碳纳米管复合吸波材料研究进展
新型吸波材料研究进展

Ab s t r a c t Th i s p a p e r s umma r i z e s t h e c u r r e n t s i t u a t i o n o f t h e d e v e l o pme n t o f wa v e — a bs o r bi ng ma t e ia r l s . And t h e n o v e l wa v e— a b s o r bi n g ma t e r i a l s a r e l a i d a s t r o n g e mp h a s i s ,whi c h r e q ui r e s l i g h t ,t hi n,br o a d- ba n d a n d s t r o n g ma t e r i — a l s ,s uc h a s na n o — ma t e r i a l s a n d t h e l e f t — ha n d e d ma t e ia r l s . Mo r e o v e r ,t h e d e v e l o p i n g t r e n d o n n o v e l wa v e — a b s o r bi ng ma t e r i a l s i s p r o s p e c t e d .F u r t he r mo r e,s o me s u g g e s t i o n s h a v e b e e n p r o v i d e d f o r t h e d e v e l o p me n t o f t h e no v e l wa v e — a b— s o r b i n g ma t e r i a l s i n t h e f u t u r e . Ke y wo r d s S t e a l t h ma t e ia r l ,No v e l t y a b s o r b i n g ma t e r i a l ,Na n o ma t e r i a l ,L e t- f h a n de d ma t e ia r l
多壁碳纳米管增强复合材料研究

多壁碳纳米管增强复合材料研究多壁碳纳米管(multi-walled carbon nanotubes)是一种由许多同心壁构成的管状材料。
由于其卓越的力学性能和导电性能,多壁碳纳米管被广泛应用于增强复合材料中。
在过去的几十年里,人们对于多壁碳纳米管增强复合材料的研究进展迅速,在航空航天、汽车、医疗等领域都有着重要的应用。
首先,多壁碳纳米管增强复合材料具有极高的强度和刚度。
由于多壁碳纳米管独特的结构,其纳米尺度的直径和几微米的长度使其在弯曲和拉伸时表现出非常高的强度。
同时,多壁碳纳米管的刚度也非常高,能够有效地增加复合材料的刚度和稳定性。
这使得多壁碳纳米管增强复合材料在航空航天领域中得到了广泛应用,例如制造飞机和航天器结构件,能够增加它们的强度和耐久性。
其次,多壁碳纳米管增强复合材料还具有优异的导电性能。
由于多壁碳纳米管是一种碳基材料,具有良好的导电性,能够有效地改善复合材料的电导率。
这使得多壁碳纳米管增强复合材料在电子器件和传感器领域中具有广泛的应用前景。
例如,利用多壁碳纳米管增强复合材料制造的传感器可以实现高灵敏度和高响应速度,能够被广泛应用于环境监测、生物传感等领域。
此外,多壁碳纳米管增强复合材料还具有优异的热导性能。
由于多壁碳纳米管具有非常小的直径和较高的导热性,它们能够有效地将热量从一个地方传导到另一个地方,从而改善复合材料的热导率。
这使得多壁碳纳米管增强复合材料在热管理领域中有着广泛的应用。
例如,利用多壁碳纳米管增强复合材料制造的散热片可以增加散热效果,提高电子设备的工作效率和寿命。
然而,多壁碳纳米管增强复合材料的制备和性能调控仍面临一些挑战。
首先,多壁碳纳米管的高成本限制了其大规模应用。
目前,多壁碳纳米管的合成方法较为复杂,并且制备过程中会产生大量的有机溶剂和废弃物,对环境造成了一定的压力。
因此,降低多壁碳纳米管的成本,开发环境友好的制备方法是当前研究的重点之一。
另外,多壁碳纳米管增强复合材料的界面相互作用和分散性也是研究的难点。
关于碳纳米管的研究报告进展综述

关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。
这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。
之后,人们相继发现并分离出C70、C76、C78、C84等。
1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。
年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。
1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。
1996年,我国科学家实现了碳纳米管的大面积定向生长。
1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。
1999年,国的一个研究小组制成了碳纳米管阴极彩色显示器样管。
2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。
2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。
2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。
而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。
因此对碳纳米管制备工艺的研究具有重要的意义。
目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。
一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。
碳纳米管增强金属基复合材料的力学性能研究

碳纳米管增强金属基复合材料的力学性能研究近年来,碳纳米管(Carbon Nanotubes, CNTs)作为一种新型纳米材料,引发了广泛的研究兴趣。
由于其优异的力学性能和独特的结构,碳纳米管成为改善传统材料性能的理想增强剂。
本文旨在探讨碳纳米管增强金属基复合材料在力学性能方面的研究现状和发展趋势。
首先,碳纳米管作为增强剂,可以显著改善金属基材料的强度和硬度。
研究证实,当碳纳米管掺杂在金属基复合材料中时,由于其高强度和刚度,可以有效抵抗金属晶粒的滑移和扩散,从而提高材料的抗拉强度和屈服强度。
同时,碳纳米管还能增加复合材料的硬度,因为其针状结构可阻碍位错的运动,从而使材料更难发生塑性变形。
其次,碳纳米管对金属基复合材料的韧性和断裂韧度也有显著的影响。
相比于纯金属材料,碳纳米管可以增加复合材料的断裂韧度。
这是因为碳纳米管具有高强度和高韧性的特点,能够吸收和分散外载荷,在复合材料中形成桥梁效应,提高其韧性。
此外,由于碳纳米管材料表面的高能位缺陷,能够吸附并扩散裂纹的尖端,进一步抑制裂纹的扩展速率,从而提高复合材料的断裂韧度。
不仅如此,碳纳米管还可以提高金属基复合材料的疲劳寿命和耐蚀性。
由于其高强度、高模量和良好的润湿性,碳纳米管可以抵抗金属表面的应力腐蚀和疲劳裂纹扩展,延长金属基复合材料的使用寿命。
同时,碳纳米管还能够吸附和吸收金属表面的有害离子和分子,提高复合材料的耐腐蚀性能。
然而,在实际应用中,碳纳米管增强金属基复合材料还面临一些挑战。
首先,碳纳米管的分散性是影响复合材料力学性能的重要因素。
碳纳米管的高表面能使其易于团聚,在复合材料中形成团簇,导致性能不稳定。
因此,如何实现碳纳米管在金属基复合材料中的均匀分散是当前亟待解决的课题。
此外,碳纳米管与金属基材料之间的界面相互作用也是影响复合材料性能的关键因素之一。
界面的相容性和结合强度直接影响复合材料的力学性能。
寻找合适的界面改性方法和结构设计,以增加碳纳米管与金属基材料之间的结合力,实现优化的界面效果,是进一步提高复合材料性能的重要课题。
碳纳米管的研究及展望

