工程材料硬度实验
长安大学工程材料实验报告

长安大学工程材料实验报告
班级:
姓名:
学号:
材料学院热加工实验室
实验一:硬度实验
简述实验仪器和实验过程:
实验数据:
实验材料热处理压头载荷(公斤) 硬度值(HRC) 45钢正火
45钢淬火
T12钢正火
T12钢淬火
分析与思考
1:钢的化学成分与洛氏硬度值的关系
2、钢的化学成分相同,热处理方法不同,硬度值如何变化?
3、简述HRA, HRB, HRC的压头类型,载荷重量,应用范围。
符号压头类型载荷(公斤) 硬度有效范围使用范围HRA 大于70
HRB 25~100
HRC 20~67
实验二:金相常识与铁碳平衡组织观察与分析简述实验仪器与实验过程
实验数据与绘图
分析与思考:
1:随着化学成分的变化,铁碳合金的组织和性能分别有什么变化?
2:正常情况下,铁素体的形状、颜色及硬度范围? 珠光体的形状、颜色及硬度范围? 渗碳体的形状、颜色及硬度范围?
实验三:钢的非平衡组织和铸铁组织的观察和分析简述实验仪器与实验过程
实验数据与绘图
分析与思考
1:亚共析钢正火组织形态特征是什么?
2:45钢和T12淬火组织硬度范围和组织形态有那些差别? 3:简述灰铸铁和球墨铸铁的石墨形态和基体组织形态。
硬度测试实验报告

硬度测试实验报告篇一:硬度测量实验报告硬度测量实验报告一、实验目的1. 了解常用硬度测量原理及方法;2. 了解布氏和洛氏硬度的测量范围及其测量步骤和方法;二、实验设备洛氏硬度计、布洛维硬度计、轴承、试块三、实验原理1. 硬度是表示材料性能的指标之一,通常指的是一种材料抵抗另一较硬的具有一定形状和尺寸的物体(金刚石压头或钢球)压入其表面的阻力。
由于硬度试验简单易行,又无损于零件,因此在生产和科研中应用十分广泛。
常用的硬度试验方法有:洛氏硬度计,主要用于金属材料热处理后的产品性能检验。
布氏硬度计,应用于黑色、有色金属材料检验,也可测一般退火、正火后试件的硬度。
2. 洛氏硬度洛氏硬度测量法是最常用的硬度试验方法之一。
它是用压头在载荷作用下,压入材料的塑性变形浓度来表示的。
通常压入材料的深度越大,材料越软;压入的浓度越小,材料越硬。
下图表示了洛氏硬度的测量原理。
图:未加载荷,压头未接触试件时的位置。
2-1:压头在预载荷P0作用下压入试件深度为h0时的位置。
h0包括预载所相起的弹形变形和塑性变形。
2-2:加主载荷P1后,压头在总载荷P= P0+ P1的作用下压入试件的位置。
2-3:去除主载荷P1后但仍保留预载荷P0时压头的位置,压头压入试样的深度为h1。
由于P1所产生的弹性变形被消除,所以压头位置提高了h,此时压头受主载荷作用实际压入的浓度为h= h1- h0。
实际代表主载P1造成的塑性变形深度。
h值越大,说明试件越软,h值越小,说明试件越硬。
为了适应人们习惯上数值越大硬度越高的概念,人为规定,用一常数K减去压痕深度h的数值来表示硬度的高低。
并规定为一个洛氏硬度单位,用符号HR表示,则洛氏硬度值为:HR?k-h3.布氏硬度布氏硬度的测定原理是用一定大小的试验力F把直径为D(mm)的淬火钢球或硬质合金球压入被测金属的表面,保持规定时间后卸除试验力,用读数显微镜测出压痕平均直径d,然后按公式求出布氏硬度HB值,或者根据d从已备好的布氏硬度表中查出HB值。
机械工程材料实验指导书实验一硬度试验

机械工程材料实验指导书实验一硬度实验【实验目的】1.进一步加深对硬度概念的理解。
2.了解布氏、洛氏硬度计的构造和作用原理。
3.熟悉布氏硬度、洛氏硬度的测定方法和操作步骤。
【实验设备及材料】布氏硬度计、洛氏硬度计、读数显微镜、试样(钢、铸铁或有色金属)一组。
【实验原理】硬度计的原理是:将一定直径球体压入试样表面,保持一定的时间后卸除试验力,测量试样表面的压痕直径,用试验力压出一压痕表面面积计算硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2) ,布氏硬度计适用于铸铁等晶粒粗大的金属材料的测定。
2.洛氏硬度(HR)当HB大于450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的硬度标尺HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg 载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
一、布氏硬度实验【布氏硬度计】THBS-3000DA采用电子自动加荷,计算机软件编程,高倍率光学测量,采用自动数字式编码器直接测量,测试结果LCD显示。
图1 THBS-3000DA型布氏硬度试验机【试样的技术条件】1.试样的试验面,应制成光滑平面,不应有氧化皮及污物。
试验面应能保证压痕直径能精确测量,试样表面粗糙度Ra值一般不应大于0.8μm。
2.在试样制备过程中,应尽量避免由于受热及冷加工对试样表面硬度的影响。
工程材料硬度实验报告(3篇)

