I1C 2B 3B 4B 5A 6D 7B 8C 9C 10B11D 12 A 13D 14 B 15 D 16 E 17C 18C 19D 20A21BII d2r 0振动与波1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max /x m k v . (B) x mg k / .(C) 22/4T m k . (D) x ma k / .2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J ,此摆作微小振动的周期为 (A) g l 2. (B) gl 22 . (C) g l 322. (D) gl 3 .3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) . (B) /2. (C) 0 . (D) .4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos( t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2 t A x . (B) )π21cos(2 t A x .(C) )π23cos(2 t A x . (D) )cos(2 t A x .5. 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了 x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122 . (B) gm xm T 212 . (C) g m xm T 2121. (D) gm m x m T )(2212 .6. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) /6. (B) 5 /6. (C) -5 /6. (D) - /6. (E) -2 /3.v 217. 一质点沿x 轴作简谐振动,振动方程为 )312cos(1042t x (SI).从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81(B) s 61 (C) s 41(D) s 31(E)s 218. 一物体作简谐振动,振动方程为)41cos( t A x .在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221A . (B) 2221A . (C) 2321A . (D)2321A .9. 一质点作简谐振动,振动方程为)cos( t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) sin A . (B) sin A . (C) cos A . (D) cos A .10. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后 /2. (B) 超前 . (C) 落后 . (D) 超前 .11. 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos( t A y .与之对应的振动曲线是12. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为13. 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8. (C) T /6. (D) T /4.14. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 .15. 当质点以频率 作简谐振动时,它的动能的变化频率为 (A) 4 . (B) 2 . (C) . (D)21.16. 一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3.17. 一物体作简谐振动,振动方程为)21cos(t A x .则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1. (D) 2:1. (E) 4:1.18.机械波的表达式为y = 0.03cos6 (t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.19.一平面简谐波的表达式为 )3cos(1.0 x t y (SI) ,t = 0时的波形曲线如图所示,则 (A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为 21.(D) 波速为9 m/s ..20. 已知一平面简谐波的表达式为 )cos(bx at A y (a 、b 为正值常量),则 (A) 波的频率为a . (B) 波的传播速度为 b/a . (C) 波长为 / b . (D) 波的周期为2 / a .21. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻(A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D)D 点振动速度小于零.22. 若一平面简谐波的表达式为 )cos(Cx Bt A y ,式中A 、B 、C 为正值常量,则 (A) 波速为C . (B) 周期为1/B . (C) 波长为 2 /C . (D) 角频率为2 /B .23. 在简谐波传播过程中,沿传播方向相距为 21( 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.24. 一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y (SI),则 (A) 其波长为0.5 m . (B) 波速为5 m/s . (C) 波速为25 m/s . (D) 频率为2 Hz .25.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为 31,则此两点相距(A) 2.86 m . (B) 2.19 m . (C) 0.5 m . (D) 0.25 m .26. 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0 t A y ,则波的表达式为(A) }]/)([cos{0 u l x t A y . (B) })]/([cos{0 u x t A y . (C) )/(cos u x t A y .(D) }]/)([cos{0 u l x t A y .27. 图示一简谐波在t = 0时刻的波形图,波速 u = 200m/s ,则P 处质点的振动速度表达式为(A) )2cos(2.0 t v (SI). (B) )cos(2.0 t v (SI). (C) )2/2cos(2.0 t v (SI). (D) )2/3cos(2.0 t v (SI).28. 一平面简谐波的表达式为 )/(2cos x t A y .在t = 1 / 时刻,x 1 = 3 /4与x 2 = /4二点处质元速度之比是(A) -1. (B)31. (C) 1. (D) 329.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.30. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零. 31. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.32. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.33. 如图所示,两列波长为 的相干波在P 点相遇.波在S 1点振动的初相是 1,S 1到P 点的距离是r 1;波在S 2点的初相是 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) k r r 12.(B) k 212. (C) k r r 2/)(21212 .(D) k r r 2/)(22112 .35. 在波长为 的驻波中两个相邻波节之间的距离为 (A) . (B) 3 /4. (C) /2. (D) /4.1B 2C 3C 4B 5B 6C 7E 8B 9B 10B11B 12B 13C 14D 15B 16D 17D 18B 19C 20D21D 22C 23A 24A 25C 26A 27A 28A 29C 30B31D 32B 33D 34B 35CS波动光学1. 在真空中波长为 的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3 ,则此路径AB 的光程为 (A) 1.5 . (B) 1.5 n .(C) 1.5 n . (D) 3 .2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3, 1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e 1 / (2n 1).(C) 2n 2 e n 1 1 / 2. (D) 2n 2 e n 2 1 / 2.3. 