碳纳米管的研究及展望 (1)碳纳米管的研究及展望碳纳米管(CNTS)[1]作为一种一维纳米材料,重量较轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能[2]。
近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。
碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约0.34纳米,直径一般为2~20纳米。
并根据碳六边形沿轴向的不同取向可以将其分为锯齿形、扶手椅型和螺旋型三种。
其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。
碳纳米管可以看做是石墨烯片层卷曲而成,因此如果按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管)和多壁碳纳米管(或多层碳纳米管),多壁管在形成的时候,层与层之间易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷[3]。
与多壁管相比,单壁管直径大小的分布范围小,缺陷少,具有更高的均匀一致性。
单壁管典型直径在0.6-2纳米,多壁管最内层可达0.4纳米,最粗可达数百纳米,但典型管径为2-100纳米[4]。
一碳纳米管的性能碳纳米管因其小尺寸效应和独特的分子结构,具有优异的物理化学性能。
一维分子材料和六边形完美连接结构使碳纳米管具有质量轻、强度高的特点;较大长径比及sp2、sp3杂化几率不同使碳纳米管具有优良的弹性;直径、螺旋角以及层间作用力等存在的差异使碳纳米管兼具导体和半导体的特性;独特的螺旋状分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高得多的吸收率。
此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性[5]。
碳纳米管的物理性质1、高的机械强度和弹性。
2、强度≥100倍的钢,密度≤1/6倍的钢3、优良的导体和半导体特性(量子限域所致)4、高的比表面积5、强的吸附性能6、优良的光学特性7、发光强度随发射电流的增大而增强。
碳纳米管载体复合材料的研究

c l n h sc la d c e c lp o e t s Th r p r t n a d r s a c f t k n h a b n n n t b s a h a r r el tp y i n h mia r p ri . e p e a a i n e e r h o a ig t e c r o a o u e s t e c r i e a e o e c mp st tras h x r u e n t ra r s a c e s n i i t r s sa d a t n in I h s a t l , h e e r h o o i ma e il ar a o s d ma y ma e il e e r h r ifn t i e e t n te t . n t i ri e t e r s a c e e en o c s a u f h o me a , tla d mea x d o o n t ras wih c r o a o u e st e c rir i a ay e , n t t s o e n n t lme a n t l ie c mp u d ma e i l t o t a b n n n t b sa h a r s n lz d a d e
碳 纳米 管载体复合 材料 的研 究 丁 冬等
・ 7・ 7
碳 纳 米 管 载 体 复 合 材 料 的研 究
丁 冬 章 桥 新 , 晓辉 , 王
( 武 汉 理 工 大学 材 料 科 学 与 工 程 , 汉 4 0 7 ; 武汉 理 工 大 学 机 电 程 学 院 , 汉 4 0 7 ) 1 武 3 00 2 武 30 0
t e c mp u d a s r i g ma e i l a ig c r o a o u e st ec r ir i d s u s d wi mp a i. i la e u l h h o o n b o bn t ra t k n a b n n n t b sa h a re s ic s e t e h ss S mu tn o sy t e h
碳纳米管聚合物基复合材料力学性能研究及应用前景

碳纳米管/聚合物基复合材料力学性能研究及应用前景摘要:碳纳米管以其独特的化学性能和物理性能成为复合材料的增强体,目前在许多科学研究领域中得到应用。
本文介绍了碳纳米管修饰的高分子复合材料在国内外的研究现状,进一步对几种碳纳米管/聚合物基复合材料的结构和力学性能进行综述。
在此基础上,分析并展望了今后碳纳米管/聚合物复合材料的发展趋势。
关键词:碳纳米管高分子复合材料力学性能Abstract:Carbon Nanotubes(CNT) become reinforced composite materials due to their unique chemical and physical properties , it applied in many scientific research currently. This paper introduces the current situation of CNT modified polymer composites in domestic and abroad, the structural and mechanical properties of several CNT / polymer composites were further reviewed . On this basis, we analyzes and prospects the future development trend of carbon CNT / polymer composites.Key words:carbon nanotubes,polymer,composites, the properties of mechanical碳纳米管(CNT)又名巴基管,是一种由管状的同轴纳米管组成的碳分子。
它由Lijima[1]在1991年发现,作为石墨、金刚石等碳晶体家族的新成员,由于其独特结构因而具有许多特异的物理性能,所以受到了各个领域科学家的高度重视,并且成为近年来材料领域的研究热点。
碳纳米管的制备方法研究进展

碳纳米管的制备方法研究进展一、本文概述随着纳米科技的飞速发展,碳纳米管作为一种具有独特结构和优异性能的一维纳米材料,受到了广泛关注。
碳纳米管因其出色的电学、力学、热学等特性,在能源、电子、生物医疗等领域具有巨大的应用潜力。
然而,碳纳米管的规模化制备及其性能优化仍是当前研究的热点和难点。
本文旨在综述近年来碳纳米管制备方法的研究进展,分析不同制备方法的优缺点,探讨未来可能的发展方向,以期为推动碳纳米管的实际应用提供理论支持和技术指导。
文章首先回顾了碳纳米管的基本结构和性质,为后续研究方法的介绍奠定基础。
随后,重点介绍了化学气相沉积法、电弧放电法、激光烧蚀法等多种碳纳米管制备方法的研究进展,分析了这些方法在制备过程中的关键因素及其对碳纳米管性能的影响。
文章还关注了新兴制备方法如溶液法、模板法等在碳纳米管制备中的应用,以及这些方法的创新点和挑战。
通过对已有文献的梳理和评价,本文总结了当前碳纳米管制备领域的主要成果和不足,展望了未来的发展趋势。
未来,随着科学技术的不断进步,碳纳米管的制备方法将更加多样化、高效化,有望为碳纳米管的产业化发展奠定坚实基础。
二、碳纳米管的基本性质碳纳米管(Carbon Nanotubes,CNTs)是一种由碳原子以特定方式排列形成的一维纳米材料,自从1991年被首次发现以来,因其独特的结构和性质,已成为纳米科学和技术领域的研究热点。
碳纳米管的基本性质主要体现在其结构、电学、热学和力学性能上。
结构上,碳纳米管可以看作是由单层或多层石墨烯片卷曲而成的无缝管状结构,这种独特的结构赋予了碳纳米管出色的物理和化学性质。
电学方面,碳纳米管因其特殊的电子结构和量子限域效应,表现出优异的导电性能,既可以是金属性,也可以是半导体性,这取决于其直径和螺旋度。
热学方面,碳纳米管具有极高的热导率,使其成为潜在的散热材料。
力学性能上,碳纳米管具有超高的强度和模量,比钢强而轻,这使得它在复合材料增强和纳米机械等领域具有广阔的应用前景。
碳纳米管的研究进展及应用

