竞赛数学论文
大学数学论文(5篇)
大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
全国研究生数学建模竞赛获奖论文
全国研究生数学建模竞赛获奖论文一、概要《全国研究生数学建模竞赛获奖论文》是对全国范围内研究生数学建模竞赛的优胜者论文的集结和展示。
该竞赛旨在鼓励研究生群体深入探究数学建模理论与实践,挖掘科研潜力,锻炼解决实际问题的能力。
本书收录的论文,均为经过激烈竞争,展现出色创新思维、建模能力和问题解决能力的佳作。
这些论文涉及的领域广泛,包括物理、化学、生物、工程、经济、社会科学等多个学科。
本次竞赛的获奖论文展示了中国研究生在数学建模领域的最新研究成果和前沿思考。
通过对这些论文的研读,可以了解当前研究生数学建模的总体水平,以及未来的发展趋势和研究方向。
这些论文对于推动相关领域的研究进展,提供新的研究思路和方法,具有重要的参考价值和实践指导意义。
本书的一大部分内容是对获奖论文的高度概括和深入分析,包括问题的提出、建模过程、解决方法、结果讨论等各个方面。
通过详尽的阐述,让读者可以全面理解每一篇论文的研究思路和方法。
书中还会介绍各篇论文的创新点、难点及解决策略,以展现研究生们在面对复杂问题时所展现出的科研能力和创新思维。
还将介绍全国研究生数学建模竞赛的背景、发展历程以及未来的发展方向,为读者提供一个全面的视角来理解和参与这一重要的学术活动。
1. 介绍全国研究生数学建模竞赛的背景和意义全国研究生数学建模竞赛是一项针对全国范围内研究生的重要学术竞赛活动,旨在激发研究生在数学建模领域的创新精神和研究热情。
该竞赛不仅为研究生提供了一个展示自身才华的舞台,更是推动数学建模技术发展和应用的重要途径。
其背景源于数学建模在各个领域中的广泛应用,包括工程、经济、金融、生物、医学等多个领域。
随着科技的进步和学科交叉的加深,数学建模已经成为解决复杂问题不可或缺的工具。
全国研究生数学建模竞赛的举办,对于提高研究生的综合素质,培养创新思维和解决问题的能力,推动数学建模技术的研究和发展,具有十分重要的意义。
促进学术交流与合作。
全国研究生数学建模竞赛为来自全国各地的研究生提供了一个交流和学习的平台,促进了学术上的交流与合作,推动了数学建模技术的不断进步。
小学数学获一等奖论文范例
小学数学获一等奖论文范例第一部分:研究背景与问题提出一、研究背景随着我国教育事业的发展,小学数学教育越来越受到社会的关注。
小学生数学素养的培养,不仅关系到学生的个人发展,而且对国家科技人才的储备具有重要意义。
近年来,小学数学教育工作者在教学方法、课程设置等方面进行了大量改革和尝试。
在此基础上,本文旨在通过对小学数学教学实践的研究,探索出一套能够提高学生数学素养、培养创新意识的获奖论文范例。
二、问题提出1. 如何在小学数学教学中激发学生的学习兴趣,提高学生的主动参与度?2. 如何运用有效的教学策略,帮助学生掌握数学基本知识和技能,提高解决问题的能力?3. 如何在小学数学教学中培养学生的创新意识,使学生在数学竞赛中取得优异成绩?4. 针对不同学生的学习特点,如何因材施教,使每个学生都能在数学学习中获得成就感?三、研究目的本文旨在通过对小学数学教学实践的研究,总结出一套切实可行的教学方法,以提高学生的数学素养,培养创新意识,为我国小学数学教育改革提供有益借鉴。
四、研究方法1. 文献分析法:通过查阅国内外相关文献资料,了解当前小学数学教育的研究现状和发展趋势。
2. 案例分析法:选取近年来在小学数学竞赛中获得一等奖的论文为研究对象,分析其成功经验和教学策略。
3. 问卷调查法:设计问卷,对部分小学生、家长和教师进行调查,了解他们对数学教学的认识和需求。
4. 实证研究法:结合教学实践,运用本文提出的教学方法进行实证研究,验证方法的有效性。
五、研究内容1. 分析小学数学竞赛一等奖论文的特点,总结成功经验。
2. 探讨小学数学教学中激发学生学习兴趣、提高主动参与度的策略。
3. 探讨小学数学教学中帮助学生掌握基本知识和技能、提高解决问题能力的方法。
4. 探讨小学数学教学中培养学生创新意识的有效途径。
5. 提出针对不同学生特点的因材施教策略,以提高整体教学效果。
本文将从以上五个方面展开论述,为小学数学获一等奖论文的撰写提供范例。
全国研究生数学建模竞赛论文--范例
全国第五届研究生数学建模竞赛题 目 货运列车的编组调度问题摘 要货运列车的编组调度问题是铁路运输系统的关键问题之一。
合理地设计编组调度方案对于提高铁路运输能力和运行效率具有十分重要的意义,是关乎我国铁路系统能否又好又快开展的全局性问题。