在相同的时间内,一束波长为 的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为 ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时(A) P 点处仍为明条纹. (B) P 点处为暗条纹. (C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为 (A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .8. 在双缝干涉实验中,入射光的波长为 ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光3程比相同厚度的空气的光程大2.5 ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.10.一束波长为 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) . (B) / (4n ).(C) . (D) / (2n ).11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为 的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为 / 4.(B) 凸起,且高度为 / 2. (C) 凹陷,且深度为 / 2. (D) 凹陷,且深度为 / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d + / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为 的单色光垂直入射在宽度为a =4 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.图中数字为各处的折射(C) 6 个. (D) 8 个.16. 一束波长为 的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) .(B) .(C) 3 / 2 . (D) 2 .17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为 的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A) . (B) .(C) 2 . (D) 3 .19. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(B) 对应的衍射角也不变. (D) 光强也不变.20.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D )宽度不变,但中心强度变小. 21. 在如图所示的单缝夫琅禾费衍射实验装置中,S 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移. (B)向下平移.(C)不动. (D)消失.22. 测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.23. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光.24. 对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(C)将光栅向远离屏幕的方向移动.25.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2.(B) 1 / 3.(C) 1 / 4.(D) 1 / 5.26.一束光强为I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为I=I0 / 8.已知P1和P2的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是(A) 30°.(B) 45°.(C) 60°.(D) 90°.27.一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为I2. (B) I0 / 4.(A) 4/(C) I0 / 2. (D) 2I0 / 2.28.三个偏振片P1,P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为30°.强度为I0的自然光垂直入射于偏振片P1,并依次透过偏振片P1、P2与P3,则通过三个偏振片后的光强为(A) I0 / 4. (B) 3 I0 / 8.(C) 3I0 / 32. (D) I0 / 16.29.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加.(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D)光强先增加,然后减小,再增加,再减小至零.30.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8. (B) I0 / 4.(C) 3 I0 / 8. (D) 3 I0 / 4.儒斯特角i0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(E)是部分偏振光.32.自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°.(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°.33.自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.1A 2 C 3 C 4B 5B 6B 7B 8B 9D 10B 11C 12C 13B 14A 15B 16B 17D 18C 19B 20B 21C 22D 23D 24B 25A 26B 27B 28C 29B 30A 31B 32D 33C。
15级大学物理A2复习提纲(电磁学光学)课件
15级大学物理A2复习提纲(电磁学光学)课件以下是为大家整理的15级大学物理A2复习提纲(电磁学光学)课件的相关范文,本文关键词为15级,大学,物理,复习,提纲,电磁学,光学,课件,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在成教大学中查看更多范文。
20XX级大学物理A2复习提纲第五章静电场1、点电荷的库仑定律;2、高斯定理求解球形带电体的场强、电势分布;(例题5-5;5-6;习题5-23;5-25)3、场强和电势的关系;4、静电场中金属导体的特点;例1.一带电体可作为点电荷处理的条件是【c】(A)电荷必须呈球形分布(b)带电体的线度很小(c)带电体的线度与其它有关长度相比可忽略不计(D)电量很小??例 2.静电场中,任意作一闭合曲面,通过该闭合曲面的电通量?se?ds的值仅取决于高斯面内电荷的代数和,而与高斯面外电荷无关。
??例3.电场的环流定理?e?dl?0,说明了静电场的哪些性质【D】(A)静电场的电力线不是闭合曲线(b)静电力是非保守力(c)静电场是有源场(D)静电场是保守场例4.一个中性空腔导体,腔内有一个带正电的带电体,当另一中性导体接近空腔导体时,腔内各点的场强【b】.(A)升高(b)不变(c)降低(D)不能确定例5.导体壳内有点电荷q1,壳外有点电荷q2,导体壳不接地。
当q2的电量变化时,下列关于壳内任一点的电位、任二点的电位差的说法中正确的是【A】(A)电位改变,电位差不变(b)电位不变,电位差改变(c)电位和电位差都不变(D)电位和电位差都改变例6.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是【c】(A)场强大的地方电势一定高;(b)场强相等的各点电势一定相等;(c)场强为零的点电势不一定为零;(D)场强为零的点电势必定是零。
例7.如果对某一闭合曲面的电通量为??se?ds?0,以下说法正确的是【D】(A)s面上的e必定为零(b)s面内的电荷必定为零1(c)空间电荷的代数和为零(D)s面内电荷的代数和为零例8.电场强度与试验电荷无关,只与场点的位置有关。
大学物理A(II)总复习king
2.薄膜干涉 (1)附加光程差的判断:夹心型有,顺序型无 (2)光垂直入射时: a.等倾与等厚干涉均满足:
明纹 k 2ne ' 2k 1 2 暗纹
b.等倾干涉:增反(透)膜
c.劈尖干涉(重点):
明纹 k 2en ' 2k 1 2 暗纹
零势点
〈3〉由定义 b. 叠加法
Ua
a
E dl
计算 U a
〈1〉将带电体划分为电荷元 dq
〈2〉选零势点,写出 dq 在场点的电势 d U 〈3〉由叠加原理:U dU
或
U dU
典型带电体的电势分布
a. 点电荷 q 场中的电势分布: U b. 均匀带电球面场中电势分布:
dD jd dt
)
由法拉第定律求
动
(v B) dl
(经内电路)
d m dt
如果回路不闭合,需加 仅适用于切割磁力线的导体 辅助线使其闭合。
dl处的值
b.感生电动势的计算: 由法拉第定律:
S
dB ds dt
S为导体回路所包围的面积,如果不闭合, 加辅助线使之闭合。 c.自感电动势的计算:
垂直于带电直线
qxi E 40 ( x 2 R 2 )3 2
均匀带电圆环轴线上: 无限大均匀带电平面:
E 2 0
垂直于带电面
(2)电通量的计算: e d e E dS
s s
静电场高斯定理(重点)
e
S
1 E dS
电容器的联接
并联
Q n C Ci U i 1
大学物理A2-总复习
(1)相位差