碳纳米管的研究进展及应用一引言1.1 纳米材料纳米材料是近年来受到人们极大关注的新型领域,纳米材料的概念形成于20世纪80年代,在上世纪90年代初期取得较大的发展。
广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料[1]。
当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。
纳米材料具有四大特点: 尺寸小、比表面积大、表面能高、表面原子比例大。
从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在国防、电子、化工、催化剂、医药等各种领域具有重要的应用价值。
1.2 碳纳米管碳是自然界分布非常普遍的一种元素。
碳元素的最大的特点之一就是存在多种同素异形体,形成许许多多的结构和性质完全不同的屋子。
长期以来,人们一直以为碳的晶体只有两种:石墨和金刚石。
直到1985年,英国科学家Kroto 和美国科学家Smalley在研究激光蒸发石墨电极时发现了碳的第三种晶体形式C60[2],从此开启了人类认识碳的新阶段。
1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)发现了多壁碳纳米管(MultiWalled Carbon Nanotubes ,MWNTs),直径为4-30nm,长度为1um。
,最初称之为“Graphite tubular”。
1993年单壁碳纳米管也被发现(Single-Walled Carbon Nanotubes ,SWNTs),直径从0.4nm到3-4nm,长度可达几微米。
碳纳米管(CNT)[3]又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。
碳纳米管复合材料在电磁屏蔽中的应用

碳纳米管复合材料在电磁屏蔽中的应用近年来,随着无线通信、雷达系统、电子设备等领域的迅速发展,电磁波辐射对环境和人体健康的影响越来越受到关注。
为了有效地防护电磁辐射,碳纳米管复合材料被广泛应用于电磁屏蔽领域。
本文将重点探讨碳纳米管复合材料在电磁屏蔽中的应用现状、特性和发展前景。
1. 碳纳米管复合材料的基本概念碳纳米管是由碳原子构成的纳米级管状结构,具有良好的导电性和导热性能。
碳纳米管复合材料是将碳纳米管与其他材料(如聚合物、金属等)进行复合制备而成,既发挥了碳纳米管的优异性能,又兼有其他材料的优点。
2. 碳纳米管复合材料的电磁屏蔽机制碳纳米管复合材料在电磁屏蔽中的作用机制主要包括吸收、反射和散射。
碳纳米管可以通过吸收电磁波的能量将其转化为热能,从而实现电磁波的屏蔽效果。
此外,碳纳米管还可以通过反射和散射电磁波的方式将其导向其他方向,从而降低电磁波在材料内的传播。
3. 碳纳米管复合材料的制备方法制备碳纳米管复合材料的方法主要包括机械混合法、溶液浸渍法、电泳沉积法等。
机械混合法是将碳纳米管和基质材料进行机械搅拌,使其均匀混合;溶液浸渍法是将碳纳米管分散在溶液中,再将基质材料浸渍于其中;电泳沉积法是利用碳纳米管在电场作用下沉积到基质表面。
不同的制备方法可以得到具有不同性能的碳纳米管复合材料。
4. 碳纳米管复合材料在电磁屏蔽中的应用碳纳米管复合材料在电磁屏蔽领域具有广泛的应用前景。
首先,由于碳纳米管具有优异的导电性能,可以用于制备导电性能良好的电磁屏蔽材料。
其次,碳纳米管复合材料具有较低的密度和良好的力学性能,可用于制备轻量化的电磁屏蔽材料。
此外,碳纳米管复合材料还可以在微波和毫米波频段提供较高的电磁屏蔽效果,适用于无线通信和雷达系统等领域。
5. 碳纳米管复合材料的发展前景随着电子技术的不断进步和应用领域的扩大,对电磁屏蔽材料的需求也越来越大。
碳纳米管复合材料作为一种具有优异性能的材料,在电磁屏蔽领域有着广阔的应用前景。
碳纳米管综述

碳纳米管综述碳纳米管的研究进展自20世纪90年代初,日本NEC公司的Sumio Iijima 发现碳纳米管(CNT)以来,其特异的力学和电学性质引发了世界范围内的研究热潮,碳纳米管逐渐成为纳米材料中的明星,得到众星捧月般的关注。
当前,碳纳米管的研究还处在早期阶段,研究工作主要集中在它的生长和表征上,到碳纳米管产品大量投放市场还需要一段时间。
这并不奇怪,因为通常一种新兴事物从发现到投放市场需要10年左右时间。
人们将跨越碳纳米管的奇妙性质研究阶段,而着手解决从材料到器件、从器件到系统等诸多实际问题。
相信在不远的将来,碳纳米管会走进我们的日常生活,成为我们工作和生活中不可或缺的一部分。
我国的碳纳米管研究队伍十分庞大,从事碳纳米管研究的高校和科研院所不下50家,人数不下2000人。
国家有过部门高度重视碳纳米管研究,科技部973计划、863计划以及刚刚启动的纳米重大研究计划、国家自然科学基金、中国科学院等对此均有部署。
我国科研人员发表的相关学术论文逾4400篇,占纳米管论文总数的21%以上,这反映了国内碳纳米管研究的活力和实力。
碳纳米管的分类石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。
单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。
SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。
因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。
多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。
其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。
多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。
多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。
碳基吸波材料的研究进展