针对货运列车的编组调度问题,在深入研究编组站中到达列车的转发、解体及新车编发等规那么和要求的根底上,对所提供的数据进行了分析和处理,建立了各问题相应的数学模型,制订了相应的编组调度方案:针对问题一,详细探讨了白、夜班中所有车辆在编组站的滞留时间,包括解体等待时间、解体时间、编组时间、出发等待时间以及转发时间等等;求出了所有车辆在编组站的滞留时间之和,并用其除以所有车辆的总数,即得到每班中时的优化模型;模型以每班的最小中时为目标函数,其约束条件包括出发列车的总重量、总长度、每辆车的中时约束等等;最后利用遗传算法和Matlab 遗传算法工具箱,计算出了白班和夜班的最小中时,并给出了详细的列车解体方案和编组方案。
针对问题二,优先考虑了发往1S 的货物、军用货物及救灾货物等的运输问题;优先安排了含有专供货物和救灾货物车辆数较多的列车,使其尽快解体、编组和发车,以减少其等待时间。
建模时,在问题一模型的根底上添加了专供货物和救灾货物车辆的中时约束,并利用遗传算法计算出了每班的最小中时,制订了列车解体方案和编组方案。
针对问题三,由于所提供的信息具有动态性,所以在解编列车时,要对后续车辆和现存车辆的具体情况同时进行分析才能作出合理决策。
在考虑相邻时段递推关系的根底上,以每班的最小中时和发出车辆最大数目为目标函数,建立了一个多目标多阶段动态规划模型,并利用神经网络方法和Matlab 软件计算出了每班的最小中时和发出车辆的最大数目,制订了列车解体方案和编组方案。
针对问题四,首先根据条件处理了所给的数据,然后在模型一的根底上建立了相应的模型,并计算出了相应各班的中时,给出了相应的调度方案。
大学生数学建模竞赛B题优秀论文
关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。
首先,我们基于层次分析法建立了模型一。
模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。
对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。
模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。
我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。
考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。
最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。
模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。
然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。
评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。
修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。
基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。
本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。
全国大学生数学建模竞赛论文1
目录一 问题重述问题重述......................................................... ......................................................... 1 二 问题分析问题分析......................................................... ......................................................... 2 三 模型假设模型假设......................................................... ......................................................... 2 四 符号说明符号说明......................................................... ......................................................... 2 五 模型的建立与求解模型的建立与求解................................................. ................................................. 3 六结果分析六结果分析......................................................... (12)一 问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,等数据,通过预先标定的罐容表通过预先标定的罐容表通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)进行实进行实时计算,以得到罐内油位高度和储油量的变化情况。