∆ϕ = ϕ 2 − ϕ1 = 2k π (k = 0 , 1, ) ± L
A = A1 + A2
(2)相位差
相互加强
∆ϕ = ϕ 2 − ϕ1 = (2k + 1) π (k = 0 , 1, ) ± L
A = A1 − A2
相互削弱
大学物理A2-总复习 大学物理A2A2
不同频率简谐振动的合成 拍现象(了解) (2)同方向不同频率简谐振动的合成 拍现象(了解) )同方向不同频率
波腹 波节
λ
1 (k + ) 2 2
相邻两波腹(节)之间的距离:xk +1 − xk = 之间的距离: 相邻两波腹(
λ
2
长的许多段, 所有波节点将媒质划分为 λ 长的许多段,每段中 2 各质点的振动振幅不同, 相位皆相同; 各质点的振动振幅不同,但相位皆相同;而相邻段 间各质点的振动相位相反; 间各质点的振动相位相反; 即驻波中不存在相位的 传播。 传播。
x1(t) = A cos(ω t +ϕ1) 1 1
x2 (t) = A cos(ω2t +ϕ2 ) 2
频率相近的两个同方向不同频率的合振动: 频率相近的两个同方向不同频率的合振动:
ν = (ν 1 + ν 2 ) 2
ν拍 =ν 2 −ν1
——拍频 拍频
大学物理A2-总复习 大学物理A2A2
第12章 12章
x
x
大学物理A2-总复习 大学物理A2A2
5、 简谐振动的能量 、 6、简谐振动的合成 、 (1)同方向、同频率的简谐振动的合成 )同方向、同频率的简谐振动的合成
x1 = A1 cos(ω t + ϕ 1 ) x2 = A2 cos(ω t + ϕ 2 )
大学物理A(2)复习资料(1)
大学物理复习资料(电磁感应、振动与波、波动光学)1. 如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将(A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.5. 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.B I O(D)IO(C)O (B)I6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度. (B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |. 12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B b c d b c d bc d v v v ⅠⅢⅡ I O ′S N O iBi I O B a b ω OO ′ B B A C同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. 14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为 (A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω. (D) =2l B ω,U a – U c =221l B ω-. 15.圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动.(C) 铜盘上产生涡流.(D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(F) B L 221ω.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.l b a vα B a bc l ω BOB ω L O θ b(C) 两线圈中电流方向相反.18. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反.19. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(E) 适用于自感系数L一定的任意线圈.20. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ21. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B) 200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ22. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.23. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1). (C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.n 1n 23入射光反射光1反射光2eI I d 2r 024. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.25. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.26. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.27. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹.28. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .29. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.30. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为 (A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.31. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).图中数字为各处的折射32. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.33. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4.(B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.34. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动. (E) 向左平移.35. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .36. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.37. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .38. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.39. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ.(D) 3 λ.40.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(B)对应的衍射角也不变.(D) 光强也不变.41.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(C)宽度不变,但中心强度变小.42.在如图所示的单缝夫琅禾费衍射实验装置中,S为单缝,L为透镜,C为放在L的焦面处的屏幕,当把单Array缝S垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移.(B)向下平移.(C)不动.(D)消失.43.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉.(B) 牛顿环.(C) 单缝衍射.(D) 光栅衍射.44.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.45.对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D)将光栅向远离屏幕的方向移动.46.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2.(B) 1 / 3.(C) 1 / 4.(D) 1 / 5.47.一束光强为I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为I=I0 / 8.已知P1和P2的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是(A) 30°.(B) 45°.(C) 60°.(D) 90°.48.一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.49.三个偏振片P1,P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为30°.强度为I0的自然光垂直入射于偏振片P1,并依次透过偏振片P1、P2与P3,则通过三个偏振片后的光强为(A) I0 / 4.(B) 3 I0 / 8.(C) 3I0 / 32.(D) I0 / 16.50.