2、市场需求
随着无线通信、航空航天、军事等领域的快速发展,对吸波材料的需求日益 增长。尤其是在5G、6G通信技术的发展中,由于其高频段的特点,对吸波材料的 要求更加严格。因此,市场对高效、轻质、环保的碳基碳基吸波材料方面取得了许多重要成果。例如,中国科 学院上海硅酸盐研究所成功制备出了具有优异吸波性能的碳化硅纳米线,其吸收 电磁波的频率范围较宽,具有很好的应用前景。此外,还有研究者在石墨烯中引 入磁性元素,制备出了具有磁性的石墨烯复合材料,从而拓展了其应用范围。
1、卫星导航系统
在卫星导航系统中,由于高频率电磁波的干扰,会对定位精度和稳定性产生 不利影响。碳基吸波材料可以有效地吸收这些干扰电磁波,提高卫星导航系统的 性能。
2、光电探测器
光电探测器在军事、航空航天、环境监测等领域有着广泛应用。在这些领域 中,探测器需要尽可能地减少外部电磁场的干扰,以获得准确的光电信号。碳基 吸波材料可以有效地吸收电磁场,提高光电探测器的稳定性和可靠性。
应用前景
由于碳基复合吸波材料具有优异的电磁吸收性能和稳定的物理化学性质,因 此具有广泛的应用前景。例如,它可以应用于军事装备中,吸收雷达波和无线电 信号,提高装备的隐身性能;可以应用于室内装饰材料中,吸收电磁辐射,保护 人体健康;可以应用于汽车、高铁等交通工具中,吸收电磁噪声,提高乘坐舒适 度;还可以应用于电子设备中,吸收电磁干扰,提高设备的稳定性和可靠性。
参考内容
引言:
随着现代科技的快速发展,电磁波的应用越来越广泛,与此电磁波的污染问 题也日益严重。为了有效吸收和衰减电磁波,吸波材料成为了研究的热点。碳纳 米管作为一种新型的纳米材料,具有优异的物理化学性能,近年来也被广泛应用 于吸波材料领域。本次演示将详细介绍碳纳米管吸波材料的研究进展。
碳纳米管的制备、性质和应用进展

在化学传感器和生物传感器领域,碳纳米管的敏感度高、响应速度快,可检测 多种化学物质和生物分子。例如,多壁碳纳米管可检测空气中的有害气体分子, 单壁碳纳米管可检测生物体内的病毒和细菌。这些应用为化学和生物分析提供 了新的检测手段。
在硬材料制备领域,碳纳米管因其卓越的力学性能和热导率而被用于制备高性 能复合材料和耐磨材料。例如,将碳纳米管添加到塑料或橡胶中可显著提高材 料的强度、韧性和热稳定性。此外,碳纳米管还被用于制造刀具和轴承等耐磨 器件,其高硬度和高耐磨性使得这些器件的性能得以显著提升。
谢谢观看
碳纳米管的电子结构研究表明,它们具有金属性和半导体性两种类型,具体取 决于碳纳米管的层数和手性。碳纳米管的导电性能与金属导线相似,具有高电 导率。同时,碳纳米管还具有优异的热导率,可高达6000 W/m·K,远高于铜。
碳纳米管的应用:
由于其独特的结构和性能,碳纳米管在电子、化学传感器、生物传感器和硬材 料制备等领域具有广泛的应用前景。
3、生物医学领域
在生物医学领域,碳纳米管膜也展现出广阔的应用前景。由于其生物相容性和 良好的电性能,碳纳米管膜可以作为药物载体和细胞培养基底。研究表明,将 药物包裹在碳纳米管膜内,可以实现对药物的精确控制和靶向输送。同时,碳 纳米管膜还可以作为细胞生长支架,促进细胞的黏附和增殖。
4、电子器件领域
然而,尽管碳纳米管的研究已经取得了许多成果,但仍存在一些问题需要进一 步探讨。例如,碳纳米管的制备过程中,如何实现规模化生产并降低成本;在 性质方面,如何控制碳纳米管的形貌和性能;在应用方面,如何将碳纳米管更 好地应用到实际生产和科学研究中。
同时,随着科技的不断进步和创新,碳纳米管的研究和应用前景也日益广阔。 未来,可以进一步探索碳纳米管在其他领域的应用,如能源、环保、生物医学 等。此外,随着人工智能和大数据等技术的快速发展,可以预见碳纳米管的研 究和应用将越来越受到智能化和数字化的影响,这将会为碳纳米管的研究和应 用带来更多的机遇和挑战。
碳纳米管增强聚合物复合材料的制备与性能研究

碳纳米管增强聚合物复合材料的制备与性能研究简介:碳纳米管是一种具有优异力学性能和导电性的纳米材料,已被广泛应用于聚合物复合材料中。
本文旨在介绍碳纳米管增强聚合物复合材料的制备方法、性能研究与应用前景。
1. 碳纳米管的制备方法1.1 化学气相沉积法化学气相沉积法是目前最常用的碳纳米管制备方法之一。
通过控制反应温度、反应压力和催化剂的选择和浓度,可以获得不同直径、长度和结构的碳纳米管。
1.2 电弧放电法电弧放电法是碳纳米管制备的另一种常用方法。
通过在高温、高压的条件下,将碳电极电弧放电,生成包含碳纳米管的石墨颗粒。
随后,通过化学处理将碳纳米管分离出来。
1.3 碳纳米管纤维拉伸制备法碳纳米管纤维拉伸制备法通过对多股碳纳米管进行拉伸和整合,形成具有优异性能的连续纤维。
2. 碳纳米管增强聚合物复合材料的制备2.1 碳纳米管的表面改性为了增加碳纳米管与聚合物基体的相容性和界面结合强度,可以对碳纳米管进行表面改性。
常用的表面改性方法包括氧化、还原、聚合等。
2.2 碳纳米管的分散碳纳米管在聚合物基体中的均匀分散对于复合材料的性能至关重要。
常用的碳纳米管分散方法包括超声处理、表面活化剂包覆等。
2.3 聚合物基体的选择不同类型的聚合物基体对于碳纳米管增强复合材料的性能有重要影响。
常用的聚合物基体包括聚酰胺、聚酰亚胺、聚酯等。
2.4 制备工艺的优化通过调节制备工艺参数,如温度、压力和搅拌速度等,可以优化碳纳米管增强聚合物复合材料的结构与性能。
3. 碳纳米管增强聚合物复合材料的性能研究3.1 机械性能碳纳米管的引入可以显著提升聚合物复合材料的力学性能。
研究表明,适量添加碳纳米管可以提高复合材料的强度、刚度和韧性。
3.2 导电性能碳纳米管具有优异的导电性能,可以赋予聚合物复合材料良好的导电特性。
研究表明,适量添加碳纳米管可以显著提高复合材料的电导率和导电稳定性。
3.3 热稳定性碳纳米管的引入可以提高聚合物复合材料的热稳定性,延长其使用寿命。
碳纳米管/桑皮纤维复合材料吸波性能研究