第1篇一、实验目的1. 了解硬度测定的基本原理及常用硬度试验方法的应用范围。
2. 掌握布氏硬度、洛氏硬度、维氏硬度等硬度试验方法及其操作步骤。
3. 分析不同材料硬度与力学性能之间的关系。
4. 提高对工程材料性能评价的能力。
二、实验原理硬度是指材料抵抗另一较硬物体压入表面抵抗塑性变形的一种能力,是重要的力学性能指标之一。
硬度试验方法主要有布氏硬度试验、洛氏硬度试验、维氏硬度试验等。
1. 布氏硬度试验:在规定的载荷下,将直径为D的钢球或直径为D/10的金刚石球压入材料表面,保持一定时间后卸载,测量压痕直径d,根据压痕直径和载荷F计算硬度值。
2. 洛氏硬度试验:在规定的载荷下,将金刚石圆锥或淬火钢球压入材料表面,保持一定时间后卸载,测量压痕深度h,根据压痕深度和压头类型计算硬度值。
3. 维氏硬度试验:在规定的载荷下,将金刚石正四棱锥压入材料表面,保持一定时间后卸载,测量压痕对角线长度d,根据对角线长度和载荷F计算硬度值。
三、实验仪器与设备1. 布氏硬度试验机2. 洛氏硬度试验机3. 维氏硬度试验机4. 读数放大镜5. 标准硬度块6. 试样(如钢、铸铁、有色金属等)四、实验内容及步骤1. 布氏硬度试验(1)将试样放置在布氏硬度试验机上,调整压头与试样表面垂直。
(2)选择合适的载荷和钢球直径,按照实验要求进行试验。
(3)保持一定时间后卸载,用读数放大镜测量压痕直径d。
(4)根据公式HB = 2F/d^2(F为载荷,d为压痕直径)计算布氏硬度值。
2. 洛氏硬度试验(1)将试样放置在洛氏硬度试验机上,调整压头与试样表面垂直。
(2)选择合适的压头和载荷,按照实验要求进行试验。
(3)保持一定时间后卸载,用读数放大镜测量压痕深度h。
(4)根据公式HRC = 100(K - h/d)(K为常数,h为压痕深度,d为压痕直径)计算洛氏硬度值。
3. 维氏硬度试验(1)将试样放置在维氏硬度试验机上,调整压头与试样表面垂直。
(2)选择合适的载荷,按照实验要求进行试验。
金属材料的硬度实验

金属材料的硬度实验金属材料的硬度是其抵抗外力的能力,通常用于评价金属材料的质量和适用范围。
本文将介绍金属材料硬度的实验方法和步骤,以及实验中需要注意的问题。
一、硬度的定义及意义。
硬度是材料抵抗外力的能力,通常用来评价材料的耐磨性和耐刮性。
在工程领域中,硬度是金属材料的重要性能指标之一,对于材料的选择和加工具有指导意义。
二、硬度的测试方法。
1. 洛氏硬度测试法,利用洛氏硬度计对金属材料进行硬度测试,通过压入金属表面的钻头深度来评价其硬度。
2. 布氏硬度测试法,利用布氏硬度计对金属材料进行硬度测试,通过压入金属表面的压头表面积与压头压入深度的比值来评价其硬度。
3. 维氏硬度测试法,利用维氏硬度计对金属材料进行硬度测试,通过压入金属表面的金刚石圆锥体的压头表面积与压头压入深度的比值来评价其硬度。
三、硬度实验步骤。
1. 准备实验材料,选择需要测试硬度的金属材料样品,并进行表面处理,确保表面平整干净。
2. 进行硬度测试,根据所选的硬度测试方法,选择相应的硬度计进行测试,按照操作说明进行测试。
3. 记录测试数据,记录测试时所施加的载荷和压头的压入深度,并计算出硬度值。
4. 分析测试结果,根据测试数据,对金属材料的硬度进行评价和分析,比较不同材料的硬度值。
四、硬度实验注意事项。
1. 确保实验环境,硬度测试需要在相对稳定的环境条件下进行,避免外界因素对测试结果的影响。
2. 注意测试方法选择,根据不同金属材料的特性和要求,选择合适的硬度测试方法,确保测试结果准确。
3. 控制测试载荷,在进行硬度测试时,需要严格控制所施加的载荷大小,避免因为过大的载荷导致测试结果不准确。
4. 多次重复测试,为了确保测试结果的准确性,建议进行多次重复测试,并取平均值作为最终测试结果。
五、总结。
通过本文的介绍,我们了解了金属材料的硬度实验方法和步骤,以及实验中需要注意的问题。
硬度测试是评价金属材料质量和性能的重要手段,对于工程应用具有重要意义。
布氏硬度实验原理

布氏硬度实验原理布氏硬度实验是一种常用的金属材料硬度测试方法,通过在材料表面施加一定载荷,并测量压痕的直径来确定材料的硬度。
本文将介绍布氏硬度实验的原理和相关知识。
1. 布氏硬度实验原理。
布氏硬度实验是利用金属材料在受力作用下产生的压痕来测定材料的硬度。
在布氏硬度实验中,一颗钢球或钻石锥头以一定的载荷作用在试样表面上,压痕的直径或者压痕的长径和短径之比即为硬度值,用布氏硬度数表示。
布氏硬度实验是通过对金属材料表面进行压痕试验,来测定材料的硬度。
2. 布氏硬度实验的原理。
布氏硬度实验是通过在金属材料表面施加一定载荷,形成一个可测量的压痕,然后根据压痕的大小来确定材料的硬度。
在布氏硬度实验中,载荷和压头的选择是非常重要的,载荷的大小和压头的形状会直接影响到压痕的形成和测量结果的准确性。
3. 布氏硬度实验的步骤。
进行布氏硬度实验时,首先要选择合适的压头和载荷,然后将试样放在硬度试验机上,施加载荷使压头压入试样表面,保持一定时间后卸载,用显微镜测量压痕的长径和短径,根据压痕的大小计算出硬度值。
在实验过程中,要保证试样表面的平整度和光洁度,以保证测量结果的准确性。
4. 布氏硬度实验的应用。
布氏硬度实验广泛应用于金属材料的硬度测试中,特别是对于脆性材料和薄壁管材料,布氏硬度实验具有较高的灵敏度和准确性。
通过布氏硬度实验可以对金属材料的硬度进行快速、准确的测定,为材料的选用和工艺参数的确定提供了重要的参考依据。
5. 结语。
布氏硬度实验是一种简单、快捷、准确的金属材料硬度测试方法,通过对材料表面施加一定载荷来形成压痕,然后测量压痕的大小来确定材料的硬度。
布氏硬度实验在工程领域中具有重要的应用价值,能够为材料的选用和工艺参数的确定提供重要参考依据。
通过本文的介绍,相信大家对布氏硬度实验的原理和应用有了更深入的了解,希望能够对大家的学习和工作有所帮助。
机械工程材料实验指导书-江洁实验一硬度试验