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加.(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(E)光强先增加,然后减小,再增加,再减小至零.51.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.斯特角i0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(E)是部分偏振光.53.自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°.(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°.54.自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.复习题答案1C 2B 3B 4B 5A 6D 7B 8C 9C 10B 11D 12 A 13D 14 B 15 D 16 E 17C 18C 19D 20A 21B 22A 23 C 24 C 25B 26B 27B 28B 29B 30D 31B 32C 33C 34B 35A 36B 37B 38D 39C 40B 41B 42C 43D 44D 45B 46A 47B 48B 49C 50B 51A 52B 53D 54C。
大学物理A2复习题(附答案)
大学物理A2复习题一、选择题:1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]2. 一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [ ]4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 =A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]5.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]6.一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π⨯=-t x (SI). 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A)s 81 (B) s 61 (C) s 41 (D)s 31 (E) s 21 [ ]7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1 (C) T 12/(D) T 1 /2 (E) T 1 /4 [ ]8.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122∆π= . (B) gm x m T 212∆π=. (C) g m x m T 2121∆π=. (D) gm m x m T )(2212+π=∆. [ ] 9.一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4.10.两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2.(C) 落后π . (D) 超前π.[ ]11.在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]12. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]13.一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则(A) 其波长为0.5 m . (B) 波速为5 m/s .(C) 波速为25 m/s . (D) 频率为2 Hz . [ ]14. 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]15.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]16.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大.(B) 动能为零,势能为零.(C) 动能最大,势能最大.(D) 动能最大,势能为零.[]17.一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大.(B) 动能为零,势能为零.(C) 动能最大,势能最大.(D) 动能最大,势能为零.[]18.在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ .(B) 3λ /4.(C) λ /2.(D) λ /4.[]19.在波长为λ的驻波中,两个相邻波腹之间的距离为(A) λ /4.(B) λ /2.(C) 3λ /4.(D) λ .[]20.在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同.(B) 振幅不同,相位相同.(C) 振幅相同,相位不同.(D) 振幅不同,相位不同.[]21.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.[]22. 在真空中波长为λ的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B两点相位差为3π,则此路径AB的光程为(A) 1.5 λ.(B) 1.5 λ/ n.(C) 1.5 n λ.(D) 3 λ.[]23.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A) 干涉条纹的宽度将发生改变.(B) 产生红光和蓝光的两套彩色干涉条纹.(C) 干涉条纹的亮度将发生改变.(D) 不产生干涉条纹.[]24.在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D) 向上平移,且间距改变.[]25.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]26. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则(A)干涉条纹的间距变宽.(B)干涉条纹的间距变窄.(C)干涉条纹的间距不变,但原极小处的强度不再为零.(D)不再发生干涉现象.[]27.两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃慢慢地向上平移,则干涉条纹(A) 向棱边方向平移,条纹间隔变小.(B) 向棱边方向平移,条纹间隔变大.(C) 向棱边方向平移,条纹间隔不变.(D) 向远离棱边的方向平移,条纹间隔不变.(E) 向远离棱边的方向平移,条纹间隔变小.[]28.两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的(A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移.[]29.把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A)向中心收缩,条纹间隔变小.(B)向中心收缩,环心呈明暗交替变化.(C)向外扩张,环心呈明暗交替变化.(D)向外扩张,条纹间隔变大.[]30.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑.(B) 变疏.(C) 变密.(D) 间距不变.[]31.在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]32.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个.(B) 4 个.(C) 6 个.(D) 8 个.[]33.波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2.(B) λ.(C) 2λ.(D) 3 λ.[]34.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]35.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]36.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[]37.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]38.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,距离中央明纹最近的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]39. 测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉.(B) 牛顿环.(C) 单缝衍射.(D) 光栅衍射.[]40.设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.[]41. 一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D)2I 0 / 2. [ ] 42.