极 化 、 子 极 化 、 子 极 化 或 界 面 极 化 来 吸 收 电 磁 波 ; 者 具 有 离 分 后 较 高 的 磁 损 耗 正 切 角 , 用 磁 滞 损 耗 、 壁 共 振 和 自然 共 振 、 利 畴 后
一
由式 ( ) 2计算得 到的反射 率的分贝数越低 , 则表示 材料在 某
・
6 8・
纺织科技 避展
20 年第 6 08 期
碳 纳 米 管/ 皮 纤维 复合 材 料 吸波 性 能研 究 桑
董 震 , 志 荣 丁
( 南通大学 , 江苏 南通 2 6 0 ) 2 0 7
摘
要: 用环氧树脂将碳纳米管和 桑皮 纤维结合一起制成复合材料 , 究 了碳纳 米管材料和 桑皮纤 维材 料 的吸波性 研
—
一
一
—
在 常温常压下 , 环氧树脂 、 将 乙二胺 、 邻苯二甲酸二 丁酯 ( 总
质量为 G ) 1在模具中按质量 比 4: : 的比例充分混合搅拌。 1 1
3 n 按一定 比例加人碳纳米管 和桑皮 纤维 ( Omi 后 总质量 为 G ) 2, 均匀搅拌后 在 8 O℃下热烘 6h 固化成 型。其 中乙二 胺为 固化 , 剂, 邻苯二 甲酸二 丁酯 为增 韧剂 , : 一1: 。 2
波 段 能 吸 收 电磁 波 的效 果 越 好 。 电磁 波 的 有 效 吸 收 频 宽 以 低
吸波材料的研究现状与进展

二、铁氧体吸波材料
当前吸波材料发展的主体仍是磁性材料。铁氧体价格便宜、化 学稳定性好,是发展最早、较为成熟的吸波材料。按微观结构 的不同,铁氧体可分为尖晶石型、石榴石型和磁铅石型,它们 均可作吸波材料。许多研究表明,三种铁氧体中六角晶系磁铅 石型吸波材料的性能最好。六角晶系磁铅石型铁氧体为片状颗 粒,而片状颗粒是吸收剂的最佳形状;其次六角晶系磁铅石型 铁氧体具有较高的磁性各向异性等效场,因而有较高的自然共 振频率。
三、莫来石吸波材料
莫来石陶瓷具有耐高温、抗氧化、低热导率、低膨胀系数、低 蠕变、低弹性模量、高温下强度不会衰减等优良特性,加之化 学稳定性好、抗腐蚀耐磨、来源方便、价格便宜,可作为优质 的高温结构材料,在航空航天领域有着极好的应用前景,其适 中的复介电常数将有利于制备出具有良好力学性能和吸波性能 的高温吸波材料。莫来石陶瓷复介电常数的实部和虚部与莫来 石陶瓷的烧结致密度、烧结助剂有关。烧结致密度升高时,莫 来石陶瓷复介电常数的实部和虚部均升高,添加MgO烧结助剂 后,莫来石陶瓷复介电常数的实部和虚部也有所升高,直接提 高材料的吸波性能;且其复介电常数无明显频散效应。
二、碳纳米管吸波材料
碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸 效应和表面界面效应等使其具有奇特的光、电、磁、声等性质, 从而使得碳纳米管的性质不同于一般的宏观材料。一般认为, 纳米吸波材料对电磁波能量的吸收是由晶格电场热运动引起的 电子散射、杂质和晶格缺陷引起的电子散射,以及电子与电子 之间的相互作用等3种效应决定的。碳纳米管具有特殊的螺旋 结构和手征性,这也是碳纳米管吸收微波的重要机理。碳纳米 管具有特殊的电磁效应,表现出较强的宽带吸收性能,而且具 有比重小、高温抗氧化、介电性能可调、稳定性好等优点。
碳纳米管复合材料的3D打印技术研究进展

碳纳米管复合材料的3D打印技术研究进展一、碳纳米管复合材料的特点碳纳米管复合材料是一种具有优异性能的复合材料,主要由碳纳米管和其他材料(如聚合物、金属等)组合而成。
碳纳米管具有极其优异的力学性能、导电性能和热传导性能,因此可以大幅度地改善复合材料的性能。
碳纳米管复合材料还具有轻质、高强度、耐磨性好等特点,因此被广泛应用于航空航天、汽车制造、电子产品等领域。
二、3D打印技术在碳纳米管复合材料制备中的应用3D打印技术是一种通过逐层堆积材料来制造复杂结构的制造技术,由于其可以实现复杂结构的制造、节约材料和能源、快速制造等优点,因此在现代制造业中得到了广泛的应用。
而在碳纳米管复合材料的制备中,3D打印技术也有着很好的应用前景。
3D打印技术可以精确控制碳纳米管复合材料的成型。
在传统的制备方法中,碳纳米管与其他材料的分布往往难以控制,而采用3D打印技术可以通过打印路径和打印参数来控制碳纳米管与其他材料的分布,从而实现对碳纳米管复合材料性能的调控。
三、碳纳米管复合材料的3D打印技术研究进展目前,针对碳纳米管复合材料的3D打印技术研究已经有了一些进展。
在材料选择方面,研究人员通过改进打印材料的配方,使得碳纳米管与其他材料有更好的相容性,从而实现了碳纳米管复合材料的3D打印。
在加工工艺方面,研究人员通过改进打印参数和打印路径,实现了对碳纳米管复合材料的精确控制和定制化制造。
碳纳米管复合材料的3D打印技术研究正在取得一些进展,特别是在材料选择、加工工艺和新技术的研究方面。
在未来,通过不断的研究和探索,相信碳纳米管复合材料的3D打印技术将会得到更好的发展,为碳纳米管复合材料的制备和应用提供更好的技术支撑。
国外碳纳米管复合材料研究现状