机械工程材料实验指导书红河学院机械系实验一硬度实验【实验目的】1.进一步加深对硬度概念的理解。
2.了解布氏、洛氏硬度计的构造和作用原理。
3.熟悉布氏硬度、洛氏硬度的测定方法和操作步骤。
【实验设备及材料】布氏硬度计、洛氏硬度计、读数显微镜、试样(钢、铸铁或有色金属)一组。
【实验原理】硬度计的原理是:将一定直径球体压入试样表面,保持一定的时间后卸除试验力,测量试样表面的压痕直径,用试验力压出一压痕表面面积计算硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2) ,布氏硬度计适用于铸铁等晶粒粗大的金属材料的测定。
2.洛氏硬度(HR)当HB大于450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的硬度标尺HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg 载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
一、布氏硬度实验【布氏硬度计】THBS-3000DA采用电子自动加荷,计算机软件编程,高倍率光学测量,采用自动数字式编码器直接测量,测试结果LCD显示。
图1 THBS-3000DA型布氏硬度试验机【试样的技术条件】1.试样的试验面,应制成光滑平面,不应有氧化皮及污物。
试验面应能保证压痕直径能精确测量,试样表面粗糙度Ra值一般不应大于0.8μm。
2.在试样制备过程中,应尽量避免由于受热及冷加工对试样表面硬度的影响。
硬度的测定方法

硬度的测定方法硬度是材料抵抗划伤、压痕和穿刺的能力,是材料力学性能的重要指标之一。
在工程材料的选择、加工和使用过程中,硬度的测定是至关重要的。
本文将介绍几种常用的硬度测定方法。
一、洛氏硬度测试。
洛氏硬度测试是最常见的一种硬度测试方法,它通过在试样表面施加一定载荷,然后测量压痕的直径或者深度来确定材料的硬度。
洛氏硬度测试方法分为洛氏硬度计和超洛氏硬度计两种类型,分别适用于不同的材料硬度范围。
二、布氏硬度测试。
布氏硬度测试是利用金属球或者金属锥头在试样表面施加一定载荷,通过测量压痕的直径或者深度来确定材料的硬度。
布氏硬度测试方法适用于金属材料和合金的硬度测定,具有简单、快速、准确的特点。
三、维氏硬度测试。
维氏硬度测试是利用金刚石三棱角锥头在试样表面施加一定载荷,通过测量压痕的对角线长度来确定材料的硬度。
维氏硬度测试方法适用于金属材料、陶瓷和淬火层的硬度测定,具有高精度、高重复性的特点。
四、洛克韦尔硬度测试。
洛克韦尔硬度测试是利用金刚石圆锥头在试样表面施加一定载荷,通过测量压痕的对角线长度来确定材料的硬度。
洛克韦尔硬度测试方法适用于金属材料、淬火层和薄板材料的硬度测定,具有高精度、适用范围广的特点。
五、超声硬度测试。
超声硬度测试是利用超声波在试样表面传播并反射,通过测量声波传播时间和反射强度来确定材料的硬度。
超声硬度测试方法适用于金属材料的硬度测定,具有无损伤、无污染、快速的特点。
六、微纳硬度测试。
微纳硬度测试是利用纳米压头在试样表面施加微小载荷,通过测量压痕的深度来确定材料的硬度。
微纳硬度测试方法适用于薄膜、涂层、纳米材料和生物材料的硬度测定,具有高分辨率、高灵敏度的特点。
综上所述,硬度的测定方法有多种多样,每种方法都有其适用范围和特点。
在实际工程中,我们需要根据材料的特性和要求选择合适的硬度测试方法,以确保测定结果的准确性和可靠性。
同时,对于不同的材料和形状,还可以结合多种硬度测试方法进行综合分析,以更全面地了解材料的硬度特性。
材料硬度实验报告

材料硬度实验报告材料硬度实验报告引言:材料的硬度是衡量其抗压强度和耐磨性能的重要指标之一。
通过硬度测试可以评估材料的质量和适用性,对于工程设计和材料选择具有重要意义。
本实验旨在通过硬度测试方法,对不同材料的硬度进行测量和比较,探讨材料硬度与其结构和性能的关系。
一、实验目的本实验的主要目的是通过硬度测试方法,测量不同材料的硬度,并分析其硬度与结构、成分以及制备工艺之间的关系。
通过实验结果,可以为工程设计和材料选择提供依据。
二、实验原理硬度是指材料抵抗外界力量侵袭的能力,通常使用压痕的形式来测量。
常见的硬度测试方法有洛氏硬度、巴氏硬度、维氏硬度等。
在本实验中,我们选择了维氏硬度测试方法。
维氏硬度测试是通过在试样表面施加一定压力下,测量压痕的直径来评估材料的硬度。
硬度值越高,材料越难被压入,表明其硬度越大。
硬度测试需要借助硬度计,根据压痕的形状和尺寸来计算硬度值。
三、实验步骤1. 准备不同材料的试样,保证其表面光洁度和平整度。
2. 将试样放置在硬度计的试验台上,调整硬度计的刻度。
3. 选择适当的压头,将其缓慢压入试样表面,保持一定时间后,松开压头。
4. 观察压痕的形状和尺寸,使用显微镜测量压痕的直径。
5. 根据测量结果,计算出试样的硬度值。
四、实验结果与分析通过实验测量,得到了不同材料的硬度值,并进行了比较。
结果显示,材料A的硬度值最高,达到了XXX。
而材料B和材料C的硬度值分别为XXX和XXX。
根据实验结果,我们可以推断出材料A具有较高的抗压强度和耐磨性能,适用于承受较大压力和摩擦的场合。
材料B和材料C的硬度值较低,表明其抗压能力和耐磨性相对较弱,适用于一些轻负荷和低摩擦的应用场景。
此外,我们还可以通过对比不同材料的硬度值,分析其结构和成分对硬度的影响。
例如,材料A可能具有较高的晶体密度和较小的晶粒尺寸,使其具有较高的硬度。
而材料B和材料C可能含有较多的杂质或晶体缺陷,导致其硬度较低。
五、实验误差与改进在实验过程中,可能存在一些误差,影响硬度测试的准确性。
材料硬度测试实验实验报告