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]43.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]44.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加.(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零. [ ]45.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3.(C) 1 / 4. (D) 1 / 5. [ ]二、填空题:1.在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.2.用40N的力拉一轻弹簧,可使其伸长20 cm .此弹簧下应挂__________kg 的物体,才能使弹簧振子作简谐振动的周期T = 0.2π s .3.一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为 x = ________________________(SI).4. 一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.5.两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________.6.两质点沿水平x 轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点.它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的相位差为______________.7.一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为______________________.8.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = ____________________________.9. 一物体同时参与同一直线上的两个简谐振动:)314c o s (05.01π+π=t x (SI) , )324cos(03.02π-π=t x (SI) 合成振动的振幅为__________________m .10.两个同方向同频率的简谐振动,其振动表达式分别为:)215c o s (10621π+⨯=-t x (SI) , )25c o s (10222π-⨯=-t x (SI) 它们的合振动的振辐为_____________,初相为____________.11. A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ________________m .12.一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .13.频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为________________.14.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.15.一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为____________________.16.已知某平面简谐波的波源的振动方程为t y π=21sin 06.0 (SI),波速为2 m/s .则在波传播前方离波源5 m 处质点的振动方程为_______________________.17.两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.18.两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21c o s (2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.19.简谐驻波中,在同一个波节两侧距该波节的距离相同的两个媒质元的振动相位差是________________.20.在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.21.用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.22.在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.23.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________.24.在双缝干涉实验中,若使单色光波长减小,则干涉条纹间距_________________.25.用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.26.波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.27.在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________ .28.在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.29.用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是__________.30.用半波带法讨论单缝衍射条纹中心的条件时,与中央明条纹旁第二个明条纹中心相对应的半波带的数目是__________.31.惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强.32.惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.33.波长为λ的单色光垂直投射于缝宽为a ,总缝数为N ,光栅常数为d=a+b 的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为__________________.34.若光栅的光栅常数d=a+b 、缝宽a 和入射光波长λ都保持不变,而使其缝数N 增加,则光栅光谱的同级光谱线将变得____________________________.35.一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.36. 一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a 与不透明部分宽度b 相等,则可能看到的衍射光谱的级次为___________________.37.当一衍射光栅的不透光部分的宽度b 与透光缝宽度a 满足b = 3a 关系时,衍射光谱中第_______________级谱线缺级.38.若在某单色光的光栅光谱中第三级谱线是缺级,则光栅常数与缝宽之比a b a /)(+ 的各种可能的数值为__________________.39. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为________________.40.要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过__________块理想偏振片.在此情况下,透射光强最大是原来光强的___________倍 .41.布儒斯特定律的数学表达式为______________,式中________________为布儒斯特角,______________为折射媒质对入射媒质的相对折射率.42. 当一束自然光以布儒斯特角入射到两种媒质的分界面上时,就偏振状态来说反射光为____________________光,其振动方向__________于入射面.43.假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.44.光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是_______波.45.一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它________________________定律;另一束光线称为非常光,它____________________定律.三、简答题:1.什么是机械振动?2.什么是简谐振动?3.机械波产生的必备条件是什么?4.纵波与横波的区别是什么?5.机械波干涉的条件是什么?6.什么叫半波损失?7.哪些仪器是依据几何光学原理制成的?8.获得相干光的方法有哪些?9.薄膜干涉可分几类? 10.牛顿环和劈尖属于哪一种干涉? 11.何谓半波带法? 12.简述惠更斯-菲涅耳原理。
大学物理A2总复习
相对运动
相对速度、相对加速度等基本概念的复习和 理解。
动量与角动量
动量的定义和计算
复习动量的定义,掌握动量的计算方 法。
动量守恒定律
理解并掌握动量守恒定律及其应用。
角动量的定义和计算
复习角动量的定义,掌握角动量的计 算方法。
角动量守恒定律
安培环路定律和奥斯特实验
安培环路定律是描述磁场与电流之间关系的定理,奥斯特实验则揭 示了电流的磁效应。