国外碳纳米管复合材料研究现状碳纳米管自被发现以来,因其独特的结构和优异的性能,成为了材料科学领域的研究热点。
特别是在复合材料领域,碳纳米管的加入为材料性能的提升带来了新的契机。
国外在碳纳米管复合材料的研究方面取得了众多显著的成果,本文将对其进行详细阐述。
一、碳纳米管的特性碳纳米管具有极高的强度和韧性。
其强度可达到钢铁的数十倍,同时具有出色的柔韧性,能够承受较大的变形而不断裂。
此外,碳纳米管还具有优异的电学性能,电导率极高,可与金属相媲美。
良好的热学性能也是其特点之一,热导率高,散热效果好。
这些特性使得碳纳米管在复合材料中具有极大的应用潜力。
二、国外碳纳米管复合材料在不同领域的研究现状1、航空航天领域在航空航天领域,对材料的性能要求极为苛刻。
国外研究人员致力于将碳纳米管复合材料应用于飞机结构件中,以减轻重量并提高强度。
例如,美国的研究团队成功开发出了碳纳米管增强的碳纤维复合材料,用于飞机机翼的制造,不仅减轻了结构重量,还提高了抗疲劳性能和耐腐蚀性。
2、电子领域在电子领域,碳纳米管复合材料可用于制造高性能的电子器件。
日本的科研人员成功制备出了碳纳米管与半导体材料复合的薄膜,用于制造柔性显示屏,具有更高的分辨率和更低的能耗。
此外,碳纳米管复合材料还可用于制造高效的电池电极,提高电池的充放电性能和循环寿命。
3、能源领域能源领域也是碳纳米管复合材料的重要应用方向。
德国的研究小组开发出了碳纳米管与聚合物复合的质子交换膜,用于燃料电池中,提高了燃料电池的功率密度和稳定性。
在太阳能电池方面,国外研究人员将碳纳米管与光伏材料复合,提高了太阳能电池的光电转换效率。
4、生物医学领域在生物医学领域,碳纳米管复合材料具有广阔的应用前景。
美国的科研团队研发出了碳纳米管与生物活性分子复合的材料,用于药物输送和组织工程。
碳纳米管的高比表面积和良好的生物相容性,使得药物能够更有效地负载和释放,促进组织的修复和再生。
三、制备方法1、溶液共混法这是一种较为常见的方法,将碳纳米管和基体材料分散在溶剂中,通过搅拌、超声等手段使其均匀混合,然后去除溶剂得到复合材料。
CNTsNi-Fe纳米复合吸波材料的制备及微波吸收性能研究的开题报告

CNTsNi-Fe纳米复合吸波材料的制备及微波吸收性能研究的开题报告一、研究背景随着无线通信和雷达技术的飞速发展,对于微波吸收材料的需求越来越高。
纳米材料作为一种具有特殊结构和性质的新型材料,已经成为各个领域的研究热点之一。
因此,制备性能优良的纳米复合吸波材料具有重要的应用价值。
碳纳米管(CNTs)作为一种具有极强的导电性、导热性和机械强度的纳米材料,已经被广泛应用于制备吸波材料中。
同时,过渡金属氧化物纳米颗粒作为纳米复合材料的一种重要组成部分,具有良好的吸波性能和各自的独特特性。
因此,CNTs与过渡金属氧化物的复合材料被视为理想的吸波材料。
本研究旨在制备CNTsNi-Fe纳米复合吸波材料,并研究其微波吸收性能,为纳米吸波材料的开发和应用提供理论基础和实验支持。
二、研究内容1. 制备CNTsNi-Fe纳米复合吸波材料。
2. 研究CNTsNi-Fe纳米复合吸波材料的微观结构和性质。
3. 测量CNTsNi-Fe纳米复合吸波材料的微波吸收性能,并优化其吸波性能。
4. 分析CNTsNi-Fe纳米复合材料吸收微波的机理。
三、研究方法1. 制备CNTsNi-Fe纳米复合吸波材料: 采用化学还原法制备CNTs的基础上,将制备好的Ni-Fe氧化物纳米颗粒分散于CNTs表面,形成CNTsNi-Fe复合材料。
2. 研究CNTsNi-Fe纳米复合吸波材料的微观结构和性质: 采用扫描电子显微镜、透射电子显微镜和X射线衍射仪等手段表征材料的微观结构和性质。
3. 测量CNTsNi-Fe纳米复合吸波材料的微波吸收性能: 采用矢量网络分析仪测量材料的微波吸收性能,进一步优化材料的吸波性能。
4. 分析CNTsNi-Fe纳米复合材料吸收微波的机理: 基于计算机模拟和传输线理论,对CNTsNi-Fe纳米复合材料吸波机理进行研究和分析,探讨吸波材料性能的升级路径。
四、研究意义本研究通过制备CNTsNi-Fe纳米复合吸波材料,并研究其微波吸收性能,有助于深入了解CNTs和过渡金属氧化物纳米颗粒的吸波机理,探索纳米材料在吸波材料中的应用前景。
高性能碳基电磁屏蔽及吸波材料的研究