全国大学生数学建模竞赛论文范例
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。
通过对结果的讨论,得出了具有一定实际意义的结论和建议。
一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。
二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。
(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。
三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。
(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。
四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。
五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。
(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。
六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。
(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。
七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。
(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。
(三)改进的方向针对模型的不足,提出可能的改进方向和方法。
八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。
(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。
以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。
问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。
现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。
问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。
第五届华中杯数模竞赛A题优秀论文
第五届华中地区大学生数学建模邀请赛承诺书我们仔细阅读了《第五届华中地区大学生数学建模邀请赛的选手须知》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们的竞赛编号为:我们的选择题号为:参赛队员(打印并签名):队员1:队员2:队员3:(以下内容参赛队伍不需要填写)评阅编号:武汉工业与应用数学学会第五届华中地区大学生数学建模邀请赛竞赛组委会题目: 不同类型汽车的能耗和使用成本问题摘要对于问题一,我们选取ECE 工况,采用基于以能量消耗为比较目标的控制方法,建立传统汽车燃油消耗的数学公式,对比建立电动汽车以及混合动力汽车的能量计算消耗模型。
传统汽车和纯电动汽车的能耗方程可直接由相关物理模型分析得出,考虑到混合动力汽车的特殊性,结合了HEV 汽车的最佳能源消耗模型。
然后利用MATLAB 中的SIMULINK 仿真系统对三类汽车能耗情况进行仿真比较,得出节能效果对比仿真图。
通过 SIMULINK 仿真得到传统汽车在ECE 工况下的能耗为810564.6⨯J ,电动汽车能耗为810003.3⨯J ,混合动力汽车能耗为810604.5⨯J ,混合动力汽车在ECE 的工况下相对传统汽车能减少14.63%的能耗,电动汽车在ECE 的工况下相对传统汽车能减少54.25%的能耗。
故得出结论,从能耗角度分析比较,电动汽车节能效果更好。
对于问题二,我们以汽车的行驶里程作为变量,结合实际情况,忽略可操作性不强以及波动变化较大的因素,重点从能耗费用、保养费用两个方面进行使用成本分析,通过简化问题以及对于三种不同类型汽车的对应分析,考虑购车成本和行驶里程对使用成本的关系后,建立了在一个相对合适的行驶里程内三种不同类型汽车的成本模型。
数学建模竞赛获奖论文范文
数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
第二届研究生数学建模竞赛C题优秀论文(1)