材料硬度测试实验实验报告一、实验目的本实验旨在探究材料硬度测试的方法和原理,了解硬度测试在工程领域中的应用,并通过实验掌握常见的硬度测试方法。
二、实验原理1. 硬度的定义:材料抵抗外力侵入或划痕的能力。
2. 硬度测试方法:(1)洛氏硬度法:利用钻石锥头对材料进行压痕,根据压痕深度计算出洛氏硬度值。
(2)布氏硬度法:利用钢球对材料进行压痕,根据压痕直径计算出布氏硬度值。
(3)维氏硬度法:利用金刚石锥头对材料进行压痕,根据压痕长度计算出维氏硬度值。
3. 硬度测试仪器:(1)洛氏硬度计(2)布氏硬度计(3)维氏硬度计三、实验步骤1. 准备试样:从不同种类的金属板上切下大小相同的试样。
2. 使用洛氏、布氏、维氏三种不同类型的硬度仪分别测试每个试样的硬度值。
3. 记录每个试样的硬度值,并计算平均值。
四、实验结果1. 试样1:铜板洛氏硬度值:90布氏硬度值:60维氏硬度值:1002. 试样2:铝板洛氏硬度值:70布氏硬度值:45维氏硬度值:803. 试样3:钢板洛氏硬度值:120布氏硬度值:80维氏硬度值:140五、实验分析与讨论1. 不同类型的金属材料具有不同的硬度,铜和铝相对较软,而钢则相对较硬。
2. 不同类型的硬度测试方法得到的结果也有所不同,其中洛氏、布氏和维氏三种方法相对来说比较常见,但在实际应用中需要根据具体情况选择合适的测试方法。
3. 在进行材料选择时,需要考虑其所需的物理特性之一就是其所需的硬度。
因此,了解材料的硬度特性是非常重要的。
六、实验结论通过本次实验,我们深入了解了材料的硬度测试方法和原理,并掌握了洛氏、布氏、维氏三种不同类型的硬度测试方法。
此外,我们还发现不同类型的金属材料具有不同的硬度特性,这对于工程领域中的材料选择和设计具有重要意义。
实验二碳钢的热处理及硬度测定实验报告

工程材料实验报告成绩
实验二碳钢的热处理及硬度测定班级学号姓名一、明确并写出实验目的
二、将材料热处理工艺及测定的硬度值填入下表
碳钢热处理工艺表布氏硬度实验条件5/750/10(压头直径/载荷/保荷时间)
三、根据上表热处理工艺分析以下几个问题
1 分析成分不同对钢热处理后性能影响的原因,其对应的组织是什么?
2 分析冷却速度对热处理后钢性能的影响。
3 绘制钢回火温度与硬度的关系曲线图,并分析硬度变化的原因。
4 实验中存在的问题。
硬度测试实验报告实验结论

硬度测试实验报告实验结论硬度测试实验报告实验结论实验目的:本次实验的目的是通过硬度测试仪器对不同材料的硬度进行测量,以了解不同材料的硬度特性,并得出相应的实验结论。
实验装置与方法:实验中使用了一台硬度测试仪器,该仪器采用了维氏硬度测试方法。
首先,我们选择了不同的材料样本,包括金属、塑料和陶瓷等。
然后,将样本放置在硬度测试仪器的测试台上,调整测试仪器的压力和时间参数,进行硬度测试。
每个样本进行三次测试,取平均值作为最终结果。
实验结果与分析:经过一系列的硬度测试,我们得到了各个材料的硬度数值。
根据测试结果,我们可以得出以下实验结论:1. 金属材料的硬度普遍较高。
金属材料具有良好的结晶性和成分均匀性,使其在受力时能够更好地抵抗变形和划痕。
因此,金属材料的硬度通常较高。
2. 塑料材料的硬度较低。
塑料材料通常具有较强的韧性和可塑性,容易受到外力的变形和划痕。
因此,塑料材料的硬度相对较低。
3. 陶瓷材料的硬度因材质而异。
陶瓷材料种类繁多,硬度也因材质的不同而有所差异。
一般来说,氧化物陶瓷的硬度较高,而非氧化物陶瓷的硬度较低。
4. 不同硬度测试方法的结果可能存在差异。
本次实验采用了维氏硬度测试方法,该方法对材料的硬度进行了相对评估。
然而,不同硬度测试方法的结果可能存在一定的差异,因此在实际应用中需要根据具体需求选择合适的测试方法。
实验结论:通过本次硬度测试实验,我们得出以下结论:1. 金属材料的硬度普遍较高,适用于需要较高硬度的应用场景。
2. 塑料材料的硬度较低,适用于需要较低硬度和较好韧性的应用场景。
3. 陶瓷材料的硬度因材质而异,需要根据具体材质选择合适的陶瓷材料。
4. 在实际应用中,需要根据具体需求选择合适的硬度测试方法,并结合其他材料性能指标综合评估材料的适用性。
总结:硬度测试实验是一种常用的材料性能测试方法,通过对不同材料的硬度进行测量,可以了解材料的硬度特性。
本次实验通过维氏硬度测试方法对金属、塑料和陶瓷等材料进行了硬度测试,并得出了相应的实验结论。
大学硬度的实验报告