高性能碳基电磁屏蔽及吸波材料的研究一、概述随着现代电子技术的飞速发展,电磁辐射问题日益突出,电磁屏蔽和吸波材料在军事、航空航天、通信、电子设备等领域的应用越来越广泛。
碳基电磁屏蔽及吸波材料因其轻质、高强度、高导电性、高导热性、良好的化学稳定性等优点,受到了广泛关注。
高性能碳基电磁屏蔽及吸波材料的研究不仅有助于解决日益严重的电磁污染问题,而且对于推动新材料领域的发展具有重要意义。
目前,高性能碳基电磁屏蔽及吸波材料的研究主要集中在碳纳米管、石墨烯、碳纤维等碳材料的应用上。
这些碳材料具有优异的电磁性能,如高电导率、高电磁屏蔽效能、良好的吸波性能等,使得它们在电磁屏蔽和吸波领域具有广阔的应用前景。
高性能碳基电磁屏蔽及吸波材料的制备技术仍然面临一些挑战,如制备工艺复杂、成本较高、性能稳定性等问题。
本文旨在探讨高性能碳基电磁屏蔽及吸波材料的研究进展,分析其制备技术、性能特点以及应用前景。
通过综述相关文献,本文旨在为高性能碳基电磁屏蔽及吸波材料的研发和应用提供理论支持和参考。
同时,本文还将探讨未来高性能碳基电磁屏蔽及吸波材料的发展趋势和挑战,以期推动该领域的研究和发展。
1. 电磁辐射污染问题的严重性随着现代科技的飞速发展,电磁辐射污染问题日益凸显,成为亟待解决的环境污染问题之一。
电磁辐射污染主要来源于各类电子设备、通信设施、广播电视塔等,它们在工作过程中会产生不同频率的电磁波,对周围环境造成污染。
这种污染不仅会影响人类健康,如引发头痛、失眠、记忆力减退等症状,还可能对电子设备产生干扰,影响其正常运行。
电磁辐射污染问题的严重性不容忽视。
一方面,随着电子产品的普及和通信技术的快速发展,电磁辐射污染的范围和强度不断扩大,对人类健康的潜在威胁日益加剧。
另一方面,电磁辐射还可能对生态环境造成长期影响,如影响植物生长、干扰动物迁徙等。
研究和开发高性能的电磁屏蔽及吸波材料,对于减少电磁辐射污染、保护人类健康和生态环境具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管复合吸波材料研究进展电磁波吸收材料在国防民生等领域有重要的应用,早期的吸波材料主要采用的是铁氧体、磁性金属微粉等,这些材料具有高密度,窄吸收频带等缺点,极大地限制了其实际应用。
为实现对电磁波“薄轻宽强”的吸收效果,研发新型高效吸波材料意义重大。
文章对近年来碳纳米管复合吸波材料的发展状况作了简要的介绍,并对未来碳纳米管基复合吸波材料的发展趋势进行了展望。
标签:电磁波吸收;碳纳米管基;复合材料Abstract:Electromagnetic wave absorbing materials have important applications in the fields of national defense and people’s livelihood. The early absorbing materials mainly used ferrite,magnetic metal powder and so on. These materials have the shortcomings of high density,narrow absorption frequency band and so on. It greatly limits its practical application. In order to realize the absorbing effect of electromagnetic wave “thin,light,wide and strong”,it is of great significance to develop a new type of high efficient absorbing material. In this paper,the development of carbon nanotube composite absorbing materials in recent years is briefly introduced,and the development trend of carbon nanotube based composite absorbing materials in the future is prospected.Keywords:electromagnetic wave absorption;carbon nanotube matrix;composite materials引言电子信息技术的迅猛发展使电磁环境的改善和兼容问题变得日益重要。
吸波材料在电磁环境改善,电磁防护等军事、民生领域的应用价值越来越突出,研发新型高效电磁波吸收材料意义重大。
早期,铁氧体,磁性金属微粉等高磁损耗材料是吸波材料的研究热点。
但是其具有密度大,吸波频带窄,易被氧化腐蚀等缺点,难以满足现代复杂多样的综合性能要求,因而在实际应用中受到极大限制。
随着技术的不断进步,吸波材料的综合性能也越来越强。
具有轻质,耐腐,高强度等优势的碳纳米管及其复合吸波材料吸引了众多研究人员关注。
1 碳纳米管复合吸波材料研究现状1.1 碳纳米管-聚合物复合材料碳纳米管具有极大的长径比和小尺寸效应,其电损耗性能尤为突出。
在量子限域效应作用下,碳纳米管的电子沿轴向方向移动,赋予碳纳米管金属和半导体的性质,利于电磁波的吸收。
将碳纳米管与纳米粒子,高分子聚合物等材料复合可实现各组分的优势互补,更加有效的利用碳纳米管的特性,提高复合材料的吸波性能。
导电聚合物中的聚苯胺,聚吡咯等,兼具无机导体和金属的特性,同时又具有有机高分子聚合物的加工性和较好的力学性能,与碳纳米管复合后制备出的导电聚合物充分结合二者的优势,在力学,电学性能等方面有了进一步的提高。
在原位聚合法制备的聚苯胺/多壁碳纳米管复合吸波材料中,聚苯胺以针状形式黏附在多壁碳纳米管壁上,非均相界面产生的极化作用,使复合材料的导电性得到提升,并且在2-18GHz频率范围内,具有优越的电磁损耗性能,相比单独的碳纳米管成分,吸波效果显著,且反射损耗随着聚苯胺的质量分数变化而变化。
因此,可以通过调节聚苯胺和碳纳米管的量来获得在特定范围内吸波性能可调的复合材料。
S.K.Dhawan课题组采用原位聚合法制备了高导电聚苯胺(PANI)-多壁碳纳米管(MWCNT)纳米复合材料。
FTIR和XRD显示随着MWCNT相的增加,PANI的特征谱带和峰发生明显移动,表明相之间的显著相互作用。
PANI-MWCNT复合材料的电导率(19.7 S cm-1)甚至优于MWCNT(19.1 S cm-1)或PANI(2.0 S cm-1)。
这可归因于两个组分之间(即PANI和MWCNT)的协同效应。
在Ku波段(12.4-18.0GHz)复合材料的吸波值为-27.5dB至-39.2dB,表明这些材料具有良好的吸波性能。
这种具有高比表面积的PANI/MWCNTs复合材料可用于在各种热塑性基体中作为复合导电填料,制造具有结构强度的电磁屏蔽体[1]。
Sook Wai Phang课题组采用无模板法成功制备了不同含量的未经处理的双壁碳纳米管(u-DWNT)和羧基处理的DWNT(c-DWNT)与二氧化钛纳米粒子的己酸(HA)摻杂聚苯胺(PAni)纳米复合材料。