城市出租车交通规划综合模型一、问题重述城市中出租车的需求随着经济发展、城市规模扩大及居民生活方式改变而不断变化。
目前某城市中出租车行业管理存在一定的问题,城市居民普遍反映出租车价格偏高,另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,整个出租车行业不景气,长此以往将影响社会稳定。
现为了配合该城市发展的战略目标,最大限度地满足城市中各类人口的出行需要,并协调市民、出租车司机和社会三者的关系,实现该城市交通规划可持续发展,需解决以下的问题:(1)从该城市当前经济发展、城市规模及总体人口规划情况出发,类比国内城市情况,预测该城市居民的出行强度和出行总量,这里的居民指的是该城市的常住人口。
同时结合人口出行特征,进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。
(2)根据该城市的公共出行情况与出租车主要状况,建立出租车最佳数量预测模型。
(3)油价调整(3.87元/升与4.30元/升)会影响城市居民与出租车司机的双方的利益关系,给出能够使双方都满意的价格调节最优方案。
(4)针对当前的数据采集情况,提出更合理且实际可行的数据采集方案。
(5)从公用事业管理部门的角度考虑出租车规划的问题,写一篇短文介绍自己的方案。
二、模型假设1.常住人口和暂住人口的出行特征相近,划分为第一类人,在所有分析过程中假设其出行特征完全一样。
而短期及当日进出人口为第二类。
2.由于短期及当日进出人口情况复杂,假设第二类人口在于乘坐出租车方面相关出行特征(如乘车出行强度等)在未来几年内保持不变。
3.由于城市地理状况和居民的生活习惯在短时期内不易改变,所以在各交通小4.假设居民中出行人口占总人口数的比例不变。
5.假设对于出行人口而言,在出行方式选择方面的比例与出行人次的比例一样。
6.假设在未来几年内,出租车固定营运成本不变。
7.由于每次一起打车的人数,与居民的生活习惯相关,所以假设出租车每趟载客人次不变,即不受出租车数目和收费方案的不同而改变。
“高教社杯”全国大学生数学建模竞赛CUMCM国家一等奖优秀论文C题目论文
2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):(隐去论文作者相关信息等)日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):脑卒中发病环境因素分析及干预摘 要:脑卒中逐渐威胁人们的生活,本文主要针对脑卒中发病病例信息和受病环境因素进行统计分析,从实际数据结果加深对脑卒中的认识,旨在对脑卒中加以预防。
针对问题一,先主要借助于EXCEL 编程及筛选功能、MATLAB 辅助编程对附件数据进行错误修复及标准化处理,得到2007~2010年期间有效数据的发病年、月、日,然后在EXCEL 中分别按性别、年龄、职业、时间(包括年、月、日)四个字段对发病人数进行统计,并以图、表的形式予以展示,最后总结出脑卒中患者男女性别比为1.17:1、集中患病年龄段为71~80岁、高危职业为农民、存在一定季节性等结论,该问属于一般的数据统计分析模型。
研究生数学建模竞赛优秀论文
题 目
基于临床与基因图谱的结肠癌基因标签提取
摘
要
由于基因间的调控和相互作用表现为“功能基因组合”形式,基因的功能与 作用是集体作用的结果,而非单个基因单独作用的结果,表现在分类特征对样本 的分类能力方面就是以特征集合的形式整体体现出来的。根据这个生物学知识, 本文考察由多个基因构成的基因簇作为区分正常人和癌症患者的分类因素, 利用 独立成分分析(ICA)技术对已给出的基因表达采样数据进行分析,最大程度地降 低基因之间强烈的相互影响, 从而获得对判断是否患有肿瘤或者癌症的最有直接 关系但数目较少的潜在因素, 即基因簇信息。 随后, 我们采用了支持向量机(SVM) 依据提取出的潜在因素 (基因簇) 进行分类, 筛选出致病的癌症基因15个。 另外, 我们还运用基于灵敏度的支持向量机对基因本身进行分类,而不是基于基因簇。 利用得到的结果与基于独立成分分析的方法所提取的基因提供比较。 发现所筛选 的基因簇中有三个基因与灵敏度支持向量机方法筛选的基因相同。 对预处理过后的1908个基因,通过独立成分分析提取出61个基因簇,这些基 因簇中含有与分类无关的基因簇,即噪声,以及与分类相关的分类因素5个。事 实上,为了能够得到最好的分类因素,我们将问题转化为一类信号稀疏表示的优 化问题。此外,为了进一步进行基因分类,我们利用含噪声的ICA和带松弛因子 的非光滑优化模型研究带有噪声的基因图谱信息。 通过含噪声模型与不含噪声模 型进行对比,说明含噪模型的优势。 最后,借助于条件概率模型,对病人数据进行了筛选,将临床结论与基因图 谱相结合,通过已有文献以及生物信息网站所获取资料发现,所筛选的大部分基 因标签与当今临床医学所得到的直肠癌研究结论相吻合。
2