大学硬度的实验报告实验目的1. 了解材料硬度的概念和意义;2. 掌握常用硬度测试方法;3. 分析硬度测试结果,比较不同材料的硬度。
实验原理硬度是指材料抵抗受力时产生的形变程度的能力。
通常使用硬度测试仪器在材料表面施加压力,通过测量表面印痕的大小来评估材料的硬度。
常见的硬度测试方法包括布氏硬度、维氏硬度和洛氏硬度等。
实验材料与设备- 实验材料:金属样品(铁、铝、铜、钛等)- 实验设备:硬度测试仪、显微镜、计时器、硬度比较表实验步骤步骤1:准备金属样品1. 选择铁、铝、铜、钛等不同材料的试样,每种材料准备三个试样。
2. 将试样进行抛光,保证试样表面光滑。
步骤2:进行硬度测试1. 将试样置于硬度测试仪上,调整测试仪的压力。
2. 将测试仪的针头轻轻压在试样表面,保持一定时间后,停止施力。
3. 测量试样上的印痕大小,记录测试结果。
步骤3:观察和分析结果1. 使用显微镜对试样表面的印痕进行观察,测量印痕的直径或深度。
2. 根据硬度比较表,将测得的印痕参数转换为硬度数值。
3. 比较不同材料的硬度数值,分析结果。
实验结果与讨论经过实验测试,我们得到了不同材料的硬度数值如下:材料硬度数值铁150铝60铜80钛200可以看出,钛的硬度最高,铝的硬度最低。
这是因为钛具有较高的强度和耐磨性,而铝则具有较低的硬度。
硬度数值的大小与材料的物理性质密切相关。
硬度高的材料通常具有较高的强度和耐磨性,适用于制造耐磨零件、工具等。
反之,硬度低的材料则相对较软,适用于制造易变形或易加工的零件。
此外,我们还观察到试样表面的印痕形状与材料的硬度有关。
硬度较高的材料,在印痕周围通常会出现较小的塑性变形区域;而硬度较低的材料则可能出现较大的塑性变形区域。
实验结论1. 不同材料具有不同的硬度。
2. 硬度数值反映材料的强度和耐磨性。
3. 硬度测试可以帮助我们了解材料的物理性质,并指导材料的选择和应用。
实验总结通过本次实验,我们对大学硬度的概念和意义有了更深入的认识。
机械工程材料实验训练试验3布氏硬度试验

试验3 布氏硬度试验1.试验目的:(1)了解常用试验机的型号、结构(2)进一步理解布氏硬度的测试原理;学会布氏硬度测试方法。
2.试验设备及材料1)设备 HB-3000型布氏硬度试验机,如图1-20所示。
2)试样厚10mm的正火状态45钢一块。
3.试验原理用一定直径的硬质合金球做压头,图1-20 HB-3000布氏硬度试验机外型结构简图以一定的实验力压入试样表面,经规定保持时间后,卸除试验力,试样表面将留下一个压痕,测量压痕的直径并计算压痕表面积,通过计算或查表(附录)求得布氏硬度值。
在实际试验时,可用读数显微镜测出压痕直径d,再根据压痕直径查表得出硬度值。
实际工件可能会有不同的硬度值和厚度,所以试验时要根据工件的软硬程度和形状大小来选择匹配不同的压头和载荷。
实验时只要满足F/D2值为一常数,且压痕直径控制在0.24~0.6D之间,即可得到统一的、可以互相比较的硬度值。
4.实验步骤1)确定实验条件压头直径、实验力及实验力保持时间按表1-1选取。
先将压头装入主轴衬套并拧紧压头紧定螺钉,再按所选载荷加上相应的砝码。
打开电源开关,电源指示灯亮。
试验机进行自检、复位,显示当前的实验力保持时间,该参数自动记忆关机前的状态。
此时应根据所需设置的保持时间,在操作键盘上按“▲”或“▼”键进行设置。
2)压紧试件顺时针旋转升降手轮6,使实验台上升至试样与压头接触,直至手轮下面的螺母产生相对滑动为止。
3)加载与卸载此时按下“开始”键,实验开始自动进行,依次自动完成从加载、保持、卸载到恢复初始状态的全过程。
4)读取实验数据逆时针转动升降手轮,取下试样,用读数显微镜测出压痕直径,并取算术平均值d,根据此值查附录即得布氏硬度值,记录于表1-10中。
5.注意事项1)试样表面必须平整光洁,无油污、氧化皮,并平稳地安放在布氏硬度计实验台上。
2)读数显微镜读取压痕直径时应从两个相互垂直的方向测量,并取算术平均值。
3)使用读数显微镜时,将测试过的试样放置于一平面上,再将读数显微镜放置于被测试样上,使被测部分用自然光或灯光照明;调节目镜,使视场中同时看清分划板与压痕边缘图像。
工程材料硬度实验

一、《工程材料学》实验实验一金属材料的硬度测试一、实验目的1.了解不同种类硬度测定的基本原理及应用范围;2.了解布氏、洛氏硬度实验的操作方法及设备特点;3.学会使用硬度计。
二、实验原理金属材料的硬度可以认为是金属材料表面局部区域在接触应力作用下抵抗塑性变形或破裂的能力。
由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力,是表征材料性能的一个综合参量。
硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难。
硬度测量能够定量地给出金属材料软硬程度的相对数量概念。
硬度的实验方法有十多种,基本可分为压入法和刻划法两大类。
在机械工业中广泛采用压入法来测定硬度。
压入法又可分为布氏硬度、洛氏硬度等,它们只是一些不同的实验方法而已,没有什么必然的内在关系。
压入法硬度实验有以下几方面的优点,导致它在生产和科研中的广泛应用:1、硬度实验设备简单,操作迅速方便;2、实验对象可以是各类工程材料和各种尺寸的零件,无须加工专门的试样,而且实验时一般不会破坏成品零件;3、作为一种综合的性能参量,硬度与其他机械性能指标之间有着一定的内在联系,从一定程度上,可用硬度实验结果估算相关性能而免做复杂的实验。
如:金属的硬度与强度指标之间存在着如下近似关系:бb=K*HB式中:бb —材料的抗拉强度;K—系数,取值见表一;HB—布氏硬度。
表一系数K取值表45、硬度能敏感地反映材料的成分与组织结构的变化,可用来检验原材料和控制冷热加工质量。
(一)布氏硬度:布氏硬度实验是对试样施加一定大小的载荷P,将直径为D的钢球压入试样表面(如图1所示)保持一定时间,然后卸除载荷,根据钢球在试样表面上所压出的凹痕面积F凹求出平均应力值,以此作为硬度值的计量指标,用符号HB表示。
计算公式如下:HB=P/F凹式中:HB—布氏硬度;P—施加外力,N;F凹—压痕面积,mm2。
硬度测试实验报告结论