结果表明,与c-DWNT(3.43×10-2至4.48×10-1S/cm)相比,添加u-DWNT的PANI纳米复合材料的电导率更高(1.23×10-1至1.31×100S/cm)。
添加20%c-DWNT的纳米复合材料被PANI层覆盖,表现出高度的不均匀性,提高了介电常数,并导致电荷载流子沿着PANI骨架做无序的运动,有助于良好的微波吸收,未来可用作手机中的高效电磁干扰屏蔽材料[2]。
1.2 碳纳米管-金属复合吸波材料碳纳米管具有非常高的长径比,因而具有较强的毛细作用,在碳纳米管上负载磁性颗粒,可获得磁性碳纳米管复合材料。
Lu等通过共沉淀法,在多壁碳纳米管的表面沉积葡萄状纳米Fe3O4。
所制备的纳米复合材料在50-100℃范围内可实现对X波段的双带智能吸收。
通过温度调节,可同时调控双带最大吸收强度在-10~-15dB以及-16~-25dB范围内[3]。
当温度为323K时,反射率低于-20dB 的区域可基本覆盖X波段该纳米复合材料优良的吸波性能得益于其丰富的界面极化以及纳米Fe3O4的磁损耗贡献。
磁性纳米粒子的引入,有效改善了多壁碳纳米管的阻抗匹配;温度的变化调控材料的介电损耗与磁损耗,进一步调控阻抗匹配,可实现对电磁波的智能高效吸收。
Cao等采用共沉淀法制備得到两相异质结构的Fe3O4/MWCNTs 纳米复合材料,再通过原位聚合在复合材料表面包覆一层聚苯胺,制备得到三相异质结构的纳米复合材料。
结果表明,引入磁性纳米颗粒Fe3O4所产生的界面效应有效促进了材料的自然共振与交换共振,进而提升了材料的复介电常数,复磁导率以及磁损耗。
特殊结构的CNTs基复合材料对吸波效果的增强具有明显效果[4]。
Qiu等以中空碳纤维为“树干”,气相沉积的碳纳米管为“树枝”,通过化学反应在“树枝”上生长了磁性纳米粒子,获得一种三维树形结构的Fe3O4/CNTs/HPCFs复合吸波材料。
在14.03GHz下具有最大损耗-50.9dB。
CNTs的介电极化、多孔结构以及化学键使复合材料的吸波性能提高,另一方面,Fe3O4的磁损耗与CNTs/HPCF的介电损耗间的相互协同作用对复合材料的吸波性能具有重要的影响[5]。
Bhattacharjee等通过层层自组装技术,构建了一种多层超薄聚合物纳米复合吸波膜材料。
该膜材料的吸收层以锰铁氧体修饰的多壁碳纳米管为填充物,以热塑性材料聚偏氟乙烯(PVDF)为基体构成。
而反射层为中间层,由镍沉积的碳纤维与PVDF构成,两侧为吸收层构建成三明治结构。
入射电磁波经过层间的多重反射和吸收,可以实现电磁波吸收的最大化。
实验结果表明,当膜厚度为0.6mm时,反射率最低达-56dB[6]。
Wen等采用氢气还原的方法制备了MWNTs/Ni纳米复合材料[7],分析结果显示,适当调控复介电常数和复磁导率,产物对S波段电磁波表现出了优异的吸收性能。
吸波频率服从1/4波长匹配模型。
这项工作对实现复合材料的吸波频带可调具有一定的启示作用。
Zhang等报道了自模板法合成具有多孔的Ni@碳管复合材料[8],该复合材料在500℃下烧结,形成了长约3μm直径200nm的1 D管式形貌,其富有的多孔形貌赋予材料更好的阻抗匹配,而其金属包覆碳的结构增强了界面间的极化,多方面的综合因素使该复合材料表现出良好的电磁波吸收性能,在厚度仅为1.8mm时,其有效吸收宽度达5.2GHz。
分析结果表明,除CNTs 以及Ni本身对电磁波的电损耗与磁损耗外,在10-18GHz范围内还存在着由Ni-C 界面键产生的宽频强吸收,这项工作表明在金属与碳材料界面间构筑化学键在电磁波吸收领域有重要的使用价值,进一步研究磁性金属与碳材料间的复合机理、结构等对碳基复合电磁波吸收材料的性能影响是非常有意义的工作。
2 展望综合上述文献可以看出,碳纳米管基复合吸波材料的研究工作取得了长足的发展。
以碳纳米管的独特结构为基础,未来一方面的工作是通过调节阻抗匹配,着力提高吸波性能;另一方面,是发展低成本,结构和形貌可控的合成方法。
进一步通过系统的复合机理及吸波机理的研究发展相应理论。
参考文献:[1]Saini P,Choudhary V,Singh B P,et al. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding[J]. Materials Chemistry and Physics,2009,113(2-3):919-926.[2]Koh Y N,Mokhtar N,Phang S W. Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes[J]. Polymer Composites,2018,39(4):1283-1291.[3]Lu M M,Cao M S,Chen Y H,et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varyingtemperature to tune intensities[J]. ACS applied materials & interfaces,2015,7(34):19408-19415.[4]Cao M S,Yang J,Song W L,et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS applied materials & interfaces,2012,4(12):6949-6956.[5]Qiu J,Qiu T. Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube-hollow carbon fiber composites[J]. Carbon,2015,81:20-28.[6]Bhattacharjee Y,Bhingardive V,Biswas S,et al. Construction of a carbon fiber based layer-by-layer (LbL)assembly-a smart approach towards effective EMI shielding[J]. Rsc Advances,2016,6(113):112614-112619.[7]Wen F,Zhang F,Liu Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers [J]. The Journal of Physical Chemistry C,2011,115(29):14025-14030.[8]Zhang Y,Zhang X,Quan B,et al. A facile self-template strategy for synthesizing 1D porous Ni@ C nanorods towards efficient microwave absorption [J]. Nanotechnology,2017,28(11):115704.。