强度值均为 1000,而在另外一种实验条件下的强度值分别为 100 和 10000。如果 从对照与实验的绝对值来看,一个基因表达的变化远远大于另一基因,即 但是, 从生物学的角度出发, 两个基因变化的是相等的, 10000-1000>>1000-100 。 都是 10 倍的变化。用对数转换可以消除这种由两个相对变化间的不成比例所引 起的误导。例如,对数据进行以 10 为底的对数变换,则 lg100 2 lg1000 3 lg10000 4 可以看出,基因的变化是相等的,只是方向不同,一个增大,另一个减小。对数 变换减弱了数据的平均值和方差,使得表达的变化独立于其产生的强度位置,从 而使得低强度值与高强度值发生的倍数变化具有可比性。 另外,对数变换使得数据的分布具有对称性和接近正态分布性质,而一些常 用的统计方法,如 t 检验、F 检验等方法都要求数据满足正态分布或近似正态分 布。由于本问题中所提供的数据已经是对数形式的,所以可以忽略这一步。 (二) 重复数据的合并 重复的测量可以用于估计实验中的噪声,比较不同处理组间和处理组内的 变异。然而,在特定的条件下把所有的重复值合并成一个数值可能更为方便,而 这一个值就是给定基因(条件)的代表。根据不同的情况,这些重复测量可能是 同一芯片上的重复点,或是同一基因在不同芯片上的测量值。通常的合并是指计 算这些重复值的集中趋势指标,如均数、中位数或众数。 (三)数据归一化 系统误差使得采集到的数据可能含有奇异样本数据, 所谓奇异样本数据指的 是相对于其他输入样本特别大或特别小的样本矢量。 奇异样本数据的存在会影响 特征基因的提取。所以,在数据预处理部分,需要对原始数据进行归一化。归一 化的具体作用就是归纳统一样本的统计分布性。 归一化在 0~1 之间是统计的概率 分布,归一化在-1~+1 之间是统计的坐标分布。例如规整原数据到 0,1 内,这样 可以降低奇异样本数据对整体的误差影响, 从而更加有效地提取特征基因。 另外, 数据归一化对于独立分量分析(ICA) 、支持向量机(SVM)数据处理也是有帮 助的。 首先,根据附件的文件说明,我们需要对 project_data.txt 里的数据进行以下 预处理: 1. 在project_data.txt数据文件中,第二列为UMGAP,HSAC07 或者i的数据 是和RNA控制相关的,对下面所做的工作没有关系,为冗余数据,所以需要把 这些数据去除。 2. 基因芯片探针探测到的序列表明了基因的表达水平,有些数据可能是同 一基因探针的重复点,也有可能是同一基因在不同基因探针上的探测值。因而, 对于project_data.txt中基因相同的序列,需消除重复表示,采用了类均值算法, 对其进行取平均或取中值处理,给出特定基因的唯一表达数据。 以上两步的数据预处理可以保证: 处理后的数据较真实地反映了不同基因的 不同表达水平。 通过以上的预处理,原基因数据从2000个基因减少到了1908个。实验表明, 1908个基因数据为可靠性较高的数据。 其次,进行数据归一化处理。采用的归一化映射为:
国赛数学建模竞赛优秀论文
I 、问题重述 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?酒的理化指标来评价葡萄酒的质量?II 、问题分析问题思路问题一: 本问题中,两组各10名评酒员分别对27种红葡萄酒和28种白葡萄酒进行评分。
其中,评分标准一样,评酒员都能理性的按照标准给酒一个合理的评分。
由于,每个人的口感、视觉效果和嗅觉不一样,品酒员给每种酒打的分数不一样而产生误差。
品酒员给每种酒打的分数不一样而产生误差。
根据表格,根据表格,分别计算出两组10名评酒员的评价总分、标准方差、平均值。
运用SAS 对两组进行配对样本T 检验,并用Excle 进行图标分析。
对比两种结果并得出统一结论。
给及两组评酒员的评价结果的差异性和可信度进行评估。
组评酒员的评价结果的差异性和可信度进行评估。
问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级,这里的分级问题需要考虑两方面的问题处理:1、对葡萄理化指标和影响葡萄酒质量评定的标准进行整合分析,2、现实中还没有统一的酿酒葡萄分级标准,现实中还没有统一的酿酒葡萄分级标准,对本题中葡萄进行分级需要有一对本题中葡萄进行分级需要有一套标准。
数学建模竞赛优秀大学生论文
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
全国大学生数学建模竞赛论文范例
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
2023年高教社杯全国数学建模竞赛B题省级二等奖论文
2023年高教社杯全国数学建模竞赛B题省级二等奖论文一、引言2023年高教社杯全国数学建模竞赛是一项重要的学术竞赛活动,旨在激发青年学生对数学建模的兴趣,提高他们的数学建模能力。
本文主要介绍我们参与竞赛中的B题的省级二等奖论文。