硬度测试实验报告结论研究背景硬度是一个物质抵抗外力压入的程度的物理性质。
在材料科学和工程中,硬度测试是评估和比较材料硬度的一种常用方法,有助于了解材料的耐磨性、强度和耐用性。
本次实验的目的是通过Vickers硬度测试法对不同材料进行硬度测试,比较其硬度差异,并得出相应的结论。
实验方法本次实验选取了铝合金、钢和陶瓷三种不同材料进行测试,具体实验步骤如下:1. 准备测试样品:铝合金、钢和陶瓷板。
2. 将测试样品安装在测试机中心位置。
3. 选择Vickers硬度测试仪器进行测试。
4. 在测试机上设置合适的测试力和测试时间。
5. 启动测试机进行硬度测试。
6. 记录测试结果。
实验结果经过实验测量,得到了以下硬度测试结果:- 铝合金:平均硬度值为200HV。
- 钢:平均硬度值为500HV。
- 陶瓷:平均硬度值为1000HV。
结果分析与讨论通过对实验结果的分析和讨论,可以得出以下结论:1. 铝合金的硬度值较低,说明其较为柔软。
2. 钢的硬度值较高,说明其具有较强的抵抗力。
3. 陶瓷的硬度值最高,表明其具有非常高的抵抗力和耐磨性。
实验结论根据硬度测试实验的结果及其分析,可以得出以下结论:1. 不同材料的硬度存在明显差异,铝合金硬度最低,陶瓷的硬度最高。
2. 钢在硬度上居于中间水平,具有较高的抗压性和抵抗力。
3. 硬度测试结果表明,材料的硬度与其抵抗力、耐磨性等物理性质密切相关。
实验改进与展望本次实验较为简单,后续可以进行以下改进和展望:1. 增加更多不同材料的测试,以获得更全面的硬度数据。
2. 进一步研究硬度与物理性质之间的关系,对不同硬度材料的性能进行深入分析。
3. 探索其他硬度测试方法,如布氏硬度、洛氏硬度等,以便更全面地了解材料的硬度特性。
总结通过本次硬度测试实验,我们了解了硬度测试的基本原理和测试方法,并对铝合金、钢和陶瓷三种不同材料的硬度进行了比较与分析。
结果表明,不同材料的硬度存在明显差异,硬度与材料的抵抗力、耐磨性等物理性质紧密相关。
实验一材料的硬度测试实验

实验一材料的硬度测试实验摘要:本实验旨在使用维克氏硬度计测试不同材料的硬度。
实验设计了三个不同的试样,分别是金属、陶瓷和塑料。
通过在试样上施加一定的力量,并测量压痕的长度,可以计算出每个材料的硬度值。
实验结果表明,金属材料具有最高的硬度值,陶瓷材料次之,塑料材料最低。
引言:硬度是材料抵抗划伤或形变的能力。
硬度测试是一种常见的材料力学性能测试方法。
其中,维克氏硬度是最常用的硬度测试方法之一方法:1.实验材料和设备:-金属试样(如铁、铝等)-陶瓷试样(如瓷砖、陶瓷碗等)-塑料试样(如塑料瓶、塑料容器等)-维克氏硬度计-萤光显微镜-试样夹具-钻石压头-数字显微镜2.实验步骤:a.准备金属试样,并清洁试样表面以去除任何杂质。
b.将试样夹紧于试样夹具上。
c.用维克氏硬度计的钻石压头对试样施加压力,压痕深度应适中。
d.使用萤光显微镜观察和测量压痕的长度,记录下数据。
e.重复上述步骤对陶瓷和塑料试样进行测试,并记录数据。
3.数据处理:a.根据压痕的长度,计算出每个材料的硬度值。
b.比较不同材料的硬度值,并进行分析和讨论。
结果与讨论:根据实验结果,可以得出以下结论:1.金属材料具有最高的硬度,表明金属材料在抵抗划伤或形变方面具有较高的能力。
2.陶瓷材料的硬度次之,表明陶瓷材料比塑料材料更耐磨、耐刮擦。
3.塑料材料具有最低的硬度值,说明塑料材料容易被划伤或形变。
结论:通过维克氏硬度测试,可以粗略地评估材料的硬度。
本实验结果表明,金属材料的硬度最高,塑料材料的硬度最低。
这些数据对于材料选择和应用具有重要的参考价值。
附录:实验中的数字或计算可以在附录中进行详细列出。
例如,压痕长度的测量数据、硬度计算公式等。
工程材料实验二 碳钢的热处理及硬度测试(发送)(1)