磁介质
磁介质在磁场中会发生磁化现象,律
当磁场发生变化时,会在导体中产生电动势,法拉第电磁感应定律描述
了电动势与磁场变化率之间的关系。
02
楞次定律
大学物理A2总复 习
汇报人: 202X-12-26
目录
• 力学 • 热学 • 电磁学 • 波动与光学 • 量子物理基础
01
力学
质点和刚体的运动
质点运动学的基本概念
位置、速度、加速度等基本概念的复习和理 解。
刚体的定轴转动
刚体的转动惯量、角速度、角加速度等基本 概念的复习和理解。
质点和刚体的运动规律
03
波函数和概率幅
算符和表象
量子态是量子力学的基本概念, 而量子测量则是观察和测量 量子 态的手段。
波函数是描述量子态的数学工具 ,概率幅则用于描述量子态被测 量的概率。
算符是描述物理量的数学工具, 表象则是描述量子态的另一种方 式。
原子结构与光谱
原子结构
01
原子结构是原子核和电子在空间中的分布,是理解原子光谱的
详细描述
气体分子动理论通过研究气体分子的无规则运动和分子间的相互作用,解释了气体的宏 观性质,如压强、温度和扩散现象。该理论认为气体分子在不停地做无规则的热运动, 分子间存在相互作用和碰撞。气体分子的无规则运动和分子间的相互作用共同决定了气
大学物理A2期末总复习知识点合集汇编
I = Nhν
二.关于光电效应和康普顿效应的计算
hν
=
1 2
mv
2 m
+
A
eU a
=
1 2
mv
2 m
A = hν o
Δλ
=
2λc sin 2
o
ϕ
2
λc = 0.024 A
E、pv 守恒
总复习
三. 氢原子光谱及有关计算
•里德伯公式:
ν~
=
1
λ
=
1 R( k 2
−
1 n2 )
R =1.097×107 m−1 k =1,2,3, LL n=k+1,k+2,LL
2
媒质元
非孤立系统,E不守恒
Ep , Ek 同步调变化
4. 波的干涉 相干条件
振动方向相同 频率相同 相位差恒定
总复习
强度分布
总复习
I = I1 + I2 + 2 I1 I2 cosΔϕ
Δϕ
=
ϕ2
− ϕ1
−
2π
(
r2
−
λ
r1
)
干涉项
强弱条件 Δϕ =
± 2πk
相长
k = 0, 1 ,2L
± ( 2k + 1 )π 相消
•玻尔能级及跃迁公式:
E
=
E1 n2
E1 = −13.6 eV
ΔE
=
En
−
Ek
=
hν
=
hc
λ
n = 1, 2, LL
总复习
四. 激光
自发辐射
爱因斯坦辐射理论
受激吸收 受激辐射
大学物理A2总复习
大学物理A2总复习一、课程定位与概述大学物理A2是理工科专业的重要基础课程,它涵盖了经典物理学的多个领域,包括力学、电磁学、光学、热学和量子力学等。
这门课程的主要目标是帮助学生理解自然界的基本规律,掌握物理现象的基本原理,为后续的专业课程和科研工作打下坚实的基础。
二、知识点梳理在总复习阶段,我们将对大学物理A2的所有知识点进行系统性的梳理。
以下是我们整理的主要知识点:1、经典力学:包括牛顿运动定律、动量、角动量、能量、万有引力定律等。
2、电磁学:包括静电场、稳恒磁场、电磁感应等。
3、光学:包括波动光学、几何光学等。
4、热学:包括热力学第一定律、热力学第二定律等。
5、量子力学:包括波粒二象性、量子态与波函数等。
三、复习策略与方法1、系统性复习:建议学生按照章节顺序进行复习,逐步掌握每个知识点。
2、重点突出:根据知识点的重要程度和考试要求,合理分配复习时间,确保重点知识点得到充分复习。
3、练习与解题:通过大量的练习题和历年真题,加深对知识点的理解和记忆,提高解题能力。
4、讨论与交流:鼓励学生参与学习小组的讨论,分享学习心得和解题技巧,提高复习效果。
四、复习时间安排根据知识点量和复习难度,建议学生按照以下时间安排进行复习:1、第一轮复习(2个月):全面系统地复习所有知识点,建立知识框架。
2、第二轮复习(1个月):重点复习重要知识点,强化解题能力。
3、第三轮复习(1个月):做历年真题和模拟试卷,查漏补缺,提高应试能力。
五、考试应对策略1、熟悉题型与考试时间:了解考试题型和答题时间分配,做到心中有数。
2、注意审题:仔细阅读题目,理解题意,避免因误解题目而失分。
3、解题规范:按照规定的解题格式进行答题,注意物理公式的正确运用和单位的统一。
4、答题技巧:对于难题可以先放下,优先解答容易的题目,以便在考试后期有充足的时间来解决难题。
1、前言:通过前面课程的学习,我们掌握了描述质点运动的各个物理量的意义、公式及其适用条件,如位置、位移、速度、加速度等。
大学物理A2复习提纲
0
E0 0 E
极化电荷面密度:
1 0
极化强度: P ( 1) 0 E , 电介质中的高斯定理:
S
P
D d S qi
各向同性电介质: D 0 r E E 电容: C
Q U
(B) BO1 BO2 ; (A) BO1 BO2 ; (C) BO1 BO2 ; (D)无法判断。
R2 O1 R1 O2
R2 R1
54. 一质量为 m、电量为 q 的粒子,以速度 v 垂直射入均匀磁场 B 中,则粒子运动轨道所 包围范围的磁通量与磁场磁感应强度 B 大小的关系曲线是
S
安培环路定理: B dl
0 I i
0 I (cos 1 cos 2 ) 4r 0 I , 2r
圆形线圈的磁场: B
载流长直导线的磁场: B
无限长直导线的磁场: B 洛仑兹力: F q B 安培力: dF Idl B
0 I
2R
S
34. 在边长为 a 的正立方体中心有一个电量为 q 的点电荷,则通过该立方体任一面的电场 强度通量为 ( ) (A) q/0 ; (B) q/20 ; (C) q/40 ; (D) q/60。 35. 如图所示,a、b、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) Ea>Eb>Ec ; (B) Ea<Eb<Ec ; c b a (C) Ua>Ub>Uc ; (D) Ua<Ub<Uc 。 36. 关于高斯定理的理解有下面几种说法,其中正确的是 ( ) (A) 如果高斯面内无电荷,则高斯面上 E 处处为零; (B) 如果高斯面上 E 处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上 E 处处为零,则该面内必无电荷。 37. 电荷分布在有限空间内,则任意两点 P1、P2 之间的电势差取决于 (A) 从 P1 移到 P2 的试探电荷电量的大小; (B) P1 和 P2 处电场强度的大小; (C) 试探电荷由 P1 移到 P2 的路径; (D) 由 P1 移到 P2 电场力对单位正电荷所作的功。 38. 下面说法正确的是 (A) 等势面上各点的场强大小都相等; (B) 在电势高处电势能也一定大; b (C) 场强大处电势一定高; (D) 场强的方向总是从高电势指向低电势。 c 39. 如图所示,绝缘的带电导体上 a、b、c 三点, 电荷密度( ) 电势( ) (A)a 点最大; (B)b 点最大; (C)c 点最大; (D)一样大。 ( )
2011-2012(1)大学物理A2期末复习(1)
考试内容
恒定磁场和电磁感应(选择、填空) 波动 波动光学 狭义相对论
(P.79) 一.4、5, (P.80-81)二.1-4,三1、 2 ,(P.83) 一1-3,二.3 、4 (P.87-88) 一.1,二.3,三1(1)(2)、2(3)(4) (P.91-94) 一.1-2,二.2-3,三3,四1、 2、3(1)(2) (P.95-98) 一.2-5,二1、2 (P.99-102) 一.2-3,二.1-2,三3,四 2 (P.103-105) 一.2-4,三 2 (P.107-110) 一.2、3、5、7,二.3-4,四 1-2
y/m
பைடு நூலகம்
0.02
0
4.0
x /m
-1.0
t = 0 s 时刻波形图
求:(1)O点的振动方程;(2)波动方程; (3) t = 0 .1 s x = 10 m 处质点的位移、振 动速度和加速度.
解 (1) 原点的振动方程
y o = A cos[ ω t + ϕ ]
A = 0.02 m λ = 4.0 m
第七章 恒定磁场
安培力的计算
r r r df = Idl × B
r B
fmax = ILB
I
第八章 电磁感应
楞次定律应用(包括自感现象) 动生电动势计算
圆电流的磁感线
通电螺线管的磁感线
I
I
I
楞次定律 感应电流的效果总是反抗引起感应电 流的原因
1
Φm
2
ε
R
G
动生电动势
v v 均匀磁场, v , B , l垂直
y/m
0.02
0
u = 200 m / s -1.0 t = 0 s 时刻波形图 4 λ T = = = 0 .02 s u 200 v A 2π ω= = 100 π rad / s T O π y ϕ= 由旋转矢量法 ω 2
大学物理A2复习题
4 0 R R 孤立球形导体的电容 C4 0R C R C r 4 0 r r
用一根细导线连接起来,使两个导体带电,则两导体球电势相等
2 Q S 4 R R R R R R V R 4 R4 R 4 R 0 0 0 0
粒子从A点移动到B点时,电场力所做的功等于粒子的动能的增 量,即
1 2 1 2 A q ( V V ) m m A B B A 2 2
2 q 得: V V ) A ( A B m
2 B
22.一平行板电容器,充电后切断电源,然后使两极板间充满相 对介电常量为 r 的各向同性均匀电介质。此时两极板间的电场 1 / r 倍。 能量是原来的________ 充满电介质后,电容增大
V 1 4 R 4 R 0 0 0
球心电荷q在r处产生的电势为:
q V2 4 0 r
球面内r处的电势为:
R q V V V 1 2 4 r 0 0
8. 半径为r 的均匀带电球面1,带电量为 q 1 ,其外有一同心的 半径为R 的均匀带电球面2,带电量为 q 2 ,则两球面间的电势 差为 。
先把1个点电荷q置于边长为L的正方形的1个顶点上,外力做功 为零。 再把第2个点电荷q置于边长为L的正方形的另1个顶点上,外力 克服电场力所做的功转化为体系的电势能,在数值上等于把 这个点电荷从该点移到电势零点时电场力所作的功
A 1 qV B
q2 40 L
再把第3个点电荷q置于C点上,外力所做的功 为
两个电子之间有库仑斥力作用,使电子的速度增加,系统的 动能总和也增大。 两个电子之间有库仑斥力作用,距离增大过程中,电场力作 正功,而静电场力对电荷所作的功等于电荷电势能的改变, 所以系统电势能的总和不守恒。 两个电子之间的库仑力是一对内力,没有外力作用,系统的 动量守恒。
大学物理A2复习资料分解
波动光学1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1).(C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时(A) P 点处仍为明条纹. (B) P 点处为暗条纹. (C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为 (A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .8. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处n 1n 2n 3入射光反射光1反射光2eP EM S 1 S 2 S(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹. 9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明. (B) 全暗.(C) 右半部明,左半部暗.(D) 右半部暗,左半部明.10. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). 11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4. (B) 凸起,且高度为λ / 2.(C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动.(E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.P 1.521.75 1.52 图中数字为各处的折射λ 1.62 1.62平玻璃 工件 空气劈尖空气单色光16. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ .19. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(A) 对应的衍射角也不变. (D) 光强也不变.20.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变; (D )宽度不变,但中心强度变小.21. 在如图所示的单缝夫琅禾费衍射实验装置中,S 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移. (B)向下平移. (C)不动. (D)消失.22. 测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.23. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是 (A) 紫光. (B) 绿光. (C) 黄光. (D) 红光.24. 对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅. (B) 换一个光栅常数较大的光栅.C屏f PD LABλSCL(C) 将光栅向靠近屏幕的方向移动.(B) 将光栅向远离屏幕的方向移动.25. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3.(C) 1 / 4. (D) 1 / 5. 26. 一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I =I 0 / 8.已知P 1和P 2的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是(A) 30°. (B) 45°.(C) 60°. (D) 90°.27.一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为 (A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2.28. 三个偏振片P 1,P 2与P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直,P 2与P 1的偏振化方向间的夹角为30°.强度为I 0的自然光垂直入射于偏振片P 1,并依次透过偏振片P 1、P 2与P 3,则通过三个偏振片后的光强为 (A) I 0 / 4. (B) 3 I 0 / 8.(C) 3I 0 / 32.(D) I 0 / 16.29. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为: (A) 光强单调增加.(B) 光强先增加,后又减小至零. (C) 光强先增加,后减小,再增加.(C) 光强先增加,然后减小,再增加,再减小至零.30. 如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4.31. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光 (A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(E) 是部分偏振光.32. 自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.i 012(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°.(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°.33.自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.1A 2 C 3 C 4B 5B 6B 7B 8B 9D 10B11C 12C 13B 14A 15B 16B 17D 18C 19B 20B21C 22D 23D 24B 25A 26B 27B 28C 29B 30A31B 32D 33C8、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹;(B) 变为暗条纹;(C) 既非明纹也非暗纹;(D) 无法确定是明纹,还是暗纹.9、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变大.(B) 对应的衍射角变小.(C) 对应的衍射角也不变.(D) 光强也不变.10、三个偏振片P1,P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为30°.强度为I0的自然光垂直入射于偏振片P1,并依次透过偏振片P1、P2与P3,则通过三个偏振片后的光强为(A) I0 / 16.(B) 3I0 / 32.(C) 3 I0 / 8.(D) I0 / 4.5、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm.若整个装置放在水中,干涉条纹的间距将为____________________mm.(设水的折射率为4/3)6、在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589 nm) 中央明纹宽度为4.0 mm,则λ2=442 nm (1 nm = 10-9 m)的蓝紫色光的中央明纹宽度为____________________.7、一束平行的自然光,以60°角入射到平玻璃表面上.若反射光束是完全偏振的,则透射光束的折射角是____________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元培学院大学物理学A2复习题一.选择题36.根据电介质中的高斯定律,下列说法正确的是(A )若电位移矢量沿一闭合曲面的通量等于零,则这个曲面内一定没有自由电荷;(B )若闭合曲面内没有自由电荷,则电位移矢量沿该闭合曲面的通量等于零;(C )若闭合曲面内没有自由电荷,则曲面上的电位移矢量一定等于零;(D )电位移矢量只与自由电荷的分布有关37.极化电荷与自由电荷的最大区别是(A )自由电荷能激发电场,而极化电荷则不会;(B )自由电荷能激发静电场,而极化电荷则只能产生涡旋电场;(C )自由电荷有正负两种电荷,而极化电荷则没有正负之分;(D )自由电荷能单独地自由运动,而极化电荷则不能脱离电介质中原子核而单独移动38.一个带电量为q ,半径为R 的薄金属壳外充满了相对电容率为r ε的均匀介质,球壳内为真空,则球壳的电势为(A )R q 04πε (B )R qr επε04 (C)0 (D))(40R r r qr >επε39.两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则()A 空心球电容值大 ()B 实心球电容值大()C 两球电容值相等 ()D 大小关系无法确定40.如图所示,先接通开关K ,使电容器充电,然后断开K ;当电容器板间的距离增大时,假定电容器处于干燥的空气中,则()A 电容器上的电量减小 ()B 电容器两板间的场强减小 ()C 电容器两板间的电压变小 ()D 以上说法均不正确41.在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明(A) 闭合曲线L 上K E 处处相等(B) 感应电场是保守力场(C) 感应电场的电场强度线不是闭合曲线(D) 在感应电场中不能像对静电场那样引入电势的概念42.关于产生感应电流的条件,下面说法正确的是(A )任何导体在磁场中运动都产生感应电流(B )只要导体在磁场中做切割磁感线运动时,导体中都能产生感应电流(C )闭合电路的一部分导体,在磁场里做切割磁感线运动时,导体中就会产生感应电流(D )闭合电路的一部分导体,在磁场里沿磁感线方向运动时,导体中就会产生感应电流43.由导体组成的一矩形线框,以匀速率v从无磁场的空间进入一个均匀磁场中,然后从磁场中出来,又在无磁场空间中运动。