二、问题描述本次竞赛的B题要求我们通过分析某地区近几年的降雨数据和水库蓄水量数据,预测未来一段时间内的降雨情况以及水库的蓄水量变化情况。
三、数据分析与处理为了分析和处理题目所给的数据,我们采用了以下的方法:1.数据的清洗:对于给定的降雨数据和水库蓄水量数据,我们首先对其进行清洗,去除异常值和缺失值,确保数据的准确性和完整性。
2.数据的可视化:通过使用Python的Matplotlib库,我们将清洗后的数据进行可视化展示,以便更好地理解数据的分布情况和趋势变化。
3.数据的分析与建模:根据题目的要求,我们运用统计学和数学建模的方法对数据进行分析。
首先对降雨数据进行时间序列分析,探究其周期性和趋势性;然后,利用回归分析的方法建立降雨量与水库蓄水量之间的数学模型,以预测未来的蓄水量变化情况。
四、结果与讨论经过上述的分析和处理,我们得到了以下的结果:1.降雨数据的分析结果显示,该地区的降雨量呈现出明显的季节性变化,并且存在一定的趋势性。
通过对降雨数据进行拟合,我们成功建立了一个能够预测未来降雨量的数学模型。
2.利用回归分析的方法,我们建立了一个能够预测水库蓄水量的数学模型。
通过对模型的检验和验证,我们发现该模型对未来水库蓄水量的预测具有较高的准确性。
基于上述结果,我们得出了以下的结论:1.未来一段时间内,该地区的降雨量将继续呈现出季节性的变化,并且可能会有一定的增加趋势。
2.水库的蓄水量将会随着降雨量的变化而变化,预测的数据显示蓄水量将保持在一个相对稳定的水平。
五、结论本文以2023年高教社杯全国数学建模竞赛B题省级二等奖论文标题为中心,描述了我们在竞赛中的研究过程和结果。
我们通过对降雨数据和水库蓄水量数据的分析和处理,成功建立了能够预测未来降雨量和水库蓄水量变化情况的数学模型。
全国大学生数学建模竞赛—参考论文
路灯的更换策略摘要本文针对路灯的更换策略中最佳更换周期的确定做了深入的研究,根据路灯更换的周期对平均费用影响的分析可知该问题是一类基于概率模型的周期性更换策略问题。
对此,本文建立了微分方程模型进行讨论求解。
首先,我们采用数理统计的思想,利用题中给出了200个抽样灯泡的寿命,借助SPSS 应用统计软件和MATLAB软件工具箱对样本进行了假设检验以及参数估计,检验结果显示,样本中的灯泡的寿命均服从均值为4002.67,标准差为96.047的正态分布。
对于问题(1),先确定了以单位时间内路政部门所花费最小为判断指标,通过计算推导得到了单位时间所花费的平均费用关于周期的表达式,即单位时间内所花的平均费用为一个周期内所花的总费用除以一个周期的小时数,周期的总费用包括灯泡成本以及罚款费用。
然后对该函数进行微分求导,在导数为0的情况下求解最佳更换周期T的表达式,经化简,得到T为最佳周期时的等式。
对于问题(2),在问题(1)以及数据处理阶段的基础上,对模型进行了求解。
采用遍历的思想,用MATLAB对周期在某一范围内进行遍历代入问题(1)中求得的关系式进行计算,当(1)中关系式成立时,输出的周期T为最佳周期,即4314小时。
对于问题(3),在问题(1)的基础上,考虑更换下来的未损坏路灯的回收价值,对模型进行修改,在从费用中减去该部分的价格,按照问题(1)的推导的思路以及问题(2)中的算法对该问题进行分析求解,最佳更换周期为3926.5小时。
最后,本文对模型中涉及的罚款费用做了敏感性分析,并结合实际做了的优缺点进行了评价,提出了离散的时间模型的改进方案,对模型进行了简单的推广。
关键词:假设检验;周期性更换策略;微分方程模型;敏感性分析一、问题的提出和重述1.1问题的提出路灯的更换和维护是路政部门的一项重要的工作,在更换路灯时间的选择上,路政部门需要考虑到跟换的成本,灯泡的寿命等众多因素。
而在更换时,花费的精力和成本主要是要专用云梯车进行线路检测和更换灯泡,向相应的管理部门提出电力使用和道路管制申请,雇用的各类人员支付的报酬等,这些工作需要的费用往往比灯泡本身的费用更高,因此,灯泡坏一个换一个的办法是不可取的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学竞赛之我见--数学竞赛,不是你的错我国从1985 年开始参加国际数学奥林匹克竞赛,至今共参加了25 次,16 次获团体总分第一名,在这震撼人心的成绩背后,却至今还没有选手获得数学界相当于诺贝尔奖的最高荣誉——菲尔兹奖.故而多数人认为:现行的数学竞赛扼杀了大多数青少年学习数学的兴趣;阻碍了大多数青少年全面健康的发展;选拔不出真正的数学人才;未能有效促进中学数学教学改革。