碳钢的热处理及硬度测试一、实验目的1、了解碳钢的热处理工艺规程,并能动手操作简单的热处理工艺。
2、分析碳钢在热处理时:1)含碳量对淬火硬度的影响;2)不同的冷却速度对钢的组织与性能的影响;3)不同的回火温度对淬火钢组织和性能的影响。
3、了解金属材料的硬度测试方法。
二、预习内容1、钢的淬火。
所谓淬火就是将钢加热到 Ac3(亚共析钢)或Ac1 (过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中( V冷应大于V临),以获得马氏体组织。
碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。
为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。
(1)淬火温度的选择选定正确的加热温度是保证淬火质量的重要环节。
淬火时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图1所示)。
对亚共析钢,其加热温度为+30~50℃,若加热温度不足(低于),则淬火组织中将出现铁素体而造成强度及硬度的降低。
对过共析钢,加热温度为+30~50℃,淬火后可得到细小的马氏体与粒状渗碳体。
后者的存在可提高钢的硬度和耐磨性。
图1(2)保温时间的确定淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。
加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。
表1 碳钢在箱式电炉中加热时间的确定3)冷却速度的影响冷却是淬火的关键工序,它直接影响到钢淬火后的组织和性能。
冷却时应使冷却速度大于临界冷却速度,以保证获得马氏体组织;在这个前提下又应尽量缓慢冷却,以减少钢中的内应力,防止变形和开裂。
为此,可根据C曲线图(如图2所示),使淬火工作在过冷奥氏体最不稳定的温度范围(650~550℃)进行快冷(即与C曲线的“鼻尖”相切),而在较低温度(300~100℃)时冷却速度则尽可能小些。
为了保证淬火效果,应选用合适的冷却方法(如双液淬火、分级淬火等).不同的冷却介质在不同的温度范围内的冷却速度有所差别。
测试硬度的方法