问下列图中哪一个图正确表示了线框中电流对时间的函数关系。
(A )图(a )(B )图(b )(C )图(c )(D )图(d )44.竖直向下的匀强磁场中,用细线悬挂一条水平导线。
若匀强磁场磁感应强度大小为B ,导线质量为m,导线在磁场中的长度为L ,当水平导线内通有电流I 时,细线的张力大小为(A )22)()(mg BIL + (B )22)()(mg BIL -(C )22)()1.0(mg BIL + (D )22)()(mg BIL + 45.在无限长载流直导线AB 的一侧,放着一可以自由运动的矩形载流导线框,电流方向如图,则导线框将(A )导线框向AB 靠近,同时转动(B )导线框仅向AB 平动(C )导线框离开AB ,同时转动(D )导线框仅平动离开AB46.一载有电流I 的导线在平面内的形状如图所示,则O 点的磁感强度大小为(A )R I R I 8200μπμ+ ; (B )R I R I 8400μπμ+; (C ) R I40μ ; (D )R I80μ.47. 如图所示的载流导线在圆心O 处产生的磁感应强度B 的大小为A )R I R I 2200μπμ+;B )RI R I πμμ2200-; C )R I R I 4200μπμ+; D )R I R I πμμ2400-. 48. 两条长导线相互平行放置于真空中,如图所示,两条导线的电流为I I I ==21,两条导线到P 点的距离都是a ,P 点的磁感应强度方向(A)竖直向上 (B)竖直向下(C)水平向右 (D)水平向左49. 如图所示,两根长导线沿半径方向引到铁环上的A 、B 两点上,两导线的夹角为α,环的半径R ,将两根导线在很远处与电源相连,从而在导线中形成电流I ,则环中心点的磁感应强度为(A) 0 (B)R I20μ(C)αμsin 20R I(D) αμCOS R I2050. 长直导线通有电流I ,将其弯成如图所示形状,则O 点处的磁感应强度为(A)R I R I 4200μπμ+ (B)RI R I 8400μπμ+ (C)R I R I 8200μπμ+ (D)R I R I 4400μπμ+ 51. 在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A )0=•⎰l d B L,且环路上任意一点B=0(B )0=•⎰l d B L,且环路上任意一点B ≠0(C )0≠•⎰l d B L ,且环路上任意一点B ≠0(D )0≠•⎰l d B L ,且环路上任意一点B=常量52. 下列可用环路定理求磁感应强度的是(A )有限长载流直导体 (B )圆电流(C )有限长载流螺线管 (D )无限长螺线管53. 如图所示,在一闭合回路的周围有几个电流,则磁感应强度对该闭合回路的环流为(A ))(210I I +μ (B ))(210I I -μ(C ))(2310I I I -+μ (D ))(120I I -μ54. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α,则通过半球面S 的磁通量为(A )B r 2π (B )B r 22π (C )απsin 2B r - (D )απcos 2B r -55. 一般光学仪器,如望远镜、人眼等的像点都可以认为是物镜光孔(直径为d )的爱里斑。
对于两个张角为δφ 的光源点(物点),其像点中心对物镜的张角也是δφ.根据瑞利判据可知光学仪器能够分辨出两个物点的最小张角是(A) d λδφ61.0≈ (B) d λδφ≈ (C) λδφd22.1≈ (D) d λδφ22.1≈56. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个 (B) 4 个 (C) 6 个 (D) 8 个57. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2 (B) λ(C) 3λ / 2 (D) 2λ58. 一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约为 (1nm=10−9m)(A) 100 nm(B) 400 nm (C) 500 nm (D) 600 nm I 1I 2 I 3 l59.光在真空中和介质中传播时,正确的描述是:(A)波长不变,介质中的波速减小 (B)介质中的波长变短,波速不变(C)频率不变,介质中的波速减小 (D)介质中的频率减小,波速不变60. 真空中波长为λ的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径传播到B点,路径的长度为l, 则A、B两点光振动位相差记为∆ϕ, 则(A) 当l = 3 λ / 2 ,有∆ϕ = 3 π(B) 当l = 3 λ/ (2n) , 有∆ϕ = 3 n π.(C) 当l = 3 λ /(2 n),有∆ϕ = 3 π(D) 当l = 3 n λ/ 2 , 有∆ϕ = 3 n π.61. 杨氏双缝干涉实验是(A)分波阵面法双光束干涉(B)分振幅法双光束干涉(C)分波阵面法多光束干涉(D)分振幅法多光束干涉62. 如图所示, 薄膜的折射率为n2, 入射介质的折射率为n1, 透射介质为n3,且n1<n2<n3, 入射光线在两介质交界面的反射光线分别为(1)和(2), 则产生半波损失的情况是(A) (1)光产生半波损失, (2)光不产生半波损失(B) (1)光(2)光都产生半波损失(C) (1)光(2)光都不产生半波损失(D) (1)光不产生半波损失, (2)光产生半波损失63. 一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上, 透明薄膜放在空气中, 要使透射光得到干涉加强, 则薄膜最小的厚度为:(A) λ / 4 (B) λ / (4 n)(C) λ / 2 (D) λ / (2 n)64. 在照相机镜头的玻璃片上均匀镀有一层折射率n小于玻璃的介质薄膜,以增强某一波长λ的透射光能量。
假设光线垂直入射,则介质膜的最小厚度应为(A)n/λ(B)n2/λ(C)n3/λ(D)n4/λ65.哪一年美国的物理学家梅曼发明了世界上第一台红宝石激光器?C1950;()()A1905;()B1930;()D1960。
66.是谁创立了统一的电磁场理论并预言了电磁波的存在?C安培;()()A麦克斯韦;()B高斯;()D赫兹。
67. 波长λ=500 nm (1nm=10-9m )的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。
今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm ,则凸透镜的焦距是[ ](A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m68.如图所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线CA=l 处的A 点有点电荷q +,在CF 的中点有点电荷q - 。
若使单位正电荷从C 点沿CDEF 路径运动到F 点,则电场力所做的功等于()A ;()B ; ()C ;()D 。
二、填空题31.一导体球半径为1R ,所带电荷为Q ,外罩一半径为2R 的同心薄导体球壳,外球壳原所带电荷为Q ,则导体球的球心电势为 。
32.一个半径为R 的均匀带电球面,带电量为Q 。
若规定该球面上电势为零,则球面外距球心r 处的P 点的电势P U =___________ ___________。
33.电荷在等势面上移动时,电场力作功为零,电荷是否受到电场力的作用?______ _____ 。
34.一半径为R 的球形金属导体达到静电平衡时,其所带电量为+Q (均匀分布),则金属导体球球心处的场强大小为 。
35.一孤立带电导体球,其表面处场强方向与导体球表面 。
36.电介质的极化现象是指: 。
37.两个电容器的电容分别为1C 、2C ,并联后接在电源上,则它们所带电荷之比12Q Q = 。
38.有一段载流导线如图5所示,a ,c 部分为直导线,b 部分为半径为R 的圆3/4的圆周,圆心刚好和两条直导线的延长线交点重合。