但是,这种情况并不能把错全推到数学竞赛身上,中国没有在其它理学学科的国际竞赛上有突出成就,那在其他领域难道就有国人获得了本领域的最高荣誉了吗?因此,这个问题的产生牵涉甚广,其解决途径除了数学竞赛本身需要纯洁、自然化和去功利化之外,我们需要思考、需要改进的还有很多.(一)四起三落,不是你的错数学竞赛是1894 年在匈牙利开始的.苏联把数学竞赛与体育竞赛相提并论,与科学的发源地——古希腊联系在一起,称数学竞赛为数学奥林匹克.1956 年,罗马尼亚数学家罗曼教授提出了倡议,第一届国际数学奥林匹(International Mathematical Olympiad,简称 IMO),于1959年7 月在罗马尼亚布拉索夫举行,以后基本上每年举行一次.受学习苏联的影响,1956 年我国也开始搞数学竞赛,1958年以后的几年,由于国家处于经济困难时期,数学竞赛也被迫停止.1962 年,随着经济形势的好转,北京又恢复了数学竞赛,并在国内掀起了数学竞赛的浪潮.但是,1965年以后,由于文化大革命的原因,数学竞赛再度被迫中断十余年.直到1978 年,数学竞赛第3 次兴起,华罗庚教授再一次主持了全国8 省市数学竞赛.但是1979 年发展过热,由于许多学校和地区为了争得好名次,集中人力、物力搞突击训练,给正常的教学带去了极其负面的影响,于是教育部做出不再由官方举办全国性数学竞赛的决定.1980 年,数学竞赛停办一年,之后又恢复正常。
由上可见,数学竞赛的起起落落,落于中国的经济、文化、政治等方面的危机和国人功利化的畸形竞争,但每次兴起却都是数学家、数学学者级以及数学教师们想要突破中国数学教育的局限止步和年轻一代对数学望而却步而做出的抗争性变革。
纵然起落不定,却不乏热情和实力。
我国从1985 年首次参加IMO,至今共参加了25 次,16 次获团体总分第一名:共有146 人次参赛,获113 块金牌、26 块银牌、5 块铜牌。
(二)风口浪尖,不是你的错据有关文章所述:至今还没有具体的数据表明,中国有多少孩子在上奥数班、在学习奥数,但媒体上“‘奥数’成为孩子的噩梦”、“某某竞赛由于报名人数太多而被迫终止”的报道让人感到触目惊心.“疯狂奥数热”已经引起了社会的轩然大波,该是解决的时候了.人们对“疯狂奥数热”的缘由有着不一样的认识.可择校或加分或免试入。
从《青少年中的数学健儿们在数学奥林匹克中大显身手吧!——给北京高二高三同学的一封信》[6]中看出,当时激励青少年积极参加数学竞赛的方法之一是“教育部批准的免试进入自己所愿的大学”.《2010 年普通高校招收保送生办法》8 类资格中,与奥赛有关的占了3 类.小升初考试的取消,直接导致了“奥数”成为选拔优秀学生的评判标准.就业形势的严峻、学历的重要性促使高中学生争着进重点大学,而“奥数”理所当然地成了敲门砖.提高数学成绩。
有些家长是抱着“数学是思维的体操”、“‘奥数’能培养人的思维”、“‘奥数’能提高人的数学能力”的想法把孩子送去“奥数”班的.家长普遍认为,难题会做了,平常题目更会做,数学成绩当然上去了.还有家长认为,数学是一门基础学科,能够有效带动数理化等其他科目的学习.优质教育资源不均衡。
冯大生提出,“奥数热”背后的“升学”问题,是优质教育资源不能满足老百姓的需要(教育不公平问题,尤其表现在义务教育阶段).但在大多数中国家长的心目中,有一条刻骨铭心的“成材链”:好小学—好初中—好高中—好大学—好工作.于是,“不上‘奥数’班,升中学时会吃亏,不能让孩子输在起线上”是家长普遍的心声,他们认为“奥数”是关系到孩子前途和未来的“教育投资”.经济利益的驱动。
“奥数”已经成为一些学校和教育机构敛财的工具,“要想富,教奥数,仨月赚下房首付”成了公开的秘密.“奥数热”催生了包括教育培训、教材出版、房屋租赁等行业在内的庞大的“奥数经济”.据央视《经济半小时》报道,北京“奥数”市场规模一年20 亿.“奥数经济”繁荣表象的背后是被异化的考试经济.由上言论不难发现:无论升学还是经济,这些问题都与数学竞赛有关,但错却不在它,而是赖于不断开发并将其复杂化的人,丑化、脏化于对它日久功利化人之手。
另外,值得一提的是,“随着数学的发展,已逐渐形成一门特殊的数学学科——竞赛数学,也可称为奥林匹克数学”,即“奥林匹克数学”是一门特殊的学科,“数学奥林匹克”是一种竞赛活动。
正宗的“奥数”其实是“数学奥林匹克”,它主要是面向初、高中阶段的少数有数学天赋的学生,而现在大家笼统讲的“奥数”,其实是一些数学培训班和一些数学竞赛(主要是针对小学生)。
不过,“奥数”已成为数学竞赛的代名词,它们已浑然一体。
故而,很多时候“奥数”的噩梦也就顺其自然的成了数学竞赛的错!(三)你最初该是这样的数学竞赛(或称数学奥林匹克), 以培养数学基本素质为宗旨, 它鼓励人们的探索精神和创造毅力;它把学生的数学思维引向深化, 从而有助于提高学生观察问题分析问题和解决间题的能力。
所有这一切, 都和中学数学教育改革的任务是完全一致的, 因而从教学内容, 教育方法上对中学数学教育必然产生很大的促进作用。
竞赛数学通过一个个千姿百态奇特巧妙的问题和解法, 反映了中学数学的精华和基本的数学思想方法, 更深刻、更灵活, 更朴素地反映了数学的本质和科学方法论数学思想方法, 是分析解决数学间题的基本观点, 是对数学知识的本质认识。
竞赛数学的许多思想方法, 诸如“从特殊情形入手”、“化归到已知问题”、“构造数学模型”、“变换角度看问题”等等。