测试硬度的方法硬度是指材料抵抗划痕或穿透的能力,是一个物质的重要性能指标。
在工程实践中,常常需要对材料的硬度进行测试,以确定其适用性和性能。
下面将介绍几种常见的测试硬度的方法。
一、洛氏硬度测试。
洛氏硬度测试是一种常用的金属硬度测试方法,通过在材料表面施加一定负荷,然后测量压痕的直径来确定材料的硬度。
常用的有洛氏硬度计,根据不同的负荷和压痕直径来确定材料的硬度值。
二、布氏硬度测试。
布氏硬度测试是另一种常用的金属硬度测试方法,通过在材料表面施加一定负荷,然后测量压痕的直径来确定材料的硬度。
常用的有布氏硬度计,根据不同的负荷和压痕直径来确定材料的硬度值。
三、维氏硬度测试。
维氏硬度测试是一种常用的金属硬度测试方法,通过在材料表面施加一定负荷,然后测量压痕的深度来确定材料的硬度。
常用的有维氏硬度计,根据不同的负荷和压痕深度来确定材料的硬度值。
四、洛克韦尔硬度测试。
洛克韦尔硬度测试是一种常用的金属硬度测试方法,通过在材料表面施加一定负荷,然后测量压痕的面积来确定材料的硬度。
常用的有洛克韦尔硬度计,根据不同的负荷和压痕面积来确定材料的硬度值。
五、超声波硬度测试。
超声波硬度测试是一种非接触式的硬度测试方法,通过利用超声波在材料表面传播的速度来确定材料的硬度。
常用的有超声波硬度计,根据超声波在材料中传播的速度来确定材料的硬度值。
六、显微硬度测试。
显微硬度测试是一种在显微镜下进行的硬度测试方法,通过在材料表面施加一定负荷,然后测量压痕的尺寸来确定材料的硬度。
常用的有显微硬度计,根据不同的负荷和压痕尺寸来确定材料的硬度值。
综上所述,测试硬度的方法有很多种,每种方法都有其适用的范围和精度。
在实际应用中,我们需要根据具体的材料和要求选择合适的测试方法,以确保测试结果的准确性和可靠性。
希望本文介绍的方法能够对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、《工程材料学》实验
实验一金属材料的硬度测试
一、实验目的
1.了解不同种类硬度测定的基本原理及应用范围;
2.了解布氏、洛氏硬度实验的操作方法及设备特点;
3.学会使用硬度计。
二、实验原理
金属材料的硬度可以认为是金属材料表面局部区域在接触应力作用下抵抗塑性变形或破裂的能力。
由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力,是表征材料性能的一个综合参量。
硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难。
硬度测量能够定量地给出金属材料软硬程度的相对数量概念。
硬度的实验方法有十多种,基本可分为压入法和刻划法两大类。
在机械工业中广泛采用压入法来测定硬度。
压入法又可分为布氏硬度、洛氏硬度等,它们只是一些不同的实验方法而已,没有什么必然的内在关系。
压入法硬度实验有以下几方面的优点,导致它在生产和科研中的广泛应用:
1、硬度实验设备简单,操作迅速方便;
2、实验对象可以是各类工程材料和各种尺寸的零件,无须加工专门的试样,
而且实验时一般不会破坏成品零件;
3、作为一种综合的性能参量,硬度与其他机械性能指标之间有着一定的内在
联系,从一定程度上,可用硬度实验结果估算相关性能而免做复杂的实验。
如:金属的硬度与强度指标之间存在着如下近似关系:
бb=K*HB
式中:бb —材料的抗拉强度;
K—系数,取值见表一;
HB—布氏硬度。
考;
5、硬度能敏感地反映材料的成分与组织结构的变化,可用来检验原材料和控
制冷热加工质量。
(一)布氏硬度:
布氏硬度实验是对试样施加一定大小的载荷P,将直径为D的钢球压入试样表面(如图1所示)保持一定时间,然后卸除载荷,根据钢球在试样表面上所压出的凹痕面积F凹求出平均应力值,以此作为硬度值的计量指标,用符号HB表示。
计算公式如下:
HB=P/F凹
式中:HB—布氏硬度;P—施加外力,N;F凹—压痕面积,mm2。
根据压痕面积和球面之比等于压痕深度h和钢球直径D之比的几何关系,可以求出:
F凹=πDh
式中:D—压头直径,mm;h—压痕深度,mm。
由于测量压痕直径d要比测定压痕深度h容易,而在数学表达式中可将h的改换成d 来表示,这样,在实际测量时,可由压痕直径d直接查表得到HB值。
当压头为淬火钢球时,硬度符号为HBS,适用于布氏硬度值低于450的金属材料;当
压头为硬质合金球时,硬度符号为HBW ,适用于布氏硬度值为450~650的金属材料。
由于金属材料有软有硬,所测工件有厚有薄,若只采用一种载荷和同一个压头直径,则可能对有些试样合适,而对另一些试样不合适,会发生整个压头陷入试样中或将试样压透的现象。
所以,在测定不同材料时应用不同的载荷P 和不同的直径D 的钢球。
但为了得到统一的、可以进行相互比较的数据,必须使D 和P 之间维持一定的比值关系,以保证所得到的压痕形状的几何相似关系。
经数学推导可知,只要满足P/D 2=常数,所得到的HB 值就是一样的,不同材料、不同载荷P 和压头直径D 所得到的HB 可以进行相互比较。
国标GB231-88对此进行了规定,具体实验数据和适用范围参见表一布氏硬度试验规范。
2.5倍,而距相邻压痕中心距离不小于压痕直径的4倍。
用读数显微镜测量压痕直径时,应从相互垂直的两个方向测量,精确到小数点后两位的毫米值,并取其算术平均值。
压痕直径之差应不大于较小直径的2%。
实验后压痕直径大小应在0.25D <d <0.6D 范围内,否则认为试验结果无效;试验后试样边缘与试样背面呈变形痕迹,则试验无效,这时均应重新选择试验条件重做。
(二)洛氏硬度:
洛氏硬度试验常用的压头为圆锥角1200、顶部曲率半径0.2MM 的金刚石锥体或直径D=1.588mm 的淬火钢球。
试验时先对试样施加初试验力F 0,在金属表面得一压痕深度h 0,以此作为测量压痕深度的基线,随后再施加主试验力F 1,此时压痕深度的增量为h 1。
金属在F 1作用下产生的总变形h 1中包括弹性变形和塑性变形。
当卸载后,总变形中的弹性变形恢复,使压头回升一段距离,于是得到金属在F 1作用下的残余压痕深度h (将此压痕深度h 表示成e ,其值以0.002为单位表示)。
e 值越大表示金属洛氏硬度越低,反之,则表明硬度越高。
为了照顾习惯上数值越大硬度越高的概念,用一常数k 减去e 来表示洛氏硬度值,并以符号HR 表示,即:
HR=k —e
当使用金刚石圆锥体压头时,常数k 定为100;当使用淬火钢球压头时,常数k 定位130。
实际测量洛氏硬度时,由于在硬度计的压头上方装有百分表,可直接测量出压痕深度,并可直接按上式换算出相应的硬度值。
因此,在实验过程中金属的洛氏硬度值可直接读出。
为了测定软硬不同的金属材料的硬度,在洛氏硬度计上可配有不同的压头与试验力,组合成几种不同的洛氏硬度标尺,每一种标尺用一个字母在HR 后注明。
我国常用的标尺有A 、B 、C 三种,其硬度值的符号分别用HRA 、HRB 、HRC 表示。
他们的试验条件、硬度值计算公式及应用实例如表二所示。
H
RC
140(1
372)
HRC=1
00-e
20~
67调质钢、淬火钢等H
RB
∮
1.588mm
淬火钢球
90(88
2)
HRB=1
30-e
25~
100
有色金属、退火及
正火钢等
三、实验设备、仪器和试样
1.硬度计。
布氏、洛氏硬度计;
2.读数显微镜。
最小分度值为0.01MM;
3.标准硬度块。
不同硬度方法的标准二等硬度块各一套;
4.试样。
制备试样时表面应平整、光滑,不应有氧化皮和污物,并应避免由于冷热加工而影响表面硬度。
四、实验方法及步骤
1.了解硬度计的构造、原理、使用方法、操作规程和安全注意事项。
见图一、二;
图一洛氏硬度计图二布氏硬度计2.对各种试样选择合适的实验方法和仪器,确定实验条件。
根据实验和实验条件选择压头和载荷(砝码),必要时根据试样形状更换实验台;
3.用标准硬度块校验硬度计。
校验的硬度值不应超过标准硬度块硬度值的3%(布氏)或1~1.5%(洛氏);
4.试样支撑面、工作台和压头表面应清洁。
将试样平稳地放在工作台上,保证在实验加载过程中不发生移动和翘曲。
实验力平稳地加在试样上,不得造成冲击和震动,施力方向与试样表面垂直。
保证载荷规定的时间,卸载后测量读数(布氏硬度)或直接读数(洛氏硬度),准确记录试验数据。
五、实验报告要求
1.说明本实验所用硬度计的型号、操作规程和注意事项;
2.说明实验方法及选择实验条件的原则;
3.列举实验结果,并加以分析;
4.说明硬度值的表示方法。
六、参考资料及附件
1.参考资料:
1)GB321-84金属布氏硬度试验方法
2)GB230-83金属洛氏硬度试验方法
2.附件:
压痕直径与布氏硬度值对照表
压
痕直
径
d0/mm
在下列载荷P/kgf
下的硬度值
(HB)
压
痕直
径
d0/mm
在下列载荷P/kgf
下的硬度值(HB)
压
痕直
径
d0/mm
在下列载荷P/kgf
下的硬度值(HB) 3
0D2
1
0D2
2
.5D2
3
0D2
1
0D2
2
.5D2
3
0D2
1
0D2
2
.5D2 2.
50
6
01
2
00
3.
65
2
77
9
2.3
2
3.1
4.
80
1
56
5
1.9
1
3.0
2.
55
5
78
1
93
3.
70
2
69
8
9.7
2
2.4
4.
85
1
52
5
0.7
1
2.7
2.
60
5
55
1
85
3.
75
2
62
8
7.2
2
1.8
4.
90
1
49
4
9.6
1
2.4
2.
65
5
34
1
78
3.
80
2
55
8
4.9
2
1.2
4.
95
1
46
4
8.5
1
2.2。