对它们的领悟程度, 体现了数学能力的水平我们知道, 构成数学能力的要素, 最基本的包括: 对概念、理论、方法的准确记忆和深刻理解; 对文字语言, 符号语言, 图形语言的准确掌握, 流畅“互译” , 灵活运用, 达到在思维活动中的统一; 对数学思想方法的领悟程度。
我们说一个人是否具有数学头脑, 也总是衡量他是否具备分析问题和解决问题的思想方法。
竞赛数学正是在突出数学思想方法, 培养良好的数学思维品质, 发展科学探索精神等方面具有重大的教育意义。
另外, 竞赛数学具有较强的趣味性, 直观性, 并且表达简炼, 情景独特, 结果优雅,使学生感受与体验到数学知识的无限魅力, 激发学生的学习兴趣和创造精神。
(四)为了成为最初的模样数学竞赛致力于培养学生数学思想方法、让学生在趣味之中感受数学、喜欢数学并开始主动学习。
这也正是中学数学教育改革的目标之一,我们从竞赛数学看中学数学教育,以下几点的启示可能是有益的加强数学思想方法的教育。
既然竞赛数学是以中学数学为基础的, 它的一些思想方法又是基本的和朴素的, 那么, 在普通的中学数学教育中加强思想方法的教学是完全可能的, 并且是十分重要的,不应该只是一些定义、公式、符号的堆积, 而恰恰忽视蕴含其中的思想方法。
事实上,数学思想方法都体现在中学数学知识的发生、发展、深化和应用过程中, 问题在于如何帮助学生挖掘和提炼。
重视数学意识的形成。
数学意识是指人们对于生产、生活的实际问题, 运用数学知识, 数学思想方法进行思考的思维习惯是数学素质的重要内容,我们知道, 数学竞赛的许多问题并不是以数学形式出现的, 例如一些对策问题、操作问题、逻辑推理间题等等,但它能有效地考察学生的数学意识和创造精神。
同样地, 培养数学意识也是中学数学教育的任务之一。
但在当前的中学数学教学中, 对这一点的认识还是很不够的, 学生学到的只是数学内容和数学方法表面形式化的公式,不善于把实际问题数学化。
促进数学兴趣的提高。
竞赛数学具有激励性的特征。
由于竞赛题从形式看具有较强的趣味性, 往往使得人们非常容易被吸引到解题活动中, 如果解决了一个问题, 则由于数学的发现而产生成功的喜悦, 又会强化对解题的兴趣和数学意识。
这是数学竞赛为广大青少年所青睐的原因之一。
我们知道, 兴趣反映人们的内心倾向, 对数学学习起重要作用。
乌申斯基说过: “没有丝毫兴趣的强制性学习, 将会扼杀学生探求真理的欲望。
目前中学数学内容单调、枯燥、教学方法呆板, 不少学生对数学学习感到负担沉重, 产生疲劳或厌烦情绪。
数学教学改革, 必须改变这种状况。
要使学生对数学学习有兴趣, 必须亲自使他们感受到与体验到数学知识的无限魅力。
因此, 教学内容要贴近社会生活的内容, 要注意创设情境从注意主体意识的培养。
竞赛数学的解题策略和思维方式, 需要有较高水平的灵活性和创造性技巧。
培养学生的创造性精神和创造能力, 是中学数学教学的重要任务。
创造思维表现为思考问题和解决问题时的方法方式或结果的新颖、独特, 别出心裁, 不受条条框框的制约。
显然, 这与学生是否具有自我主体意识有关。
张奠宙教授曾提到过一则教育笑话: 问“设在一条船上有7 5 头牛, 3 2 头羊, 问船长几岁? ”竞赛数学与课堂数学教学既有联系又有区别。
诚然, 本文不是说应该在中学数学中增加高难的数学竞赛的内容。
而是说明, 随着数学竞赛的不断发展, 它的许多特点, 对于我们在数学教育中如何提高学生的数学素质, 是有很大的启发的。
如果我们能把它的优势融入到中学教育,而不是只盯着它所关联的社会问题,那么我们的中学数学教育将会受益匪浅!由前所述,数学竞赛在中国的发展,某种程度上可以认为是一种数学教育上的变革。
笔者认为既然是变革,那负面问题的产生自然是不可避免的。
所以我们要做的不是如国人惯常处理问题那样:不论变革存废意义,只为保持所谓的完美表象而切除一切病灶---取缔这场变革。
而是应该静下心来,好好反思出现这些问题的原因是什么?这场变革是否有意义?我们的目的是什么?我们应该怎么解决?其实,不是每一个问题都能从源头上解决,不是掐断水源就能远离毒流的,如果能够渐渐找到并清除毒源或者获得解药,那么,我们不光解决了一个危及生命的难题,而且还重新获得了一条滋养生命的新兴之流!为此,笔者有如下几点个人建议:获得政府认可、支持。
如此一来既可以获得政府经费支持,又可以使得出国竞赛“师出有名”,名正言顺。
自由参赛,公平报名。
减少、消去只在部分学校举办初选而造成的不平气氛,而且自由参赛就可以尽量减少因“奥数”而毒害重压的事件的发生概率,这才是对数学竞赛关于“针对有兴趣有余力的学生开设”初始目的的实施。
消减功利化宣传。
首先该取缔某些学校以竞赛数学成绩为入学要求或者敲门砖的规定,尤其是以此保送高校的政策;其次弱化以这些年来所取得成就、荣誉为重点的宣传手段,如此只会给报名参赛的人施加压力,从而比赛成了负担而不是乐趣,同时吸引了更多只为荣誉却毫无兴趣研习数学的好胜者参与。